1. EXECUTIVE SUMMARY

1.1. RBKC’s residents, communities, public institutions, businesses, and voluntary and community organisations have experienced a dramatic impact from the Covid-19 pandemic, with ongoing implications for many years to come. In London the first wave began in early March 2020, peaked in early April and declined by the end of May 2020. For a further five months the pandemic was suppressed, until in mid-October the second wave of the pandemic produced increases in the daily death toll, leading to a second national lockdown.

1.2. The Council’s initial response to recovery was reported to the Leadership Team on 3 June 2020 and Overview and Scrutiny Committee on 8 July 2020. The approach included a focus on the health, safety and welfare of our residents under a core message of Protect Lives, Protect Livelihoods. The Council also committed to work with our communities, partners and businesses to address challenges locally and to promote the borough’s economy, as lockdown gradually eased.
1.3. Unlike in other regions in England, in London public transport is the principal mode of travelling to work. And yet in the first wave of the lockdown public transport was operating at some 15 per cent of its capacity. This meant that, in this first wave, there were concerns that people would switch from public transport to private cars to get to work once the pandemic had eased. This led to the Government introducing schemes to encourage higher and safer volumes of cycling in London and elsewhere during the pandemic. The idea was that these schemes would be ‘introduced in weeks’.

1.4. The Government’s guidance note made very clear that it expected to see major changes to roads that would support social distancing and an increase in walking and cycling as London and the rest of the UK came out of lockdown in late May. The guidance was equally clear that plans should be delivered urgently: “Measures should be taken as swiftly as possible, and in any event within weeks, given the urgent need to change travel habits before the restart takes full effect.”

1.5. In practice, the temporary scheme in Kensington High Street was not implemented until 14 October, when the second wave of the pandemic was just developing. The scheme was abandoned some seven weeks later and was fully removed within nine weeks of being implemented. Plainly and with hindsight, the scheme was not implemented in a timely manner in respect of the waves of the pandemic.

1.6. The decision faced now is whether to introduce a temporary cycle lane in Kensington High Street as we begin to come out of the third lockdown, over the next few months.

1.7. The lesson of the past year has been that all plans (including experimental local transport plans of this type) are subject to major contingencies and may need to be urgently adapted. The case for, and against, implementing an experimental cycle lane in Kensington High Street involves balancing considerations of design, safety, transport congestion as well as the Council’s overall aim of encouraging walking and cycling. The case also requires the Council to have regard to the full variety of attitude and opinion from residents, businesses, public agencies, visitors and other stakeholders.

1.8. There has not been a formal consultation on the scheme, neither prior to its original implementation nor since. The attitudes and opinions about the temporary cycle lane are mixed, with very strong views held by some residents and organisations.

1.9. This report presents the evidence collated both during the period when the temporary scheme was in place, and since it was removed. Whilst the evidence does not point to a firm conclusion, it is sufficient to enable an assessment of the options presented in section 3, all of which it has helped to inform. All of the options are feasible and there is sufficient evidence rationally to justify them.
2. RECOMMENDATIONS

2.1. For the Leadership Team to consider the four options set out below.

3. OPTIONS

Option 1. Install temporary cycle lanes in full

3.1 This would allow the Council to carry out further monitoring of the cycle lanes, but would still not be conclusive while traffic patterns continue to be atypical as a result of the current and any future lockdown restrictions required due to the pandemic. Conditions for cycling would be similar to those during the time that the temporary scheme was in place.

Option 2. Install parts of temporary cycle lanes

3.2 This would involve providing segregated cycle lanes in the outer sections of the route, where the road is widest. It would not provide a continuous route in either direction but would assist people to cycle to and from the area on the sections of road where traffic tends to be faster.

Option 3. Do not install temporary cycle lanes but consider an alternative scheme in the longer term

3.3 Do not install temporary cycle lanes but develop plans to commission research into transport patterns in the post-Covid world, in partnership with local residents and local institutions including academic partners. The research could begin in the summer and lead to a feasibility study in the longer term. A non-exhaustive table containing a high-level summary of some suggestions that have been put to the Council and could be considered further is in Appendix A.

Option 4. Do not install temporary cycle lanes

3.4 This would maintain the current levels of traffic capacity along the High Street for general traffic. Conditions for cycling would remain as they are today.

4. REASONS FOR DECISION

4.1. The first phase of the cycle lane scheme was introduced in October 2020. Following strong representation from local residents, businesses and road users, a formal decision (KD05804/20/T/A) was taken by the lead Member for Planning, Streets and Environment on 2 December 2020, to remove the scheme using the Council’s urgency procedures. A pre-action protocol letter sent by the Environmental Law Foundation on behalf of Better Streets for Kensington and Chelsea was subsequently received challenging the decision, as well as three letters from Transport for London on the same matter.
4.2. Following that correspondence, on 8 January 2021, the Council announced that in March, the Leadership Team would consider afresh the question of cycle lane provision on Kensington High Street, with Cllr Thalassites recusing himself from the March decision. This report sets out the early traffic data, various representations and legal context of this situation and provides options for the way forward.

5. BACKGROUND

5.1. The immediate background to the creation of the cycle lanes related to the pressing need to support the recovery of the businesses on Kensington High Street, and, as described above, the instructions from the Government to enable more people to cycle while social distancing requirements were substantially reducing public transport capacity.

Recovery of Kensington High Street

5.2. The temporary cycle route along Kensington High Street sat within a wider corporate High Streets programme that recognises the long term structural changes to our high streets and their new vulnerability resulting from Covid 19. The programme is seeking collaborative ways to help manage, mitigate and re-invent our High Streets so they can remain successful, active and attractive places that people want to use and enjoy.

5.3. The first phase of the programme focussed on Kensington High Street and how the local authority, working in partnership, could initiate innovative ways to support Covid recovery and reinvention. A series of activities and projects are being delivered, other than the temporary cycle lane. These include a new visual identity for the High Street, new greening, places for social interaction (seating along the high street and in town hall square) and branded banners to be rolled out when the lockdown comes to an end. The programme has also supported the delivery of a new Sunday Farmers Market in Phillimore Walk; a visual presence on the High Street through the new street warden programme; working with the K&C Art week to create vinyls on vacant units designed by local artists, and a Christmas programme of lights and pavement vinyls. Close working with the local business community has supported the safe re-opening of businesses and has progressed the early consultation on the future delivery of a partnership management arrangement for the High Street.
Enabling higher levels of cycling during the pandemic

5.4. The Government provided funding to councils to implement Active Travel measures, both as direct grants and indirectly through Transport for London’s London Streetspace Plan (LSP). Transport for London also produced guidance to boroughs in May 2020, intended to complement the Government guidance and provide a London context for delivery of schemes. The status of the London Streetspace Plan is discussed under paragraph 5.11 and the ‘Legal Implications’ heading below. In July 2020 the Government published Local Transport Note 1/20: cycle infrastructure design. This was a guidance and good practice note for the design of cycle infrastructure and includes guidance on methods of light segregation of cycle lanes such as those that the Council employed on Kensington High Street.

Timeline of key events

5.5. It is in the above context that on 16 July 2020, the Lead Member for Planning and Transport took a Key Decision KD05659/20/T/A to approve the Council’s Active Travel Plan, which set out measures to support more walking and cycling in response to Government guidance on post-lockdown travel. The temporary cycle lanes on Kensington High Street were included as a project in that Key Decision. It was expected at that stage that the lanes would be introduced in August and could be in place for “up to eighteen months” – this is the maximum length of an experimental traffic order. No traffic order was required or implemented.

5.6. The Government’s position on the urgency of installing temporary active travel schemes gave no time to carry out an extensive consultation such as we would normally conduct for traffic schemes. However, over the summer the Lead Member did share the concept and subsequently the proposed designs with a number of local stakeholders including business and resident groups.

5.7. On 14 September, the Council wrote to local residents and businesses to advise them of its intention to install temporary cycle lanes along the length of Kensington High Street. The installation works for Phase 1 began in the last week of September and were completed by the middle of October. Phase 2, which included four “bus stop bypasses” and alterations to the junctions with Earl’s Court Road and with Kensington Church Street, were planned to be installed later in the year, along with changes by TfL to the junctions with Warwick Rd/Holland Road and Addison Road/Warwick Gardens.

5.8. On 12 November, the Council hosted a meeting with local business and residents’ groups to review the cycle lane scheme approximately four weeks after the completion of Phase 1. The presentation given by officers to this group, including data on journey time impacts and cycling volumes, is reproduced in Appendix B. Cllr Thalassites also met a representative of Better Streets for Kensington and Chelsea a few days later. On 17 November, Cllr Thalassites wrote to attendees to announce that he had asked officers to pause the delivery of Phase 2, in the light of concerns that had been raised about Phase 1 of the scheme.
5.9. The cycle lanes were subsequently removed and most of the original road markings reinstated during the first half of December 2020. This followed a letter from Cllr Thalassites to residents and businesses near the High Street, sent on 26 November 2020, informing them that, in light of the feedback received, the Council would be removing the cycle lanes and a decision made on 2 December 2020 under reference KD05804/20/T/A approving the removal of the cycle lanes. A pre-action protocol letter sent by the Environmental Law Foundation on behalf of Better Streets for Kensington and Chelsea was subsequently received challenging those decisions, as well as three letters from Transport for London on the same matter.

5.10. Following that correspondence, on 8 January 2021, the Council announced that in March, the Leadership Team would consider afresh the question of cycle lane provision on Kensington High Street, with Cllr Thalassites recusing himself from the March decision. Members should not, therefore, place any material weight on previous decisions. The purpose of this report is to assist Members to consider the matter afresh and with an open mind in light of the most up to date information available.

