APPENDIX D

STRUCTURAL CALCULATIONS
Loading For The Structure:

LOADING

Roof (Existing):
Dead Loads:
- Tiles = 0.75 kN/m²
- Timber Structure = 0.25 kN/m²
- Ceiling & Services = 0.50 kN/m²
 = 1.50 kN/m²

Live Loads:
- Limited access roof = 0.75 kN/m²

Second, First & Upper Ground Floor (Existing):
Dead Loads:
- Finishes = 0.25 kN/m²
- Timber structure = 0.25 kN/m²
- Ceiling & Services = 0.50 kN/m²
 = 1.00 kN/m²

Live Loads:
- Domestic = 1.50 kN/m²

Lower Ground Floor (New):
Dead Loads:
- 50mm screed = 1.10 kN/m²
- 150mm RC Slab = 3.60 kN/m²
- Ceiling & Services = 0.50 kN/m²
 = 5.20 kN/m²

Live Loads:
- Domestic = 1.50 kN/m²

Basement Floor (New):
Dead Loads:
- 50mm screed = 1.10 kN/m²
- 350m RC slab = 8.60 kN/m²
 = 9.70 kN/m²

Live Loads:
- Domestic = 1.50 kN/m²
<table>
<thead>
<tr>
<th>LOCATION</th>
<th>CALCULATIONS</th>
<th>OPTIONS</th>
</tr>
</thead>
</table>
| Beam LG62 | $q = 27 \text{kN/m}$
$M = 615 \text{kNm}$
$N = 3 \text{kN}$
$V = 0.01 \text{kN}$
\Rightarrow See Moment Frame 2 |
| Beam LG63 | $q = 27 \text{kN/m}$
$M = 70 \text{kNm}$
$N = 3 \text{kN}$
$V = 0.01 \text{kN}$
\Rightarrow See Moment Frame 1 |
| Beam LG64 | $q = 9 \text{kN/m}$
$M = 43.5 \text{kNm}$
$N = 24 \text{kN}$
$V = 0.01 \text{kN}$
\Rightarrow Use $205x153.46 \text{ UC}$
\Rightarrow Use $205x153.46 \text{ UC}$ |
| Beam LG65 | $q = 6 \text{kN/m}$
$M = 12 \text{kNm}$
$N = 1 \text{kN}$
$V = 0.01 \text{kN}$
\Rightarrow Use $205x153.46 \text{ UC}$
\Rightarrow Use $205x153.46 \text{ UC}$ |
| Beam LG66 | $q = 3 \text{kN/m}$
$M = 12 \text{kNm}$
$N = 1 \text{kN}$
$V = 0.01 \text{kN}$
\Rightarrow Use $205x153.46 \text{ UC}$
\Rightarrow Use $205x153.46 \text{ UC}$ |
| Beam LG68 | $q = 27 \text{kN/m}$
$M = 70 \text{kNm}$
$N = 3 \text{kN}$
$V = 0.01 \text{kN}$
\Rightarrow Use $205x153.46 \text{ UC}$
\Rightarrow Use $205x153.46 \text{ UC}$ |
<table>
<thead>
<tr>
<th>LOCATION</th>
<th>CALCULATIONS</th>
<th>OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam B501</td>
<td>(q_i = 9.5 \text{ kN/m})</td>
<td></td>
</tr>
<tr>
<td>Beam B502</td>
<td>(q_i = 16 \text{ kN/m})</td>
<td></td>
</tr>
<tr>
<td>Beam B503</td>
<td>(q_i = 10.8 \text{ kN/m})</td>
<td></td>
</tr>
<tr>
<td>Beam B504</td>
<td>(q_i = 11.5 \text{ kN/m})</td>
<td></td>
</tr>
<tr>
<td>Beam B505</td>
<td>(q_i = 1.8 \text{ kN/m})</td>
<td></td>
</tr>
<tr>
<td>Beam B506</td>
<td>(q_i = 3.6 \text{ kN/m})</td>
<td></td>
</tr>
<tr>
<td>Beam B507</td>
<td>(q_i = 2.3 \text{ kN/m})</td>
<td></td>
</tr>
<tr>
<td>Beam B508</td>
<td>(q_i = 12.5 \text{ kN/m})</td>
<td></td>
</tr>
<tr>
<td>Beam B509</td>
<td>(q_i = 9.6 \text{ kN/m})</td>
<td></td>
</tr>
<tr>
<td>Beam B510</td>
<td>(q_i = 2.8 \text{ kN/m})</td>
<td></td>
</tr>
<tr>
<td>Beam B511</td>
<td>(q_i = 2.6 \text{ kN/m})</td>
<td></td>
</tr>
<tr>
<td>Beam B512</td>
<td>(q_i = 1.6 \text{ kN/m})</td>
<td></td>
</tr>
<tr>
<td>Beam B513</td>
<td>(q_i = 1.4 \text{ kN/m})</td>
<td></td>
</tr>
<tr>
<td>Beam B514</td>
<td>(q_i = 1.2 \text{ kN/m})</td>
<td></td>
</tr>
<tr>
<td>Beam B515</td>
<td>(q_i = 0.8 \text{ kN/m})</td>
<td></td>
</tr>
<tr>
<td>Beam B516</td>
<td>(q_i = 0.6 \text{ kN/m})</td>
<td></td>
</tr>
<tr>
<td>Beam B517</td>
<td>(q_i = 0.4 \text{ kN/m})</td>
<td></td>
</tr>
<tr>
<td>Beam B518</td>
<td>(q_i = 0.2 \text{ kN/m})</td>
<td></td>
</tr>
<tr>
<td>Beam B519</td>
<td>(q_i = 0.1 \text{ kN/m})</td>
<td></td>
</tr>
<tr>
<td>Beam B520</td>
<td>(q_i = 0.0 \text{ kN/m})</td>
<td></td>
</tr>
<tr>
<td>Beam B521</td>
<td>(q_i = 0.0 \text{ kN/m})</td>
<td></td>
</tr>
</tbody>
</table>
BEAM BB01

STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

Support conditions

| Support A | Vertically restrained
| Rotationally free
| Support B | Vertically restrained
| Rotationally free

Applied loading

| Beam loads | Dead self weight of beam × 1
| Dead full UDL 9 kN/m
| Imposed full UDL 2.6 kN/m

Analysis results

| Maximum moment;
| M_{max} = 83.6 kNm;
| M_{min} = 0 kNm
| Maximum shear;
| V_{max} = 53.9 kN;
| V_{min} = -53.9 kN
| Deflection;
| \delta_{max} = 24.8 mm;
| \delta_{min} = 0 mm
| Maximum reaction at support A;
| R_{A, dead} = 29.3 kN;
| R_{A, imposed} = 8.1 kN
| Unfactored dead load reaction at support A;
| R_{A, Dead} = 29.3 kN
| Unfactored imposed load reaction at support A;
| R_{A, Imposed} = 8.1 kN
| Maximum reaction at support B;
| R_{B, dead} = 53.9 kN;
| R_{B, imposed} = 53.9 kN

Classification of cross sections - Section 3.5

| Tensile strain coefficient;
| \varepsilon = 1.00;
| Section classification;
| Compact

Shear capacity - Section 4.2.3

| Design shear force;
| F_v = 53.9 kN;
| Design shear resistance;
| P_v = 241.4 kN

PASS - Design shear resistance exceeds design shear force

Moment capacity - Section 4.2.5

| Design bending moment;
| M = 83.6 kNm;
| Moment capacity low shear;
| M_L = 136.8 kNm

PASS - Moment capacity exceeds design bending moment

Check vertical deflection - Section 2.5.2

| Consider deflection due to dead and imposed loads
| Limiting deflection;
| \delta_{lim} = 24.8 mm;
| Maximum deflection;
| \delta = 24.763 mm

PASS - Maximum deflection does not exceed deflection limit

Section details

| Section type;
| UKC 203x203x46 (Corus Advance);
| Steel grade;
| S275

Pringuer-James Consulting Engineers Ltd
STEEL BEAM ANALYSIS & DESIGN (BS5950)
In accordance with BS5950-1:2000 incorporating Corrigendum No.1

Support conditions
Support A Vertically restrained Rotationally free
Support B Vertically restrained Rotationally free

Applied loading
Beam loads Dead self weight of beam \times 1
 Dead full UDL 16 kN/m
 Imposed full UDL 1.7 kN/m
 Dead full UDL 2.3 kN/m

Analysis results
Maximum moment; \(M_{\text{max}} = 5.2 \text{kNm}; \quad M_{\text{min}} = 0 \text{kNm} \)
Maximum shear; \(V_{\text{max}} = 17.2 \text{kN}; \quad V_{\text{min}} = -17.2 \text{kN} \)
Deflection; \(\delta_{\text{max}} = 0.1 \text{mm}; \quad \delta_{\text{min}} = 0 \text{mm} \)
Maximum reaction at support A; \(R_{A,\text{max}} = 17.2 \text{kN}; \quad R_{A,\text{min}} = 17.2 \text{kN} \)
Unfactored dead load reaction at support B; \(R_{B,\text{dead}} = 11.1 \text{kN} \)
Unfactored imposed load reaction at support B; \(R_{B,\text{imposed}} = 1 \text{kN} \)

Classification of cross sections - Section 3.5
Tensile strain coefficient; \(\varepsilon = 1.00 \);
Design shear force; \(F_v = 17.2 \text{kN} \)
Design shear resistance; \(P_v = 191.1 \text{kN} \)
PASS - Design shear resistance exceeds design shear force