5.11. On 20 January the High Court ruled that the London Streetspace Plan and the associated guidance were unlawful, but this ruling was stayed for up to three weeks to allow TfL to seek leave to appeal the High Court’s ruling. Transport for London submitted an appeal before the deadline.

Transport planning and strategic context

5.12. The strategic context for this decision includes the Council Plan’s priorities to make Kensington and Chelsea a great place to live, work and learn, and healthy, green and safe. Under the latter priority, the Council Plan sets out the Council’s intention to encourage more people to walk and cycle. There is currently 10km of cycle Quietways across the borough and an ongoing aspiration to build on this. In 2020, the Council declared a climate emergency and adopted a target to make Kensington and Chelsea carbon-neutral by 2040. In 2020 we had the third highest number of electric vehicle charging points per head in the country and have expanded that network substantially since then. From April, our parking permit charges will be directly linked to the vehicle’s CO₂ emissions.

5.13. Kensington High Street has a strategic transport function, both for motorised transport and for cycling, with TfL reporting an average of 26,000 bus passengers a day travelling along the High Street before the Covid-19 pandemic.
5.14. Well before the pandemic struck, the High Street was seeing over 2,000 cycle trips a day, and Transport for London’s Strategic Cycling Analysis identified this corridor as a Top Priority corridor, being in the Top five per cent for current and cycling potential. Before the temporary cycle lanes were created, there were no strategic cycle routes linking West London to central London. With funding from TfL, the Council has delivered a network of local Quietway and Cycleway routes across the borough, as shown in Figure 1. By 2020 these routes had placed 68 per cent of residents within 400m of a cycle route, against a target of 70 per cent by 2021. Adding the Kensington High Street Cycleway raised this slightly to just under 72 per cent. The two local Cycleways that were approved by the Council prior to the pandemic would have brought us to 74 per cent had TfL funding for those schemes been provided. An alternative cycle route that could be considered to link West London to central London, would be further south, along Cromwell Road. This stretch of highway is part of the TfL Road Network managed by Transport for London and if implemented would bring the borough to 75 per cent of residents within 400m of a cycle route.

5.15. The 70 per cent target sits in the Council’s Third Local Implementation Plan (LIP), which sets out how the Council plans to deliver the Mayor of London’s Strategy. In addition to the target around cycle routes, the LIP includes targets for nearly half of residents to do 20 minutes of active travel a day and to reduce fatal and serious injury collisions by 70 per cent by 2030 (against 2010/14 baseline). The LIP also sets a target that 85 per cent of residents’ trips to be made by walking, cycling or public transport (against a baseline of 74 per cent (2013/14 – 2015/16). The LIP acknowledges the absence of a strategic east-west cycling route across the borough, but does not include any proposals for cycle lanes in Kensington High Street. Nor does the LIP mention plans to introduce segregation on an existing cycle lane on Chelsea Bridge.

5.16. Across Kensington and Chelsea, car travel fell from 457 million km in 2000 to a low of 374m km by 2013. Since then, it has risen to 424m (Source: DfT). In the most recent three years for which we have approved data from TfL (2016 to 2018), there were 45 cycling casualties on Kensington High Street and the RBKC part of Kensington Road, of which eight were recorded as serious injuries and 37 as slight injuries.
6. CONSULTATION AND COMMUNITY ENGAGEMENT

6.1. The Council made clear that the cycle lanes – like its other Active Travel Plan measures – were being introduced on a temporary basis. The Council’s website identified that monitoring of the scheme would take account of various factors but did not set out a minimum or maximum duration for the cycle lanes.
6.2. Over the summer the Council engaged with local people and businesses regarding delivery of a scheme that would mitigate – where possible – impacts on other road users. The scheme was originally announced on 19 June with the story published on RBKC’s website\(^1\) and in our regular mail-outs. There was also some press coverage in the Evening Standard\(^2\) of the news. We spoke to residents’ associations and business forums – holding a virtual exhibition on 13 July to look at initial designs for the scheme, which was attended by many resident groups and businesses - as well as the emergency services, taxi driver and disability groups. Over the summer, officers maintained this contact and amended designs to reflect the feedback received.

6.3. There has not been a formal consultation on the scheme, neither prior to its original implementation nor since. Nonetheless, the scheme has elicited considerable comment and observation.

Comments received by the Council

6.4. In the first two weeks of December, the Council received 5,188 emails in support of the cycle lanes sent via the London Cycling Campaign (LCC) website\(^3\). Because these were all received from the same email address (membership@lcc.org.uk), officers had no practical means of checking whether people writing via the LCC had also written to the Council directly. For this reason, these 5,188 emails were analysed separately from the emails that were sent directly to the Council. Around 15 per cent of these emails appeared to be from residents of the borough or people who visit the borough.

6.5. Many of the LCC-generated emails used template text, a copy of which is supplied as Appendix C. Some people had amended or added to this template text and so every email received via the LCC was assessed to identify any new themes arising, as well as suggestions for improvement or re-design.

6.6. In October, a petition\(^4\) to end the cycle lanes on Kensington High Street was launched on Change.org. It had attracted over 3000 signatures by the end of November, and it currently has 3,497 signatures. Officers do not have access to data from this petition to analyse how many signatories appeared to be residents or visitors. The prayer of the petition is supplied as Appendix D.

\(^1\) https://www.rbkc.gov.uk/newsroom/all-council-statements/bike-friendly-project-help-borough-bounce-back

\(^2\) https://www.standard.co.uk/hp/front/popup-cycle-lane-hammersmith-kensington-westminster-a4474446.html

\(^3\) https://membership.lcc.org.uk/tell-kc-keep-kensington-high-street-cycle-lanes-today

\(^4\) https://www.change.org/p/put-an-end-to-the-kensington-high-street-cycle-scheme
6.7. The Council had received 3,134 emails from unique addresses as of 12 February 2021. These emails are obviously self-generated; they are not necessarily representative of broader opinion. No representative surveys of opinion were commissioned by the Council. These responses need to be weighed with that in mind. The emails were individually examined and coded for analysis. Of the 1,629 who identified themselves as residents, 69 per cent opposed the scheme, while 31 per cent supported the scheme. Of the 1,019 who identified themselves as visitors, 83 per cent supported the scheme, while 17 per cent opposed the scheme. There was also an 83 per cent to 17 per cent split in favour of the scheme among the 486 “other” responses.

6.8. Many individuals sent more than one email. For the purposes of fair analysis, the information contained in Table 1 is based on ‘unique senders’ (i.e. second or third emails from the same sender have not been counted). All emails received were reviewed and categorised to ascertain if the sender was in support, against or neutral towards the scheme, whether the sender appeared to be a resident of RBKC, a visitor (commuting to or through, visiting a destination in the borough etc), a business, organisation (such as residents’ associations, academic institutes or charities) or ‘other’ (someone who gave no indication that they regularly visit or live in the borough). Lastly, officers noted the comments in each email in order to identify key themes arising, as well as suggestions for improvement or re-design.

6.9. It is important to note that this method does not guarantee fully that individuals are in fact the category they have been allocated. A typical consultation process - such as feedback survey or form - would have allowed all individuals to ‘self-declare’ as a resident, visitor or other. But as no formal consultation was undertaken as part of the cycle lane scheme, officers can only make a judgement on the status of a respondent on what was provided in the body of responses.

6.10. The emails received from businesses and organisations are removed as these two categories engaged with the council in other ways too and are reported separately in Figures 2 and 3 and Section 7. On balance those emails from local residents’ associations and businesses tended to oppose the previous temporary scheme.

6.11. Of the 3134 emails from borough residents, visitors or others, the split between support and opposition is shown in Table 1 below.

Table 1 Summary of responses from unique email addresses

<table>
<thead>
<tr>
<th></th>
<th>Support</th>
<th>Opposed</th>
<th>Neutral</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resident</td>
<td>1,745</td>
<td>1,377</td>
<td>12</td>
<td>3,134</td>
</tr>
<tr>
<td>Visitor</td>
<td>844</td>
<td>175</td>
<td>8</td>
<td>1,019</td>
</tr>
<tr>
<td>Other</td>
<td>403</td>
<td>79</td>
<td>4</td>
<td>486</td>
</tr>
</tbody>
</table>

KHS ActiveTravel Inbox - Summary of Responses
Transport for London’s position

6.12. The cycle lane scheme was supported by Transport for London (TfL), which agreed in the summer to fund the cost of designing and delivering the scheme.

6.13. The Council has received several letters from TfL setting out its opposition to the decision to remove the cycle lanes, warning that it might not fund the scheme costs and advising that it was considering the exercise of powers to require the scheme’s reinstatement at the Council’s cost.

6.14. Most recently, in February, the Council received a letter from TfL which provided information in support of its position. This letter, and a supplementary TfL report on traffic congestion and bus impacts is reproduced in Appendix E to this report.

6.15. That letter argued, among other things, that:

- With social distancing measures still in place there is a significant risk of increased congestion if people switch from using public transport to the car;
- The Kensington High Street corridor has the highest rates of cycling casualties of any of RBKC’s main roads (excluding TfL roads);
- The cycling casualty rate on Kensington Higher Street is higher than the equivalent rate for Holland Park Avenue. With more people cycling, there is a risk of increased cycling casualties;
- Traffic delays on Kensington High Street cannot be attributed solely to the Cycleway;
- Bus journey times in the first week after the cycle lanes were installed (19-23 October) were similar to those in 2019;
- TfL did not believe sufficient time had been given to assess the impacts of the Cycleway and that Phase 2 of the scheme had not been built;
- Business impacts could not properly be assessed because the majority of businesses were closed due to Covid restrictions for the seven weeks in which they cycle lanes were in place;
- After the cycle lanes were removed, kerbside space was often blocked by illegally parked vehicles; and,
- RBKC should assess how taxis will pick up and collect passengers.

6.16. On 3 March the Council was made aware of a telephone survey, commissioned by TfL into perceptions of cycling by Kensington and Chelsea residents. Transport for London officers shared the results of this survey. This is attached as Appendix F

6.17. The survey found the majority of residents (70%) were in favour of measures to make cycle routes in the area safer. A lower proportion (59 per cent) supported the introduction of protected cycle lanes on main roads in RBKC and a slightly lower proportion (56 per cent) supported protected cycle lanes on Kensington High St.
6.18. There was a correlation with age, with 75 per cent of under 30s supporting protected lanes on KHS compared with 40 per cent of 70-79 year-olds. BAME respondents were slightly more supportive of cycle lanes on KHS than white respondents (58 per cent of BAME compared with 54 per cent of white respondents).

6.19. Respondents were asked to estimate how far away they lived from Kensington High Street and as 19 per cent of them estimated over 4 miles (and some gave postcodes which were outside the borough, this metric should be viewed with caution. That said, support for protected cycle lanes on Kensington High Street was lower among residents who lived within a mile of the High Street (48 per cent)\(^5\) than it was among those who estimated they lived further out (61 per cent support for respondents living two to three miles away and 66 per cent for more than four miles).

6.20. Over 40 per cent of respondents said that they use a cycle (among other modes) for local journeys. This is higher than but not directly comparable to the levels of cycling reported in a Department for Transport survey, which found that in 2018/19, just under 16 per cent of residents reported cycling at least once a month\(^6\). Among these respondents who cycle, 65 per cent supported protected cycle lanes on Kensington High Street and 27 per cent opposed. Among those who did not cycle, support was 50 per cent, with 33 per cent opposed.

Other Feedback

6.21. The following businesses and organisations sent letters or emails to the Council on behalf of their organisation, in support or objection to the temporary cycle lanes or cycle schemes more generally on the High Street. It is important to note that organisations – particularly residents’ associations – may represent many individual people.

Figure 2 – Local/borough businesses/Organisations

<table>
<thead>
<tr>
<th>In support - 19</th>
<th>Oppose – 28 (inc MP’s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Businesses and business / culture groups</td>
<td>Businesses and business / culture groups</td>
</tr>
<tr>
<td>• Decathlon</td>
<td>• Oracare Dental Practice</td>
</tr>
<tr>
<td>• Design Museum</td>
<td>• Kensington Business Forum</td>
</tr>
<tr>
<td>• Peter Jones</td>
<td>• Melbury Dry Cleaners</td>
</tr>
<tr>
<td>• Specs of Kensington</td>
<td>• Moira Wong Orthodontics</td>
</tr>
<tr>
<td>• Waitrose</td>
<td>• Non-Stop Party Shop</td>
</tr>
</tbody>
</table>

\(^5\) Opposition to protected cycle lanes on Kensington High Street reduced with perceived distance from the High Street (43 per cent of residents who estimated they lived within a mile, 25 per cent for two to three miles and 12 per cent for more than four miles).

Education
- Ashburnham Primary School
- Avondale Park and St Anne’s Federation of Schools
- Avonmore Primary School
- Bevington Primary School
- Colville and Marlborough Primary Schools
- Fox Primary School
- Imperial College
- Imperial College Student Union
- Notting Hill Preparatory School
- St Barnabas and St Phillip’s
- C of E Primary School
- Thomas Jones School

Residents’ Associations
- Campden Hill Residents’ Association
- Chatsworth Court Residents’ Association
- Cherry Trees Residents’ Amenities Association
- Earl’s Court Square Residents’ Association
- Edwards Square, Scarsdale and Abingdon Association
- ESSA Mansion Blocks
- Holland Park Residents’ Association
- Kensington Residents’ Group
- Kensington Square Residents’ Association
- Knightsbridge Association
- Oakwood Court Residents’ Association
- Point West Leaseholders Association
- The Kensington Society
- The Pembridge Association
- Thurloe Owners and Leaseholders Association
- Victoria Road Area Residents’ Association
- Warwick Gardens Residents’ Association
- Warwick Road Estate Leaseholder Association
- Open letter from 25 Kensington RAs (Appendix G)

NHS
- Chelsea and Westminster Hospital NHS Foundation Trust

Organisations/Other
- Better Streets for Kensington and Chelsea

Organisations/Other
- Action Disability Kensington and Chelsea
6.22. The Council received numerous emails from the campaign group Better Streets for Kensington and Chelsea setting out further support from 48 organisations and businesses not represented elsewhere in this report. Better Streets stated that they had attempted to contact all local businesses on the High Street for their views on the cycle lane, reporting that some were supportive of the scheme and that none of the large retailers that were contacted expressed opposition to the former

<table>
<thead>
<tr>
<th>Local Politicians</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Joint statement from Felicity Buchan MP and Tony Devenish AM</td>
</tr>
</tbody>
</table>

Figure 3 - Regional businesses/organisations

<table>
<thead>
<tr>
<th>In support - 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Businesses and business groups</td>
</tr>
<tr>
<td>• Fatkin Limited</td>
</tr>
<tr>
<td>• Pedal Me</td>
</tr>
<tr>
<td>• Royal Albert Hall</td>
</tr>
<tr>
<td>• Royal Geographical Society</td>
</tr>
<tr>
<td>• 4160Tuesdays</td>
</tr>
<tr>
<td>Education</td>
</tr>
<tr>
<td>• St Paul’s Girls’ School</td>
</tr>
<tr>
<td>• The Godolphin and Latymer School</td>
</tr>
<tr>
<td>• The Harrodián School</td>
</tr>
<tr>
<td>NHS</td>
</tr>
<tr>
<td>• NHS pan-London Bicycle User Group</td>
</tr>
<tr>
<td>• Letter representing 120 doctors</td>
</tr>
<tr>
<td>• West London Clinical Commissioning Group</td>
</tr>
<tr>
<td>Organisations/Other</td>
</tr>
<tr>
<td>• British Cycling</td>
</tr>
<tr>
<td>• CPRE London</td>
</tr>
<tr>
<td>• Hammersmith and Fulham Cyclists</td>
</tr>
<tr>
<td>• Sustrans</td>
</tr>
<tr>
<td>• Transport for London</td>
</tr>
<tr>
<td>• W6 Safe Cycling Families</td>
</tr>
<tr>
<td>• London Cycling Campaign</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oppose - 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Services</td>
</tr>
<tr>
<td>• London Ambulance Services</td>
</tr>
<tr>
<td>• London Fire Brigade</td>
</tr>
<tr>
<td>• London United Buses</td>
</tr>
<tr>
<td>• Licensed Taxi Driver Association</td>
</tr>
<tr>
<td>• United Cabbies Group</td>
</tr>
</tbody>
</table>
temporary cycle scheme. This email is provided as Appendix H. Further feedback from local businesses is also included in Section 7 of this report.

6.23. Key themes emerged in support or objection to the temporary cycle lanes. These are discussed below.

Comments against cycle lanes

Lack of consultation

6.24. One of the key issues raised related to the lack of consultation prior to installation of the cycle lanes. As set out in 1.3, the pressures from Government to respond to the challenges of travelling by public transport at the onset of the Covid-19 pandemic meant that the Council could not consult in the full and formal way it would normally wish to do. It is acknowledged that, whilst steps were taken to engage with the community, the absence of consultation likely led to increased opposition both to the installation and to the removal of the cycle lanes.

6.25. The cycle lanes were always intended to be temporary. Had there been appetite for them to remain, the Council would have required a full consultation to take place before making them a permanent fixture.

Delays to emergency services

6.26. Some residents reported that emergency vehicles were delayed by the introduction of the cycle lanes -- as there was no longer a second carriageway lane in which to overtake queued traffic.

6.27. Emergency vehicles have exemptions to enter cycle lanes and the Council designed the temporary lanes to be a minimum of 2.5m wide to accommodate emergency vehicles, intending to allow faster travel along Kensington High Street than previously. The type of wands chosen to protect the cycle lane were ‘over-runnable’ - meaning any vehicle could enter and exit the cycle lane if required with the wand folding down and springing up again behind the vehicle. For the most part the wands were set 4m apart although in certain places we used 8m gaps.

6.28. However, both the London Ambulance Service and London Fire Brigade (LFB) raised concerns about the scheme and noted that their vehicles would not use the cycle lanes.

6.29. The LFB stated that as an organisation, they were not encouraging fire appliance drivers to drive over the collapsible wands because, although many incidents within the borough are responded to by local stations, incidents can require attendance from crews outside of the borough. These drivers may not be familiar with collapsible wands and, as there is no common standard used across London, it is hard for drivers to know which are and which are not over-runnable. This might lead to damaged Brigade vehicles.
6.30. The Borough Commander said that the gaps in between the wands were too short for appliances to drive through and the cycle lanes too narrow for appliances to drive along. Drivers feared being blocked in if they used the lanes. The Borough Commander believed that cycle lanes London-wide were causing significant delays to LFB responders as well as when returning from routine work in the borough, suggesting in some cases it was taking in excess of an hour for vehicles to return to station.

6.31. The London Ambulance Service shared concerns regarding response times and overall ambulance journey times with the LFB above, additionally believing that the implementation of cycle lanes would cause pinch points. The LAS also felt that the wands would prevent ambulances parking up in order to access properties along the route easily and safely. The Service would also not encourage the use of cycle lanes by ambulances because of the risk of damage or of being unable to exit the cycle lanes easily. Unlike the LFB, ambulance crews do not have home stations and so are even more likely to be unaware if wands protecting a cycle lane are over-runnable or not. The responding Group Manager for the London Ambulance Service, whilst appreciating the public health benefits of cycling, believed this should not be at the detriment to the public who require immediate medical care in an emergency, and he requested that the scheme was reviewed.