Moment capacity - Section 4.2.5
Design bending moment; \(M = 5.2 \text{kNm}; \)
Moment capacity low shear; \(M_l = 70.9 \text{kNm}; \)
PASS - Moment capacity exceeds design bending moment

Check vertical deflection - Section 2.5.2
Consider deflection due to dead and imposed loads
Limiting deflection; \(\delta_{\text{lim}} = 4.8 \text{mm} \)
Maximum deflection; \(\delta = 0.114 \text{mm} \)
PASS - Maximum deflection does not exceed deflection limit
MOMENT FRAME 2

BEAM LGB2

BEAM BB05
BEAM BB07

STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No. 1

Support conditions

- **Support A**: Vertically restrained, Rotationally free
- **Support B**: Vertically restrained, Rotationally free

Applied loading

- **Beam loads**: Dead self weight of beam × 1
- Dead full UDL 12.5 kN/m
- Imposed full UDL 3.6 kN/m

Analysis results

- **Maximum moment**: $M_{\text{max}} = 40.9$ kNm; $M_{\text{min}} = 0$ kNm
- **Maximum shear**: $V_{\text{max}} = 44.2$ kN; $V_{\text{min}} = -44.2$ kN
- **Deflection**: $\delta_{\text{max}} = 4.3$ mm; $\delta_{\text{min}} = 0$ mm
- **Maximum reaction at support A**: $R_{A_{\text{dead}}} = 44.2$ kN; $R_{A_{\text{imposed}}} = 44.2$ kN
- **Unfactored dead load reaction at support A**: $R_{A_{\text{dead}}} = 24$ kN
- **Unfactored imposed load reaction at support A**: $R_{A_{\text{imposed}}} = 6.7$ kN
- **Maximum reaction at support B**: $R_{B_{\text{max}}} = 44.2$ kN; $R_{B_{\text{min}}} = 44.2$ kN

Classification of cross sections - Section 3.5

- **Tensile strain coefficient**: $\varepsilon = 1.00$;
- **Section classification**: Compact

Shear capacity - Section 4.2.3

- **Design shear force**: $F_v = 44.2$ kN;
- **Design shear resistance**: $P_v = 241.4$ kN

PASS - Design shear resistance exceeds design shear force

Moment capacity - Section 4.2.5

- **Design bending moment**: $M = 40.9$ kNm;
- **Moment capacity low shear**: $M_c = 136.8$ kNm

PASS - Moment capacity exceeds design bending moment

Check vertical deflection - Section 2.5.2

- **Consider deflection due to dead and imposed loads**: Limiting deflection $\delta_{\text{lim}} = 14.8$ mm
- **Maximum deflection**: $\delta = 4.314$ mm

PASS - Maximum deflection does not exceed deflection limit
BEAM BB08

STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

Support conditions

Support A
Vertically restrained
Rotationally free

Support B
Vertically restrained
Rotationally free

Applied loading

Beam loads
Dead self weight of beam \(\times 1 \)
Dead full UDL 12.5 kN/m
Imposed full UDL 3.6 kN/m

Analysis results

Maximum moment;
\[M_{\text{max}} = 4.3 \text{kNm}; \quad M_{\text{min}} = 0 \text{kNm} \]

Maximum shear;
\[V_{\text{max}} = 14.3 \text{kN}; \quad V_{\text{min}} = -14.3 \text{kN} \]

Deflection;
\[\delta_{\text{max}} = 0 \text{mm}; \quad \delta_{\text{min}} = 0 \text{mm} \]

Maximum reaction at support A;
\[R_{A_{\text{dead}}} = 7.8 \text{kN}; \quad R_{A_{\text{imposed}}} = 14.3 \text{kN} \]

Unfactored dead load reaction at support A;
\[R_{A_{\text{dead}}} = 7.8 \text{kN} \]

Unfactored imposed load reaction at support A;
\[R_{A_{\text{imposed}}} = 14.3 \text{kN} \]

Maximum reaction at support B;
\[R_{B_{\text{dead}}} = 7.8 \text{kN}; \quad R_{B_{\text{imposed}}} = 14.3 \text{kN} \]

Section details

Section type;
UKC 203x203x46 (Corus Advance);
Steel grade;
S275

Classification of cross sections - Section 3.5

Tensile strain coefficient;
\(\varepsilon = 1.00 \);

Section classification;
Compact

Shear capacity - Section 4.2.3

Design shear force;
\(F_{\nu} = 14.3 \text{kN} \);

Design shear resistance;
\(P_{\nu} = 241.4 \text{kN} \)

Moment capacity - Section 4.2.5

Design bending moment;
\(M = 4.3 \text{kNm} \);

Moment capacity low shear;
\(M_{\text{low}} = 136.8 \text{kNm} \)

Check vertical deflection - Section 2.5.2

Consider deflection due to dead and imposed loads
Limiting deflection;
\(\delta_{\text{lim}} = 4.8 \text{mm} \);