Congestion

6.32. Those opposing the cycle lanes believed they had led to an increase in congestion and longer journey times since implementation because of the reduction in carriageway lanes. The data the Council holds in relation to journey times (including by bus) and traffic flows whilst the cycle lanes were in place is set out in Section 7.

6.33. Since removal of the cycle lanes, feedback - both in support and opposition to the cycle lanes – suggested that since removal, sections of the nearside lanes on Kensington High Street remained unable to be utilised for moving traffic due to parked vehicles.

Air Quality

6.34. Comments received regarding increased congestion were often accompanied by suggestions that the air quality on Kensington High Street had subsequently worsened due to the increase in stationary traffic once the cycle lanes were installed. The data the Council holds in relation to air quality whilst the cycle lanes were in place is inconclusive and set out in Section 7.

Noise

6.35. Similarly, residents suggested that because of an increase in congestion, noise levels had increased on the High Street as vehicle engines were stationary and some drivers utilised horns. The Council did not monitor noise levels as part of the scheme and so is unable to provide objective evidence against which to assess whether or not this was the case.
Use of the cycle lanes

6.36. People opposed to the cycle lanes often stated they had observed few cyclists using the lanes, and that they were therefore a disproportionate use of road space. The Council is unable to provide a like-for-like comparison between the period when the cycle lanes were operational with the equivalent period in previous years, but data gathered whilst the cycle lanes were in place is set out in Section 7.

Displacement

6.37. Some residents said that the knock-on effect of congestion within the High Street had led to some congestion in side streets as it became more difficult to turn into Kensington High Street, or that some drivers were opting to avoid the High Street by using local roads as rat-runs. In particular, the closure of the Wright’s Lane junction on 26 October led to complaints about increased traffic volumes on Adam and Eve Mews and Allen Street. Analysis of data regarding local road traffic is in Section 7.

Impact on local business

6.38. Objectors were concerned that the cycle lanes had reduced visitors’ ability or desire to stop on the High Street, and shop.

6.39. Some opponents of the scheme believed the plastic ‘wands’ contributed to poor streetscape which could further reduce the likelihood of people visiting the high street. A more detailed analysis of data available regarding impact on business is available in Section 7.

Safety (detrimental)

6.40. Some respondents believed the cycle lanes had or would increase the risk of collisions between cyclists and pedestrians. It is too early to understand if this was the case as collision data is supplied by the Police on an annual basis.

6.41. Concerns were also raised - by both cyclists and drivers – that the cycle lanes increased the risk of collision when vehicles were turning left, or buses pulled into bus stops. The Highway Code (Rules 182 and 183) states that, whether there is a cycle lane or not, it is the responsibility of the vehicle changing lane or direction to ensure other vehicles – including cyclists – to their left are clear before turning.

Restricted Loading/drop-off and pick-up

6.42. Feedback received from residents, visitors, businesses, the Licensed Taxi Drivers' Association, and the United Cabbies Group raised concerns with restricted loading and availability to pick up and drop off people at the kerbside.
6.43. Taxi drivers retained their ability to pick-up and drop-off within bus cages (stops) whilst the cycle lanes were in place, and the Council created ten new areas in side streets for loading or drop-off and pick-up of people. But the nature of segregated cycle lanes does mean that vehicles were unable to pull into the kerb on Kensington High Street as easily as they had previously (notwithstanding legal restrictions on parking and loading). This had implications for business deliveries, and disabled or elderly people using private cars, taxis or private vehicles to visit the High Street as they may not have been able to be dropped off or picked up immediately outside of preferred destinations, and therefore needed to walk (if able to do so) or transport goods further than previously.

Cycle lane design

6.44. Some respondents felt that the cycle lanes were much wider than they needed to be and took up a disproportionate amount of carriageway space. Some said the wands were not sufficiently visible, especially at night, and others complained that breaks in the cycle lanes (for example at bus stops) led to cyclists weaving between the cycle lanes and the traffic lanes.

Anti-social behaviour by cyclists

6.45. A range of issues relating to anti-social behaviour by cyclists were raised through feedback. These included red-light jumping, footway cycling, and speeding. Some people complained that there is no requirement for cyclists to pay 'road tax', to hold insurance, or display a registration plate. Some also observed that not all cyclists used the cycle lanes.

6.46. The Council does not hold any data on how many incidences of anti-social or illegal cycling behaviour occurred before or during the operation of the cycle lanes. Officers observed some cyclists passing red lights and also observed a mixture of cycling speeds but none so high as to appear excessive. The width of the lanes allowed for safe overtaking within them.

6.47. Even where cycle lanes are provided, cyclists remain entitled to use other sections of the carriageway, and indeed they may need to, for example, to turn right.

Comments in support of cycle lanes

6.48. The main reasons provided by people in support of the cycle lanes were:

Inadequate time to assess scheme

6.49. Some respondents believed removal of the cycle lanes was premature as not enough time had passed to gather data on the success or failure of the scheme, and that more time was required to encourage people to change their travel behaviours. These respondents suggested that more time and data may have allowed a more informed decision on whether to remove or amend the scheme. Some respondents also noted that Phase 2 of the scheme, to upgrade the junctions, had not been completed.
Safety (beneficial)

6.50. Many supporters of the cycle lanes said that the light-segregation of the cycle lanes had made them feel safer and encouraged them to cycle, or cycle more, as vehicles were unable to pass closely or less able to park at the kerbside and block passage along the High Street. This appears to be consistent with the evidence from cycle count data set out in Section 7. Further analysis of safety on Kensington High Street can also be found in Section 7.

Giving more people confidence to cycle

6.51. Supporters also suggested that they had observed a broader range of people cycling on Kensington High Street than previously, with some saying they now felt comfortable enough to cycle with young children to school or other destinations. Whilst cycle counts via sensors are unable to analyse demographics of cyclists, officers similarly observed a greater range of people cycling than had before the cycle lanes were in place.

Strategic network

6.52. Some respondents welcomed a ‘much needed’ direct east-west route for cycling and the contribution the scheme made to an overall strategic network for cycling. TfL has previously identified Kensington High Street as a “top priority” corridor in the Strategic Cycling Analysis7 (SCA), which proposes where cycling infrastructure is most needed. The SCA places Kensington High Street in the top five per cent of corridors in London to meet current and potential cycling demand.

Need during pandemic to avoid public transport

6.53. Many of those writing in to support the lanes, said that they had taken to a bicycle for the first time in order to help them to travel safely during the Covid19 pandemic as they sought to avoid public transport. This was of particular assistance to key workers and is evidenced by a number of NHS organisations and staff writing to support the cycle lanes.

Air quality and climate change benefits

6.54. Many people that wrote in support of the cycle lanes believed they would help improve air quality and contribute to combatting the effects of climate change. It is generally recognised that if people can be encouraged to make more trips by cycle rather than the private car, air quality and climate change benefits should follow. However, if the introduction of cycle lanes leads to more congestion for those still travelling by motor vehicle, the converse could be true. The data the Council holds in relation to air quality and congestion whilst the cycle lanes were in place is set out in Section 7.

7 [http://content.tfl.gov.uk/strategic-cycling-analysis.pdf]
Enabling physical activity

6.55. It is generally recognised that travel by bicycle contributes more to physical activity than other more sedentary modes. Individuals supporting the lanes suggested cycle lanes contributed to encouraging more people to travel by bike and hence travel more actively than they normally might have. It was believed that over time, this would help contribute to key issues such as obesity and related health conditions. Some feedback suggested people were also using bicycles to undertake daily exercise permitted under lockdown restrictions, and data gathered during the time the cycle lanes were in place does suggest that more people appeared to be traveling for leisure purposes than previously, particularly at weekends.

Other comments in favour

6.56. Some supporters suggested the cycle lanes had made responding faster for emergency vehicles as they had observed them using the cycle lanes. Others commented it was now easier and more attractive to visit the High Street by bicycle, and parking a bicycle was easier than finding a car parking space previously. Better Streets for Kensington and Chelsea reported that several businesses had told them of their support for the cycle lanes, or that the cycle lanes had not impacted adversely on their operations.

7. **ANALYSIS OF TECHNICAL AND OTHER DATA**

7.1. This section of the report provides information on technical data collected before, during and after the cycle lanes were in operation. It includes data on: the number of people cycling on Kensington High Street; traffic and bus journey times; air quality; and traffic patterns in side roads off Kensington High Street. It should be noted that traffic schemes are generally put in place for at least six months. This scheme was in place for seven weeks and therefore the technical data we have been able to collect is does not itself provide a basis upon which firm conclusions can be drawn. However, it is provided below, for completeness, along with a description of its limitations where relevant.

Cycling levels

7.2. A common concern expressed about the cycle lanes was that they were empty for much of the time and were not being used by enough people to justify the road space required. Conversely, some people felt that it was clear that the cycle lanes were well-used.

7.3. The Council did not set any target figure or “pass mark” for the number of people using the cycle lanes. It would have been difficult to produce a basis for such a figure. Instead, officers always intended to look at the total numbers of people cycling, and as far as possible to consider whether there was any evidence of a change in the demographic of people cycling, on Kensington High Street.
7.4. The December Key Decision noted that, in addition to undertaking manual counts for an hour at a time, at different times of the day (carried out by both TfL and RBKC officers), officers intended to count cyclists on a 24/7 basis using an automatic sensor positioned opposite the junction with Campden Hill Road. This sensor was installed in late September 2020, shortly before the construction of the cycle lanes. However, for several weeks, comparisons of the sensor data with manual counts\(^8\) found that the sensor was undercounting the number of bikes passing it, in an inconsistent way, especially in the eastbound direction. Adjustments made by the suppliers of the sensor eventually resulted in much closer matches between the two counts. The sensors counted cyclists both in and out of the cycle lane; a video survey taken over two days found that around 95 per cent of the bikes were in the lanes.