Maximum deflection;
\(\delta = 0.048 \text{mm} \)

Load Envelope - Combination 1

Bending Moment Envelope

Shear Force Envelope

Unfactored dead load reaction at support B;
\[R_{B_{\text{dead}}} = 7.8 \text{kN} \]

Unfactored imposed load reaction at support B;
\[R_{B_{\text{imposed}}} = 2.2 \text{kN} \]
BEAM BB09

STEEL BEAM ANALYSIS & DESIGN (BS5950)
In accordance with BS5950-1:2000 incorporating Corrigendum No.1

Support conditions
Support A
Vertically restrained
Rotationally free
Support B
Vertically restrained
Rotationally free

Applied loading
Beam loads
Dead self weight of beam × 1
Dead full UDL 9 kN/m
Imposed full UDL 2.6 kN/m

Analysis results
Maximum moment;
M_{max} = 83.6 kNm;
M_{min} = 0 kNm
Maximum shear;
V_{max} = 53.9 kN;
V_{min} = -53.9 kN
Deflection;
\delta_{max} = 24.8 mm;
\delta_{min} = 0 mm
Maximum reaction at support A;
R_{A,dead} = 29.3 kN;
R_{A,imposed} = 8.1 kN
Unfactored dead load reaction at support B;
R_{B,dead} = 29.3 kN
Unfactored imposed load reaction at support B;
R_{B,imposed} = 8.1 kN
Maximum reaction at support B;
R_{B,dead} = 53.9 kN;
R_{B,imposed} = 53.9 kN

Classification of cross sections - Section 3.5
Tensile strain coefficient; \epsilon = 1.00;
Section classification; Compact
Shear capacity - Section 4.2.3
Design shear force; F_v = 53.9 kN
Design shear resistance; P_v = 241.4 kN
PASS - Design shear resistance exceeds design shear force

Moment capacity - Section 4.2.5
Design bending moment; M = 83.6 kNm;
Moment capacity low shear; M_{l} = 136.8 kNm
PASS - Moment capacity exceeds design bending moment

Check vertical deflection - Section 2.5.2
Consider deflection due to dead and imposed loads
Limiting deflection \delta_{lim} = 24.8 mm
Maximum deflection \delta = 24.763 mm
PASS - Maximum deflection does not exceed deflection limit
BEAM BB12

STEEL BEAM ANALYSIS & DESIGN (BS5950)
In accordance with BS5950-1:2000 incorporating Corrigendum No.1

Section details
Section type: UKC 203x203x60 (Corus Advance);
Steel grade: S275

Support conditions
Support A: Vertically restrained; Rotationally free
Support B: Vertically restrained; Rotationally free

Applied loading
Beam loads:
- Dead self weight of beam x 1
- Dead full UDL 92 kN/m
- Imposed full UDL 2 kN/m
- Dead point load 25.8 kN at 1800 mm
- Imposed point load 7 kN at 1800 mm

Analysis results
- Maximum moment: $M_{\text{max}} = 143.3$ kNm; $M_{\text{min}} = 0$ kNm
- Maximum shear: $V_{\text{max}} = 195.1$ kN; $V_{\text{min}} = -210.9$ kN
- Deflection: $\delta_{\text{max}} = 6.1$ mm; $\delta_{\text{min}} = 0$ mm
- Maximum reaction at support A: $R_{\text{A, max}} = 195.1$ kN; $R_{\text{A, min}} = 0$ kN
- Unfactored dead load reaction at support A: $R_{\text{A, Dead}} = 133.6$ kN

Classification of cross sections - Section 3.5
Tensile strain coefficient: $\varepsilon = 1.00$; Section classification: Plastic

Shear capacity - Section 4.2.3
Design shear force: $F_v = 210.9$ kN;
Design shear resistance: $P_v = 325.1$ kN
PASS - Design shear resistance exceeds design shear force

Moment capacity - Section 4.2.5
Design bending moment: $M = 143.3$ kNm;
Moment capacity high shear: $M = 177.9$ kNm
PASS - Moment capacity exceeds design bending moment

Check vertical deflection - Section 2.5.2
Consider deflection due to dead and imposed loads
Limiting deflection: $\delta_{\text{lim}} = 7.5$ mm;
Maximum deflection: $\delta = 6.128$ mm
PASS - Maximum deflection does not exceed deflection limit
Support conditions
Support A
Vertically restrained
Rotationally free
Support B
Vertically restrained
Rotationally free

Applied loading
Beam loads
Dead self weight of beam \times 1
Dead full UDL 92 kN/m
Imposed full UDL 2 kN/m

Analysis results
Maximum moment;
\(M_{\text{max}} = 53.7 \text{kNm} \);
\(M_{\text{min}} = 0 \text{kNm} \)
Maximum shear;
\(V_{\text{max}} = 119.4 \text{kN} \);
\(V_{\text{min}} = -119.4 \text{kN} \)
Deflection;
\(\delta_{x\text{ax}} = 1.4 \text{mm} \);
\(\delta_{x\text{xx}} = 0 \text{mm} \)
Maximum reaction at support A:
\(R_{A,\text{dead}} = 83.2 \text{kN} \);
\(R_{A,\text{imposed}} = 1.8 \text{kN} \)
Unfactored dead load reaction at support A:
\(R_{A,\text{dead}} = 83.2 \text{kN} \)
Unfactored imposed load reaction at support A:
\(R_{A,\text{imposed}} = 1.8 \text{kN} \)
Maximum reaction at support B:
\(R_{B,\text{max}} = 119.4 \text{kN} \);
\(R_{B,\text{min}} = 119.4 \text{kN} \)
STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

Support conditions
- **Support A**: Vertically restrained
 Rotationally free
- **Support B**: Vertically restrained
 Rotationally free

Applied loading
- **Beam loads**
 - Dead self weight of beam × 1
 - Dead full UDL 10.1 kN/m
 - Imposed full UDL 2.9 kN/m
 - Dead point load 18.1 kN at 200 mm
 - Dead point load 18.1 kN at 200 mm

Analysis results
- Maximum moment:
 - $M_{max} = 61.1$ kNm; $M_{min} = 0$ kNm
- Maximum shear:
 - $V_{max} = 95.2$ kN; $V_{min} = 48.7$ kN
- Deflection:
 - $\delta_{max} = 11$ mm; $\delta_{min} = 0$ mm
- Maximum reaction at support A:
 - $R_{A, max} = 95.2$ kN; $R_{A, min} = 95.2$ kN
- Unfactored dead load reaction at support A:
 - $R_{A, Dead} = 60$ kN
- Maximum reaction at support B:
 - $R_{B, max} = 48.7$ kN; $R_{B, min} = 48.7$ kN
- Unfactored dead load reaction at support B:
 - $R_{B, Dead} = 26.6$ kN
- Unfactored imposed load reaction at support B:
 - $R_{B, Imp} = 7$ kN

Section details
- **Section type**: UKC 203x203x46 (Corus Advance)
- **Steel grade**: S275

Classification of cross sections - Section 3.5
- Tensile strain coefficient: $\varepsilon = 1.00$
- Section classification: Compact

Shear capacity - Section 4.2.3
- Design shear force: $F_v = 95.2$ kN
- Design shear resistance: $P_v = 241.4$ kN
 - **PASS - Design shear resistance exceeds design shear force**

Moment capacity - Section 4.2.5
- Design bending moment: $M = 61.1$ kNm
- Moment capacity low shear: $M_L = 136.8$ kNm
 - **PASS - Moment capacity exceeds design bending moment**

Check vertical deflection - Section 2.5.2
- Consider deflection due to dead and imposed loads
- Limiting deflection: $\delta_{lim} = 13.333$ mm
- Maximum deflection: $\delta = 11.044$ mm
 - **PASS - Maximum deflection does not exceed deflection limit**
BEAM BB17

STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

Support conditions

Support A
- Vertically restrained
- Rotationally free

Support B
- Vertically restrained
- Rotationally free

Applied loading

Beam loads
- Dead self weight of beam × 1
- Dead full UDL 10.3 kN/m
- Imposed full UDL 2.9 kN/m

Analysis results

- Maximum moment:
 - \(M_{\text{max}} = 56.7 \text{kNm} \)
 - \(M_{\text{min}} = 0 \text{kNm} \)

- Maximum shear:
 - \(V_{\text{max}} = 47.3 \text{kN} \)
 - \(V_{\text{min}} = -47.3 \text{kN} \)

- Deflection:
 - \(\delta_{\text{max}} = 10.1 \text{mm} \)
 - \(\delta_{\text{min}} = 0 \text{mm} \)

- Maximum reaction at support A:
 - \(R_{A_{\text{max}}} = 47.3 \text{kN} \)
 - \(R_{A_{\text{min}}} = 47.3 \text{kN} \)

- Unfactored dead load reaction at support A:
 - \(R_{A_{\text{dead}}} = 25.8 \text{kN} \)

- Unfactored imposed load reaction at support A:
 - \(R_{A_{\text{imposed}}} = 7 \text{kN} \)

- Maximum reaction at support B:
 - \(R_{B_{\text{max}}} = 47.3 \text{kN} \)
 - \(R_{B_{\text{min}}} = 47.3 \text{kN} \)

Classification of cross sections - Section 3.5

- Tensile strain coefficient: \(\varepsilon = 1.00 \)
- Section classification: Compact

Shear capacity - Section 4.2.3

- Design shear force: \(F_v = 47.3 \text{kN} \)
- Design shear resistance: \(P_v = 241.4 \text{kN} \)