7.5. Bearing in mind the caveat above, there is still value in reporting the numbers counted by the sensor. Figure 4 below shows that flows fluctuated substantially from day to day so it is also useful to take the daily average figures for each of the three months. These were 2,384 in October, rising to 2,897 in November and falling back a little to 2,825 in December. In January, the average daily flow was 2,235.

Figure 4: Daily two-way cycle flows, October 2020 to January 2021
Source: automatic sensor opposite Campden Hill Road

\(^8\) Data from manual counts has been released in response to requests made under the Freedom of Information Act but have not been included in this report, as they covered very limited snapshots.
7.6. Average cycle flows in the second half of October were around 50 per cent higher than in the first half of the month when the cycle lanes was under construction. In December, average cycle flows were also about 50 per cent higher in the first half of the month, when the cycle lanes were in the course of being removed, than in the second half, which of course included the Christmas period. The single busiest day for cycling in December was 15 December (4,868), when the cycle lanes had largely been removed. During weekdays, even during lockdown, there was still a clear pattern of two peaks in cycling numbers in the morning and the early evening – suggesting that commuting had a substantial share of journeys even while many people were working at home.

7.7. However, it is noticeable that in November, the weekend daily average (2,734) was not much lower than the weekday daily average (2,966), which is very different from typical pre-pandemic patterns. This suggests that there was a substantial amount of leisure cycling while the cycle lanes were in place.

7.8. Officers who undertook the manual counts observed that bikes tended to pass in clusters, in both directions. This, and the fact that bikes take up relatively little space, may help to reconcile the numbers above with the commonly reported view that the cycle lanes seemed to be empty for most of the time. For example, when an officer timed the gaps between cyclists passing the screenline over a ten-minute period, the average gap between westbound bikes was about 18 seconds, but the longest gap was over three minutes.

Annual comparisons in cycling volumes

7.9. Because the sensor was only installed in late September 2020, we are not able to provide a like-for-like comparison between the period in which the cycle lanes were operational with the equivalent period in previous years.

7.10. Transport for London colleagues provided data taken from manual surveys taken over a week in October 2018. These showed average morning and evening peak hour cycle flows of 211 and 232 respectively. Surveys taken in October 2020 found equivalent numbers ranging from 408 to 581 in the morning peak and from 370 to 515 in the evening peak. These represent increases from around 60 per cent to 175 per cent.

7.11. These comparisons are based on only a small number of counts, and they should be read in the context that travel patterns were very different all over London in October 2020, compared to previous years, as a result of the pandemic. Nevertheless, it is also worth noting that analysis published by TfL found that in the autumn of 2020, cycling levels in inner London had risen by an average of 7 per cent since the previous survey in the spring of 2019.
Cycle hire rentals

7.12. Transport for London provides data to boroughs on the number of monthly hires and docks at each of the cycle hire stations that it manages.

7.13. Comparing October 2019 and October 2020 figures, the 11.2 per cent increase in hires and docks at the docking stations serving Kensington High Street sites was greater than the London average (-0.5 per cent), but lower than the average increase for all RBKC sites (15.6 per cent). Comparing November 2019 and November 2020, the 36.7 per cent increase in hires and docks at the Kensington High Street sites was almost double the “background” increase across RBKC (18.8 per cent). This may indicate that the cycle lanes encouraged more people to use cycle hire facilities on Kensington High Street, in addition to broader changes in travel patterns during the second lockdown.

Summary of cycle data

7.14. As noted above, an automated sensor was installed at the end of September opposite the junction with Campden Hill Road to count the number of bikes passing it. It was found to be undercounting, especially in the eastbound direction, until late November. This initial undercounting may explain some of the growth in the average daily number of cycles that was detected between the cycle lanes’ installation and their removal.

7.15. The average number of bikes per day grew from 2,384 in October, to 2,897 in November, falling back a little to 2,825 in December and then in January to 2,235. Weather is likely to have played a role in these changes. The number of bikes counted was 50 per cent higher in the second half of October than it was during the construction of the cycle lanes in the first half of that month.

7.16. Transport for London officers compared a series of manual one hour counts in October 2020 with similar surveys undertaken in October 2018, and reported increases ranging between 60 per cent and 175 per cent.

Journey time data

7.17. As we have seen, one of the key concerns expressed about the cycle lanes was the view that they had contributed to a large increase in traffic congestion along the High Street. Further, the December Key Decision noted that, with traffic demand levels expected to rise with the easing of Covid lockdown restrictions, there was significant concern in the community that congestion levels in December would be higher than they had been since the introduction of that lockdown on 5 November.
7.18. It was often assumed that with so many people still working at home by the time that the cycle lanes were introduced, traffic volumes were still very suppressed. TfL’s “Travel in London Report 13” notes that across Inner London, traffic volumes had risen from around 50 per cent of 2019 levels in late March to around 90 per cent by the end of September.

7.19. Our weekly monitoring of traffic volumes at the western end of Kensington High Street found that, compared to when we first began counting traffic in late May, traffic demand was around 25-30 per cent higher by September. At over 15,000 vehicles a day (7am-7pm Mon-Sun), our tracking counter was registering as many vehicles as had been recorded at elsewhere on the High Street in 2018. During the second lockdown, traffic demand fell by about nine per cent: from c.14,800 in the fortnight before it began, to an average of c.13,500. In the fortnight after the second lockdown lifted, traffic levels rose only slightly to an average of c.13,700. Overall, average traffic volumes did not vary as greatly as might be expected between early June and the Christmas (a range of 13,300 to 15,700). Traffic levels were lower in the third lockdown than the second one (12,400 in second half of January, or comparable to late May). Figure 5 shows how traffic levels varied from week to week against an average of the whole period.

Figure 5: Average daily traffic flows week: late May 2020 to late January 2021
7.20. In December 2020, the Council’s monitoring confirmed that congestion had increased markedly in the week and a half before the second lockdown. The period 26 October to 4 November 2020 coincided with a number of road closures and roadworks that would likely have impacted on traffic movements on the High Street. Although the cycle lanes would certainly have reduced traffic capacity once they had been completed (by 14 October), there had been some volatility in traffic patterns in inner London for the couple of months prior to October 2020. It was difficult, therefore, to establish how much of the congestion could be attributed to the various likely contributory factors.

7.21. This report provides additional information on journey times, using the same congestion-monitoring tool called Inrix Roadway Analytics, that informed the December Key Decision report. This tool uses GPS data to track the journey times of vehicles passing along sections of the road network – it does not use roadside beacons or sensors. It should be noted that whilst this tool provides a useful indication of congestion, especially changes in congestion, indicating peaks and troughs when new schemes or other changes are introduced, it did not provide 100 per cent accurate measure of journey times when the road network became totally gridlocked.

7.22. The charts below provide an indication of how a metric called the Travel Time Index for journeys along the length of the road, between Holland Road and Palace Gate, varied week-by-week for a period of 16 working (Monday to Friday) weeks, starting in early September and ending on 18 December. These 16 weeks span several important periods:

- Installation of the cycle lanes – 28 September to 14 October
- Full operation of the cycle lanes – 15 October to 2 December
- Removal of the cycle lanes – 3 December to 16 December
- School half term for most schools – 26 October to 30 October
- Closure of Wright’s Lane junction – 26 October to 30 November
- Second national Covid lockdown – 5 November to 2 December
- Closure of Melbury Rd junction with KHS – 12 October to 9 November
- Closure of Wright’s Lane junction with KHS – 26 October to 30 November
- Disruptive roadworks in Campden Hill Rd – 26 October to 14 December
- Disruptive roadworks in Kensington Church St – 2 November to 6 November
- Burst water main in Kensington High St – 10-12 November

7.23. The Travel Time Index (TTI) measures the difference in journey time between optimum free-flowing conditions observed in the very early hours of the morning, with journey times during the working day, including the morning (0700 to 1000) and evening (1600 to 1900) peak periods. The higher the index figure, the greater the level of congestion relative to the free-flowing conditions. It is a useful measure to reflect the fact that on most roads, journey times will be longer during the day than in the small hours.
Westbound journey times

7.24. Figure 6 shows the average westbound TTI figure for each of the 16 weeks, for the full working day, the morning peak, the evening peak, and the interpeak period (1000 to 1600).

Figure 6: Westbound weekly travel time index (Sept – Dec 2020)

![Weekly Travel Time Index for Kensington High Street - West (Westbound) [Sep-Dec 2020]](image)

7.25. In the first full week of the cycle lanes’ operation, (wc 19 October), the TTI was comparable to what it had been in the last full week before the cycle lanes began to be installed (wc 21 September). This is true for all four of the time periods shown in the graph, with the PM peak figure dropping slightly from around 2 to around 1.9.

7.26. In the second full week of the cycle lanes’ operation (wc 26 October), which was also half-term for most schools, the TTI was significantly higher in the PM peak. The PM peak TTI was higher still in the third full week of the cycle lanes’ operation (wc 2 November), and the all-day and interpeak figures were also noticeably higher than they had been in the first week.

7.27. The TTI figures for that third week (wc 2 November) mask a very pronounced difference between the first three working days of the week and the last two, with very significant congestion experienced immediately before the second national Covid lockdown began on 5 November. This is shown in Figure 7.
7.28. The national lockdown in England began on 5 November, the Thursday. Officers have been told by many residents that in the days immediately preceding the lockdown, the traffic congestion on the High Street was particularly heavy – this appears to be borne out by the Inrix data for the 3 and 4 November.

7.29. In addition to disruption associated with a major road traffic incident in Hammersmith in the afternoon of Wednesday 4 November, there is evidence that journey times across much of London were noticeably higher immediately prior to the lockdown.

7.30. Figure 8 below is taken from a TfL network performance chart that demonstrates very clearly how relative journey times rose very sharply in inner and outer London on 2-4 November before falling just as sharply with the start of lockdown. The values shown in this chart are based on a comparison of journey times with an annual average figure for 2018/19.
7.31. The fourth full week of the cycle lanes’ operation, (wc 9 November) which was also the first full week of the national lockdown, saw TTI figures comparable to what they had been just before and just after the cycle lanes had been introduced. The TTIs dropped further in the fifth full week of operation (wc 16 November) before rising for the next three weeks. There was a very sharp increase in PM peak TTIs in the week of 7 December, by which time the Council had begun to remove the cycle lanes. In the week in which the cycle lanes were fully removed, (wc 14 December), the TTIs were broadly similar to what they had been just before the cycle lanes were removed. An exception was the AM peak TTI, which fell sharply in that final week to levels similar to those in early September.

7.32. Westbound, the morning peak TTI was always lower than the interpeak or evening peak TTI for the same week, reflecting the fact that even during the pandemic, there is a tidal element to traffic patterns in and out of central London.

Eastbound journey times

7.33. Figure 9 shows how the eastbound TTI values changed over the same 16 week period from the start of September to 18 December. As was observed with the westbound times, there was a spike in all eastbound times in wc 12 October.
7.34. Whereas the westbound TTIs were very similar in the weeks immediately before and after the installation of the cycle lanes, the eastbound TTIs were higher for all four time periods in wc 19 October than they were in wc 21 September. This was most apparent in the interpeak period (1000-1600), where the increase was from 1.56 to 1.76. The slowest (most congested) period eastbound was still slightly faster than the most congested period westbound.

7.35. As with the westbound, the eastbound TTIs rose again in the second full week of the cycle lanes’ operation (for three of the four time periods), but in the third week (wc 2 November) there is only one time period, the AM peak, where TTIs rose noticeably.

7.36. Close examination of the daily changes in that watershed week of 2 November reveals that eastbound TTIs did fall sharply as soon as the second lockdown began on 5 November, though we did not see them climb so high on the two preceding nights as they had done in the westbound direction. This is shown in Figure 10.
7.37. During the second lockdown period, the eastbound TTIs followed a similar pattern to the westbound TTIs, in that they fell in each of the first two weeks of the lockdown (wc 9 November and wc 16 November) before beginning to climb in the next three weeks and then falling sharply in the final week, wc 14 December, by which time most of the cycle lanes had been removed.

7.38. As noted in 6.36 in the westbound direction, the TTI was lower in the AM peak than in the interpeak and PM periods, throughout the 16 weeks. This is not the case in eastbound direction, where the AM peak was only noticeably less congested than the interpeak and PM peak periods in the three weeks between the cycle lanes being installed and the second lockdown beginning (wc 19 October, wc 26 October and wc 2 November).

7.39. The information presented so far compares data relating to almost the full length of Kensington High Street/ Kensington Road, from Holland Road to Palace Gate. The same data is presented for each of three sections below in Figures 11 to 16. These are Holland Road to Earl’s Court Road (Western), Earl’s Court Road to Kensington Church Street (Central), and Kensington Church Street to Palace Gate (Eastern).

7.40. For the 0700-1900 period, these graphs show that in the western section, the TTIs fell in both directions between the last week before the cycle lanes were introduced and the first week after (wc 21 September and wc 19 October). In the central and eastern sections, the TTIS rose. All three sections saw a spike in wc 12 October.
Figure 11: Westbound weekly TTI (Sep – Dec 2020) Holland Rd – Earl’s Ct Rd

Weekly Travel Time Index for Kensington High Street - West (Westbound) [Sep-Dec 2020]

Figure 12: Westbound weekly TTI (Sep – Dec 2020) Earl’s Ct Rd – Kensington Church St

Weekly Travel Time Index for Kensington High Street - Central (Westbound) [Sep-Dec 2020]
Figure 13: Westbound weekly TTI (Sep – Dec 2020) Kensington Church St – Palace Gate

Figure 14: Eastbound weekly TTI (Sep – Dec 2020) Holland Rd – Earl’s Ct Rd
Figure 15: Eastbound weekly TTI (Sep – Dec 2020) – Earl’s Ct Rd – Kensington Church St

Figure 16: Eastbound weekly TTI (Sep – Dec 2020) Kensington Church St – Palace Gate
Comparison of 2019 with 2020

7.41. It has been commented that the information presented in the December Key Decision made no reference to pre-pandemic travel times. Whilst it is difficult to draw too many conclusions about the impact of the cycle lanes, there is still some value in comparing the observed TTI figures for the period in which the cycle lanes were fully in operation with the equivalent seven-week period in 2019.

7.42. Figure 17 shows that westbound, average TTI values across the seven-week period were higher in 2020 in the AM peak and interpeak periods, but almost identical in the PM peak. Figure 18 shows that eastbound TTIs were virtually unchanged in all three time periods. It is important to note that the charts show the average travel time index over each period and therefore cannot depict any significant adverse spikes in congestion over short intervals.

Figure 17: Comparison of 2019 and 2020 westbound journey times
Figure 18: Comparison of 2019 and 2020 eastbound journey times

TfL data on general traffic times

7.43. Transport for London provided data to the Council in February 2021 that tracked changes in journey times of vehicles detected by its Automatic Number Plate Recognition (ANPR) cameras along four sections of Kensington High Street and a fifth on Kensington Church Street (NB data was missing for several weeks for one of the two eastbound sections, due to a technical fault). The data is provided in Appendix E. In general, they show journey times in the first full week after the cycle lanes' introduction being broadly comparable to those seen shortly before the cycle lanes' construction, before rising in the two weeks before the second lockdown started, and then falling after that. There was some variation between the five sections in the period from the lifting of the second lockdown in early December to the removal of the cycle lanes by mid-December.

Summary of traffic data

7.44. Traffic congestion rose substantially on Kensington High Street shortly after the completion of the cycle lanes’ installation, but not immediately. In the first full week after the lanes’ installation, westbound journey times were no higher than they had been in the week before the cycle lanes began to be built, but eastbound times were higher.

7.45. It is clear that the most noticeable increase in congestion came in the weeks of 26 October (half-term) and 2 November, which coincided with the start of several disruptive roadworks that changed traffic movements on Kensington High Street significantly.
7.46. In the week of 2 November, it is possible a pre-lockdown increase in traffic movements across London played a part in the extremely high levels of congestion observed over two or three days.

7.47. Journey times improved dramatically with the start of the second lockdown, while the cycle lanes and most of the disruptive roadworks were still in place.

7.48. There was really one full week, that of 19 October, when the cycle lanes were in place, there were no major roadworks (other than the closure of the Melbury Road junction) and the national lockdown was not in effect. This makes it very hard to draw firm conclusions about the effect of the cycle lanes on congestion.

7.49. A comparison of journey times on Kensington High Street between the period of the cycle lanes’ operation and the equivalent period in 2019, found an increase in westbound times in the morning and interpeak periods, and almost no change in the westbound evening peak journey times or any of the eastbound journey times. This comparison is based on average values across the respective seven-week periods, which does mask some periods of very significant congestion experienced by road users at the time of the roadworks and cycle lane being in situ.

Bus journey times

7.50. Transport for London supplied data to the Council showing bus journey times along Kensington High Street and on Kensington Church Street (southbound), between April 2019 and January 2021. The TfL report concluded that it was difficult to draw any firm conclusions about the impact of the cycle lanes because of the overlap with the roadworks mentioned earlier in this report and the changing lockdown restrictions. It did note that in the first week after the cycle lanes were introduced, journey times were similar to those in 2019.

7.51. The graphs showing the bus journey times are provided in Appendix E. They show a similar pattern for eastbound, westbound and Kensington Church St southbound, with the first week after the cycles lanes’ introduction being within half a minute of the baseline average of 5 minutes/km, but much higher journey times in the week ending 8 November (the week that included the start of the second lockdown and the very congested days immediately preceding it). Journey times then fell back to the baseline average in the week ending 15 November (w/e 22 November for eastbound).
Local road traffic

7.52. Officers arranged for automatic traffic count surveys to be carried out in ten residential side roads\(^9\) close to Kensington High Street, before and after the cycle lanes were installed. The dates of the surveys were 22-28 September and, for most of the roads, 20-26 October. 26 October was the first day of half-term and so the October weekday average figures were based on four days rather than five. Traffic surveys in Abingdon Road were carried out on 28 October to 3 November. All of the “after” surveys in these ten roads were undertaken after the cycle lanes had been installed and before the second lockdown began on 5 November. Officers carried out an after survey in Melbury Road, but have excluded the Melbury Road results from this analysis because it was closed at its junction with Kensington High Street when the October survey was undertaken.

7.53. Of the remaining nine roads, comparing September and October flows:

- two had fallen to below 90 per cent of September levels
- six were between 95 per cent and 105 per cent of September levels
- one (Adam and Eve Mews) rose to over 200 per cent of September levels

7.54. The closure of the Wright’s Lane junction on 26 October quite quickly led to complaints about increased traffic volumes on Adam and Eve Mews and Allen Street. Although the traffic counters from these roads were removed on 27 October, they detected that on Adam and Eve Mews, the traffic levels were almost twice what they had been on the four weekdays of the previous week. Adam and Eve Mews was shut at the junction with Kensington High Street, on a temporary basis, shortly after that. On Allen Street, the flows on 26 October were 20 per cent higher than they had been in the previous four weekdays.

Impact on local businesses

7.55. The economic impact of active travel schemes on local businesses is very difficult to quantify. It is especially difficult during this unprecedented period of Covid 19. It was hoped that by making cycling to Kensington feel safer as more people opted to return to work or school by bike after the first Covid19 lockdown (with capacity on public transport reduced due to social distancing requirements) more passing trade for shops and businesses would be generated.