Moment capacity - Section 4.2.5

- Design bending moment: \(M = 56.7 \text{kNm} \)
- Moment capacity low shear: \(M_s = 136.8 \text{kNm} \)

Check vertical deflection - Section 2.5.2

- Consider deflection due to dead and imposed loads
- Limiting deflection: \(\delta_{\text{lim}} = 19.2 \text{mm} \)
- Maximum deflection: \(\delta = 10.077 \text{mm} \)

Pass - Design shear resistance exceeds design shear force

Pass - Moment capacity exceeds design bending moment

Unfactored dead load reaction at support B: \(R_{B_{\text{dead}}} = 25.8 \text{kN} \)

Unfactored imposed load reaction at support B: \(R_{B_{\text{imposed}}} = 7 \text{kN} \)

Section details

- Section type: UKC 203x203x46 (Corus Advance)
- Steel grade: S275

Support conditions

Support A
- Vertically restrained
- Rotationally free

Support B
- Vertically restrained
- Rotationally free

Applied loading

Beam loads
- Dead self weight of beam × 1
- Dead full UDL 10.3 kN/m
- Imposed full UDL 2.9 kN/m

Analysis results

- Maximum moment:
 - \(M_{\text{max}} = 56.7 \text{kNm} \)
 - \(M_{\text{min}} = 0 \text{kNm} \)

- Maximum shear:
 - \(V_{\text{max}} = 47.3 \text{kN} \)
 - \(V_{\text{min}} = -47.3 \text{kN} \)

- Deflection:
 - \(\delta_{\text{max}} = 10.1 \text{mm} \)
 - \(\delta_{\text{min}} = 0 \text{mm} \)

- Maximum reaction at support A:
 - \(R_{A_{\text{max}}} = 47.3 \text{kN} \)
 - \(R_{A_{\text{min}}} = 47.3 \text{kN} \)

- Unfactored dead load reaction at support A:
 - \(R_{A_{\text{dead}}} = 25.8 \text{kN} \)

- Unfactored imposed load reaction at support A:
 - \(R_{A_{\text{imposed}}} = 7 \text{kN} \)

- Maximum reaction at support B:
 - \(R_{B_{\text{max}}} = 47.3 \text{kN} \)
 - \(R_{B_{\text{min}}} = 47.3 \text{kN} \)
STEEL BEAM ANALYSIS & DESIGN (BS5950)
In accordance with BS5950-1:2000 incorporating Corrigendum No.1

Support conditions
Support A Vertically restrained Rotationally free
Support B Vertically restrained Rotationally free

Applied loading
Beam loads Dead self weight of beam × 1
Dead partial UDL 24 kN/m from 900 mm to 1900 mm

Analysis results
Maximum moment;
\[M_{\text{max}} = 9.4 \text{ kNm}; \quad M_{\text{min}} = 0 \text{ kNm} \]
Maximum shear;
\[V_{\text{max}} = 9.4 \text{ kN}; \quad V_{\text{min}} = -25.4 \text{ kN} \]
Deflection;
\[\delta_{\text{max}} = 0.2 \text{ mm}; \quad \delta_{\text{min}} = 0 \text{ mm} \]
Maximum reaction at support A;
\[R_{A,\text{max}} = 9.4 \text{ kN}; \quad R_{A,\text{min}} = 9.4 \text{ kN} \]
Unfactored dead load reaction at support A;
\[R_{A,\text{Dead}} = 6.7 \text{ kN} \]
Maximum reaction at support B;
\[R_{B,\text{max}} = 25.4 \text{ kN}; \quad R_{B,\text{min}} = 25.4 \text{ kN} \]
Unfactored dead load reaction at support B;
\[R_{B,\text{Dead}} = 18.1 \text{ kN} \]

Classification of cross sections - Section 3.5
Tensile strain coefficient; \(\epsilon = 1.00 \);
Section classification; Compact

Shear capacity - Section 4.2.3
Design shear force; \(F_v = 25.4 \text{ kN} \);
Design shear resistance; \(P_v = 241.4 \text{ kN} \)
PASS - Design shear resistance exceeds design shear force

Moment capacity - Section 4.2.5
Design bending moment; \(M = 9.4 \text{ kNm} \);
Moment capacity low shear; \(M_c = 136.8 \text{ kNm} \)
PASS - Moment capacity exceeds design bending moment

Check vertical deflection - Section 2.5.2
Consider deflection due to dead and imposed loads
Limiting deflection \(\delta_{\text{lim}} = 5.278 \text{ mm} \);
Maximum deflection; \(\delta = 0.245 \text{ mm} \)
PASS - Maximum deflection does not exceed deflection limit

Section details
Section type; UKC 203x203x46 (Corus Advance);
Steel grade; S275
BEAM BB20

STEEL BEAM ANALYSIS & DESIGN (BS5950)
In accordance with BS5950-1:2000 incorporating Corrigendum No.1
TEDDS calculation version 3.0.04