7.56. Feedback from the local business community, however, suggested that some businesses along KHS consider the cycle lanes had added to their vulnerability and exacerbated negative economic impacts on the High Street. These views are not unique to Kensington High Street. There are examples from elsewhere across London where businesses have raised similar concerns.

\(^9\) Abingdon Road, Adam and Eve Mews, Allen Street, Campden Hill Road, Melbury Road, Russell Road, St Alban’s Grove, Thackeray Street, Wrights Lane, Young Street,
During the autumn, the Council commissioned a survey by “Engage and Place” of all the individual rateable premises along Kensington High Street (658 in total), to gauge their views on a future Business Improvement District model. As part of this, the views of the business community were sought regarding what makes KHS successful and what needed to change. Fifty-four separate businesses responded during the period when the cycle lanes were in place. None of the businesses identified the cycle lanes as a positive attribute to the High Street. There were 15 separate comments about the negative impact of the cycle lanes and their impact on trade, reduction in access to their business and increase in traffic delays.

The Kensington Business Forum (KBF) also reported on the views of the local business community at the meeting of the Review Group on 12 November. They had similar findings. There was limited identified support from their survey for the cycle lanes by the business community. Thirty of the 36 businesses responding to the survey opposed the cycle lanes. The KBF asked, on behalf of their membership, for the council to remove the cycle lanes by the lifting of the second lockdown, as it was felt this would assist local businesses to trade fully in the weeks leading up to Christmas. The Chairman of the Forum stressed that this position was based on feedback directly from local businesses rather than the views of the Forum’s Executive Committee.

When the Chairman of the Kensington and Chelsea Chamber of Trade and Commerce wrote to Cllr Thalassites to express the Chamber’s opposition to the cycle lanes, he explained that this was on the basis of increased traffic congestion, reduced parking availability, and the need to support businesses in the pre-Christmas period by providing easy access, parking and fast public transport.

Cycling safety

The latest collision data available shows 45 cycling casualties over the three years 2016 to 2018, or an average of 15 per year, on the length of Kensington High Street and Kensington Road. There is always a long timelag between collisions occurring and being reported to the Council. It is likely to be much later in 2021 before we receive data about the two months during which the cycle lanes were in place, and ordinarily, we would compare collision data for three years before and three years after a scheme, before making firm conclusions on safety effects. For temporary schemes of the kind installed through the LSP, the traditional approach to assessing safety benefits is not appropriate, and no data-based conclusions can be made about the impact of the cycle lanes on safety.
Air quality

7.61. The whole borough is an Air Quality Management Area; the Council continues to work towards meeting the National Air Quality Objectives and in 2019, the then Lead Member, also committed the Council to work towards the World Health Organisation Guideline Values. The two pollutants of most concern are nitrogen dioxide and particulate matter. The Council’s existing Air Quality and Climate Change Action Plan does not make any reference to the development of cycling lanes along Kensington High Street, it does however include several measures to promote and encourage cycling.

7.62. The cycle lanes were introduced before it was possible to collect enough data to understand what the concentration of air pollutants were in this specific area and it was then removed before the Council was able to gather data post installation. There have been two diffusion tubes (referred to as KC58 (outside where KHS meets Argyll Road) and KC59 (by the Church on Kensington Church Street)) in place on Kensington High Street monitoring monthly average concentrations of nitrogen dioxide for many years, but a further 30 tubes were added at the beginning of October. Data for these is available for October to December 2020 but this is not long enough to be able to draw any firm conclusions; it is also important to look at the results from the other diffusion tubes in place across the borough and is also helpful to review data recorded in previous years.

Table 2: Monthly average concentrations (in µg/m³) of nitrogen dioxide during 2019 and 2020

<table>
<thead>
<tr>
<th>Site ID</th>
<th>2019</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jan</td>
<td>Feb</td>
</tr>
<tr>
<td>KC58</td>
<td>54.75</td>
<td>52.30</td>
</tr>
<tr>
<td>KC59</td>
<td>63.42</td>
<td>66.61</td>
</tr>
</tbody>
</table>

7.63. It is firstly clear to see that concentrations in 2020 were (with two exceptions in February and March) lower throughout the year, which is not unexpected, given the reduction in traffic. If looking at the data between October and December, when the cycle lanes were first installed, whilst there was an increase in concentrations in 2020 between October and November and then a decrease in December, the same pattern occurred in 2019. The increase in November 2020 was much smaller, particularly at KC59, as was the decrease in December.
To compare the information from Table 2 above with data in Table 3 below raw data is provided in both tables that has not been adjusted. A Local Bias Adjustment Factor (BAF) is normally derived from data from KC1, the automatic monitoring station at All Saints School (formerly Sion Manning) and this is then applied to the individual diffusion tube annual mean concentrations. A BAF is important as diffusion tubes are affected by several sources of interference which can cause under or over estimation of NO₂ concentrations when compared to the reference monitoring method (Chemiluminescent Analyser). However, as there is only data for three months from other tubes on Kensington High Street, we are unable to calculate an annual mean concentration that can be relied on so for now, use raw data.

Table 3: Monthly average concentrations of nitrogen dioxide (in µg/m⁻³) along Kensington High Street between October and December 2020

<table>
<thead>
<tr>
<th>Site ID</th>
<th>Location</th>
<th>October</th>
<th>November</th>
<th>December</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC58</td>
<td>KHS/Kensington Church St</td>
<td>37.10</td>
<td>46.65</td>
<td>37.07</td>
</tr>
<tr>
<td>KC59</td>
<td>KHS/Argyll St</td>
<td>59.30</td>
<td>61.99</td>
<td>58.03</td>
</tr>
<tr>
<td>KC82</td>
<td>KHS LP029</td>
<td>48.01</td>
<td>58.28</td>
<td>46.22</td>
</tr>
<tr>
<td>KC83</td>
<td>KHS LP018</td>
<td>47.92</td>
<td>Missing</td>
<td>Missing</td>
</tr>
<tr>
<td>KC84</td>
<td>KHS LP011 / Earls Terrace</td>
<td>69.86</td>
<td>59.37</td>
<td>48.65</td>
</tr>
<tr>
<td>KC85</td>
<td>KHS LP010</td>
<td>62.90</td>
<td>58.89</td>
<td>45.03</td>
</tr>
<tr>
<td>KC86</td>
<td>KHS LP064</td>
<td>54.12</td>
<td>58.75</td>
<td>34.04</td>
</tr>
<tr>
<td>KC87</td>
<td>KHS LP063</td>
<td>51.92</td>
<td>58.57</td>
<td>43.60</td>
</tr>
<tr>
<td>KC88</td>
<td>KHS LP060 / Phillimore Gardens</td>
<td>54.62</td>
<td>62.07</td>
<td>50.84</td>
</tr>
<tr>
<td>KC89</td>
<td>KHS LP054</td>
<td>62.92</td>
<td>76.25</td>
<td>61.96</td>
</tr>
<tr>
<td>KC90</td>
<td>KHS / Stafford Court</td>
<td>Missing</td>
<td>66.41</td>
<td>Missing</td>
</tr>
<tr>
<td>KC91</td>
<td>KHS LP033</td>
<td>64.39</td>
<td>70.78</td>
<td>73.92</td>
</tr>
<tr>
<td>KC92</td>
<td>KHS LP029</td>
<td>45.91</td>
<td>Missing</td>
<td>47.50</td>
</tr>
<tr>
<td>KC93</td>
<td>KHS LP025 / Derry Street</td>
<td>58.97</td>
<td>58.49</td>
<td>54.21</td>
</tr>
<tr>
<td>KC94</td>
<td>KHS LP014 / Young Street</td>
<td>39.55</td>
<td>59.06</td>
<td>50.37</td>
</tr>
<tr>
<td>KC95</td>
<td>KHS LP008 / Kensington Palace Gardens</td>
<td>66.27</td>
<td>57.01</td>
<td>55.57</td>
</tr>
<tr>
<td>KC96</td>
<td>KHS LP002</td>
<td>57.04</td>
<td>Missing</td>
<td>49.81</td>
</tr>
<tr>
<td>KC97</td>
<td>KHS LP007</td>
<td>61.95</td>
<td>67.18</td>
<td>53.18</td>
</tr>
<tr>
<td>KC98</td>
<td>KHS LP011 / Old Court Place</td>
<td>68.13</td>
<td>64.28</td>
<td>52.47</td>
</tr>
<tr>
<td>KC99</td>
<td>KHS LP022</td>
<td>60.50</td>
<td>69.74</td>
<td>54.86</td>
</tr>
<tr>
<td>KC100</td>
<td>KHS LP032 / High Street Station</td>
<td>71.05</td>
<td>74.17</td>
<td>55.41</td>
</tr>
<tr>
<td>KC101</td>
<td>KHS LP034 / High Street Station</td>
<td>66.11</td>
<td>73.23</td>
<td>56.60</td>
</tr>
<tr>
<td>KC102</td>
<td>KHS LP037 / Wrights Lane</td>
<td>63.69</td>
<td>64.30</td>
<td>50.54</td>
</tr>
<tr>
<td>KC103</td>
<td>KHS / Three</td>
<td>33.67</td>
<td>Missing</td>
<td>Missing</td>
</tr>
<tr>
<td>KC104</td>
<td>KHS LP051 / Allen Street</td>
<td>52.00</td>
<td>66.50</td>
<td>59.35</td>
</tr>
<tr>
<td>KC105</td>
<td>KHS LP059 / Abingdon Road</td>
<td>50.87</td>
<td>61.30</td>
<td>48.80</td>
</tr>
<tr>
<td>KC106</td>
<td>KHS LP062</td>
<td>60.10</td>
<td>59.64</td>
<td>49.24</td>
</tr>
<tr>
<td>KC107</td>
<td>KHS LP002 / Earl’s Court Road</td>
<td>45.90</td>
<td>53.38</td>
<td>40.25</td>
</tr>
<tr>
<td>KC108</td>
<td>KHS LP009 / Earl’s Court Road</td>
<td>36.05</td>
<td>50.28</td>
<td>40.15</td>
</tr>
<tr>
<td>KC109</td>
<td>KHS LP015 / Melbury Road</td>
<td>50.84</td>
<td>51.04</td>
<td>45.36</td>
</tr>
<tr>
<td>KC110</td>
<td>KHS LP021 / Melbury Road</td>
<td>45.75</td>
<td>47.71</td>
<td>43.74</td>
</tr>
<tr>
<td>KC111</td>
<td>KHS LP028</td>
<td>46.13</td>
<td>49.23</td>
<td>42.88</td>
</tr>
</tbody>
</table>
7.65. At most locations, save those highlighted in blue, concentrations increased during the month of November. The greatest increase occurred on the corner of Young Street (KC94) with an increase of 19.5 µg/m3. The greatest decrease of 10.49 µg/m3 occurred by Earl’s Terrace (KC84). Concentrations fell further in December.

7.66. This pattern was replicated across most sites in the borough, of which there are 79 in total (excluding the five automatic monitoring sites). Figure 19 below shows the differences in concentrations between October and November. The sites in dark blue are those located along Kensington High Street. Brighter blue shows sampling locations elsewhere in the borough. Concentrations increased at all other sites excluding the six locations shows in Table 3 above, as much as by 17.99 µg/m3 at KC52 in Sloane Avenue and 17.79 µg/m3 at KC31 in Ladbroke Grove.

7.67. There are many factors which influence air quality and it is very difficult to pinpoint the impact of any new measure introduced with such short-term data. The weather has a significant influence on concentrations and therefore further data would be required before any additional assessment can be undertaken. Nevertheless, the information above accurately reflects the relevant air quality data that is available.

Figure 19: Changes in concentrations of nitrogen dioxide (in µg/m3) at diffusion tubes sites
8. **LEGAL IMPLICATIONS**

8.1. The cycle lane was installed on Kensington High Street, and later removed, following Statutory guidance issued by the Department for Transport under Section 18 of the Traffic Management Act 2004 – “Traffic Management Act 2004: network management in response to COVID-19” (the Statutory Guidance) – which stated that new lightly-segregated cycle lanes would not require Traffic Regulation Orders (TROs).

8.2. Following the Statutory Guidance, the Council did not use a Traffic Management Order to install the cycle lane.

8.3. On 20 January 2021, the High Court ruled in two conjoined cases brought by two trade bodies representing the taxi industry (R (UTAG & LTDA) v Transport for London & Mayor of London [2021]) and found the Mayor of London’s Streetspace Plan and Streetscape Guidance to be unlawful and ordered that it be quashed. The Streetspace Plan and Streetscape Guidance had been issued to supplement the Statutory Guidance. This case is currently subject to an application for permission to appeal at the time of writing.

8.4. Although the order quashing the Streetspace Plan and Streetscape Guidance has been stayed pending the outcome of the application for permission to appeal, as a result of the criticisms of the Plan and Guidance identified by the High Court, the Members are advised not to place material weight on the Mayor of London’s Streetscape Plan or Streetscape Guidance unless or until such time as the High Court judgment is overturned on appeal.

8.5. The Statutory Guidance remains lawful for all intents and purposes.

8.6. If the Council were minded to re-instate the cycle lane, it could do so under either of the following powers:-

 i. An Experimental Traffic Order under section 9 of the Act in accordance with the provisions set out in The Local Authorities’ Traffic Orders (Procedure) (England and Wales) Regulations 1996. There is no requirement to consult when making an experimental order. The Statutory Guidance states that ongoing consultation is required once the measure is in place. The Statutory Guidance also provides that schemes installed using experimental orders are subject to a requirement for ongoing consultation for 6 months once in place.

 ii. Section 65 of the Act and The Traffic Signs Regulations and General Directions 2016 (Schedule 9 Part 9 Paragraph 1(2)). There is no statutory requirement to consult when relying on this provision.

8.7. The Council must have regard to its’ Network Management Duty contained in Section 16 of the Traffic Management Act 2004 as well as its’ duty under Section 122 of the Road Traffic Regulation Act 1984.
8.8. The Mayor of London has powers contained in section 14B of the Highways Act 1980 to review the system of GLA roads and to direct that a highway shall become a GLA road. There is a similar provision contained in Section 124B of the Road Traffic Regulation Act 1984 in relation to GLA side roads. Kensington High Street is not a GLA road.

8.9. The Council must have regard to its’ Public Sector Equality Duty contained in Section 149 of the Equality Act 2010. This requires conscientious consideration of the need to: (1) eliminate discrimination, victimisation, and other conduct prohibited by the Equality act, (2) advance equality of opportunity between persons who share a relevant protected characteristic and persons who do not, and (3) foster equality of opportunity between persons who share a relevant protected characteristic and persons who do not. The relevant equalities implications are considered in the Equalities Impact Assessment included as Appendix I to this report and summarised under Section 11 below.

9. **FINANCIAL, PROPERTY, IT AND ANY OTHER RESOURCES IMPLICATIONS**

9.1. The Key Decision to remove the cycle lanes stated that the original estimate for installing a cycle lane in High Street Kensington was £320,000.

9.2. As only Phase I was completed and the final design required fewer wands than originally anticipated, the actual cost of installing the cycle lane was £171,500. This comprised design fees (£85,000), the cost of 413 wands and associated fixings (£49,000) and the cost of construction (£37,500).

9.3. The service originally purchased 1,000 wands for the scheme in High Street Kensington and so have 587 unused wands in storage. Once a decision is made about the future of the Kensington High Street scheme, officers could seek to re-sell any wands which are no longer required, to recover as much of the original outlay as possible to further mitigate costs associated with this scheme. The purchase price of the unused wands was around £67,000.

9.4. The cost of removing the cycle lane in High Street Kensington in December 2020 was £40,000 bringing the total cost of the scheme to date (installation and removal) to £211,500.

9.5. The estimated cost of re-instating the cycle lane on High Street Kensington, in whole or in part, is circa £40,000. The cost of re-installation would be much lower than the original cost as the design and 413 wands could both be re-used meaning only construction and fixing costs would be incurred a second time.

9.6. Transport for London funding was expected to cover the installation of the cycle lane and uncertainty exists around whether any funding will now be secured in respect of this scheme. If the Council does not re-instate the cycle lane there is a potential risk that none of the £211,500 costs incurred to date will be funded by TfL and will need to be met from reserves. If the cycle lane is re-instated, it is likely that TfL will fund at least the costs associated with the first implementation (£171,500) reducing the cost to be met by the Council to a maximum of £80,000 – the cost of removal (£40,000) and subsequent re-instatement (£40,000).
9.7. If the 587 unused wands cannot be re-sold or reused in the future, the associated £67,000 sunk costs will also need to be funded from Council reserves.

10. **HUMAN RESOURCES IMPLICATIONS**

10.1. None

11. **EQUALITIES IMPLICATIONS**

11.1. An Equality Impact Assessment is provided as Appendix I to this report.

11.2. Officers believe that, on balance, the introduction of cycle lanes is likely to have a broadly neutral impact on protected groups. The main negative impact, dependent on what type of scheme were implemented, would be the reduced opportunities for kerb side drop-offs and pick-ups. This tends to negatively affect elderly people and people with disabilities in particular. Currently there are few alternatives available to mitigate this issue.

11.3. It is important to note, that if the proposed cycle lane scheme utilises bus stop by-passes, this may have a further impact on people with disabilities. These were not installed as part of the previous cycle lane scheme on Kensington High Street. In addition, if the introduction of cycle lanes result in further congestion, this may have a greater impact on those who cannot avoid using either cars or public transport. However, the evidence from the previous scheme on Kensington High Street is inconclusive.

11.4. The key benefit (positive impact) for introducing cycle lanes would be to make cycling a more attractive option for everyone, including people with disabilities, older people and young families.

12. **OTHER CONSIDERATIONS – IMPACT ON THE ENVIRONMENT**

12.1. As described in section 6 above, it is extremely difficult to quantify the environmental impact of the cycle lane in Kensington High Street, due to:

i) the short time it was in situ, and

ii) the reports of congestion, which would likely increase CO₂ emissions, versus the increase in cycling, which as a more active travel mode, would in general improve CO₂ emissions

12.2. The extent to which the cycle lanes would impact upon the environment is ultimately, therefore, a judgement for members who may take into account their own local knowledge. However, officers advise that there is no data to show that the cycle lane is likely to have a significant effect on the environment.
Mahmood Siddiqi

Director, Streets and Regulatory Services

Local Government Act 1972 (as amended) – Background papers used in the preparation of this report: None

Contact officer(s): Mark Chetwynd, Chief Transport Policy Officer, mark.chetwynd@rbkc.gov.uk

Mandatory clearance requirements for all Key and Executive Decision reports

Cleared by Corporate Finance (officer’s initials) [LV]
Cleared by Director of Law (officer’s initials) [LLM]
Cleared by Communications (officer’s initials) [NPT]

Appendices

Appendix A – Potential Alternative Cycle Schemes
Appendix B – KHS Review Group presentation 121120
Appendix C – LCC template email
Appendix D – Change. org petition prayer
Appendix E – TfL LSP Cycle Lanes letter 5 Feb
Appendix F – TfL cycling survey
Appendix G – Open letter to RBKC from Kensington RAs
Appendix H – Better Streets email to the Leader of the Council
Appendix I – EqIA