Maximum reaction at support A:
- Unfactored dead load reaction at support A: $R_{A,\text{Dead}} = 34.8 \text{ kN}$
- Unfactored imposed load reaction at support A: $R_{A,\text{Imposed}} = 10.1 \text{ kN}$
- Maximum reaction at support A: $R_{A_{\text{MAX}}} = 64.9 \text{ kN}$
- Unfactored dead load reaction at support B: $R_{B,\text{Dead}} = 34.8 \text{ kN}$
- Unfactored imposed load reaction at support B: $R_{B,\text{Imposed}} = 10.1 \text{ kN}$
- Maximum reaction at support B: $R_{B_{\text{MAX}}} = 64.9 \text{ kN}$

Support conditions
- Support A: Vertically restrained, Rotationally free
- Support B: Vertically restrained, Rotationally free

Applied loading
- Beam loads
 - Dead self weight of beam $\times 1$
 - Dead full UDL 7.8 kN/m
 - Imposed full UDL 2.3 kN/m
 - Dead point load 9 kN at 200 mm
 - Imposed point load 3 kN at 200 mm
 - Dead point load 9 kN at 6000 mm
 - Imposed point load 3 kN at 6000 mm

Analysis results
- Maximum moment: $M_{\text{MAX}} = 77.1 \text{ kNm}$
- Maximum shear: $V_{\text{MAX}} = 64.9 \text{ kN}$
- Deflection: $\delta_{\text{MAX}} = 20 \text{ mm}$

Classification of cross sections - Section 3.5
- Tensile strain coefficient: $\varepsilon = 1.00$
- Section classification: Plastic

Shear capacity - Section 4.2.3
- Design shear force: $F_v = 64.9 \text{ kN}$
- Design shear resistance: $P_v = 268.8 \text{ kN}$
 - PASS - Design shear resistance exceeds design shear force

Moment capacity - Section 4.2.5
- Design bending moment: $M = 77.1 \text{ kNm}$
- Moment capacity low shear: $M_L = 156 \text{ kNm}$
 - PASS - Moment capacity exceeds design bending moment

Check vertical deflection - Section 2.5.2
- Consider deflection due to dead and imposed loads
- Limiting deflection: $\delta_{\text{lim}} = 24.8 \text{ mm}$
 - PASS - Maximum deflection does not exceed deflection limit

Section details
- Section type: UKC 203x203x52 (Corus Advance)
- Steel grade: S275

Load Envelope - Combination 1

Bending Moment Envelope

Shear Force Envelope
Beam BB23

Steel Beam Analysis & Design (BS5950)

In accordance with BS5950 - 1:2000 incorporating Corrigendum No.1

Support conditions

Support A
Vertically restrained
Rotationally free

Support B
Vertically restrained
Rotationally free

Applied Loading

Beam loads
Dead self weight of beam × 1
Dead full UDL 13 kN/m
Imposed full UDL 3.8 kN/m

Analysis results

Maximum moment:
\[M_{\text{max}} = 4.4 \text{ kNm}; \quad M_{\text{min}} = 0 \text{ kNm} \]

Maximum shear:
\[V_{\text{max}} = 14.8 \text{ kN}; \quad V_{\text{min}} = -14.8 \text{ kN} \]

Deflection:
\[\delta_{\text{max}} = 0.1 \text{ mm}; \quad \delta_{\text{min}} = 0 \text{ mm} \]

Maximum reaction at support A:
\[R_{A,\text{max}} = 14.8 \text{ kN}; \quad R_{A,\text{min}} = 14.8 \text{ kN} \]

Unfactored dead load reaction at support A:
\[R_{A,\text{dead}} = 7.9 \text{ kN} \]

Unfactored imposed load reaction at support A:
\[R_{A,\text{Imposed}} = 2.3 \text{ kN} \]

Maximum reaction at support B:
\[R_{B,\text{max}} = 14.8 \text{ kN}; \quad R_{B,\text{min}} = 14.8 \text{ kN} \]

Section Details

Section type: UKB 203x133x25 (Corus Advance)
Steel grade: S275

Classification of Cross Sections - Section 3.5

Tensile strain coefficient: \(\varepsilon = 1.00 \)

Shear Capacity - Section 4.2.3

Design shear force:
\[F_v = 14.8 \text{ kN}; \]

Design shear resistance:
\[P_v = 191.1 \text{ kN} \]

PASS - Design shear resistance exceeds design shear force

Moment Capacity - Section 4.2.5

Design bending moment:
\[M = 4.4 \text{ kNm} \]

Moment capacity low shear:
\[M_l = 70.9 \text{ kNm} \]

PASS - Moment capacity exceeds design bending moment

Check Vertical Deflection - Section 2.5.2

Consider deflection due to dead and imposed loads

Limiting deflection:
\[\delta_{\text{lim}} = 4.8 \text{ mm}; \]

Maximum deflection:
\[\delta = 0.096 \text{ mm} \]

PASS - Maximum deflection does not exceed deflection limit
COLUMNS C2 PAD FOUNDATION

PAD FOOTING ANALYSIS AND DESIGN (BS8110-1-1997)

Partial safety factors for loads
- Dead loads; \(\gamma_G = 1.40 \)
- Imposed loads; \(\gamma_W = 1.60 \)
- Wind loads; \(\gamma_W = 0.00 \)

Ultimate axial loading on column
- Ultimate axial load on column; \(P_{uA} = 567.6 \) kN

Ultimate foundation loads
- Ultimate foundation load; \(F_y = 48.2 \) kN

Ultimate horizontal loading on column
- Ultimate moment on column
 - Ultimate moment on column in x dir; \(M_{ux} = 0.000 \) kNm
 - Ultimate moment on column in y dir; \(M_{uy} = 0.000 \) kNm

Ultimate pad base reaction
- Eccentricity of ultimate base reaction in x; \(\phi_{xcu} = 0 \) mm
- Eccentricity of ultimate base reaction in y; \(\phi_{ycu} = 0 \) mm

Calculate ultimate pad base pressures
- Maximum ultimate pad base pressure; \(q_{ux} = 190.053 \) kN/m²; \(q_{uy} = 190.053 \) kN/m²; \(q_{ux} = 190.053 \) kN/m²

Library item: Ultimate pressures summary
- Ultimate moments on column
 - Ultimate moment in x dir; \(M_x = 127.710 \) kNm
 - Ultimate moment in y dir; \(M_y = 127.710 \) kNm

Material details
- Nom. cover to reinforcement; \(c = 40 \) mm

Moment design in x direction
- Tens. reinforcement diameter; \(\phi_{rd} = 16 \) mm
- Tens. reinforcement depth; \(d_t = 402 \) mm

Design formula for rectangular beams (cl 3.4.4.4)
- Tens. reinforcement provided; \(A_{x,thr,sfr} = 2413 \) mm²

Moment design in y direction
- Tens. reinforcement diameter; \(\phi_{rd} = 16 \) mm
- Tens. reinforcement depth; \(d_t = 386 \) mm

Pad footing details
- Length of pad footing; \(L = 1800 \) mm
- Width of pad footing; \(B = 1800 \) mm
- Depth of pad footing; \(h = 450 \) mm
- Depth of soil over pad footing; \(h_{so} = 0 \) mm
- Density of concrete; \(f_G = 23.6 \) kN/m³

Column details
- Column base length; \(l_a = 300 \) mm
- Column base width; \(b_x = 300 \) mm
- Column eccentricity in x; \(\phi_{xu} = 0 \) mm
- Column eccentricity in y; \(\phi_{yu} = 0 \) mm

Soil details
- Depth of soil over pad footing; \(h_{so} = 0 \) mm
- Density of soil; \(f_Q = 20.0 \) kN/m²

Axial loading on column (From Moment Frame 2 Analysis)
- Dead axial load; \(P_{ux} = 370.0 \) kN
- Total axial load; \(P_A = 435.0 \) kN

Foundation loads
- Total base reaction; \(T = 469.4 \) kN
- Base reaction eccentricity in x; \(\phi_{x} = 0 \) mm
- Base reaction eccentricity in y; \(\phi_{y} = 0 \) mm

Calculate pad base reaction
- Total base reaction; \(T = 469.4 \) kN
- Base reaction eccentricity in x; \(\phi_{x} = 0 \) mm
- Base reaction eccentricity in y; \(\phi_{y} = 0 \) mm

Calculate pad base pressures
- \(q_S = 144.879 \) kN/m²
- \(q_x = 144.879 \) kN/m²
- \(q_y = 144.879 \) kN/m²
- \(q_{ux} = 144.879 \) kN/m²
- \(q_{uy} = 144.879 \) kN/m²
- Minimum base pressure; \(q_{min} = 144.879 \) kN/m²
- Maximum base pressure; \(q_{max} = 144.879 \) kN/m²

PASS - Maximum base pressure is less than allowable bearing pressure
Design formula for rectangular beams (cl 3.4.4.4);

- $K_y = 0.016$
- $K_y' = 0.156$

$K_y < K_y'$, compression reinforcement is not required

Tens. reinforcement required: $A_{s, y, req} = 801 \text{ mm}^2$
Minimum tens. reinforcement: $A_{s, y, min} = 1053 \text{ mm}^2$

Tens. reinforcement provided: 12 No. 16 dia. bars btm.
$A_{s, y, prov} = 2413 \text{ mm}^2$

PASS - Tension reinforcement provided exceeds tension reinforcement required

Calculate ultimate shear force at d from top face of column

Ult. pressure for shear: $q_{su} = 190.053 \text{ kN/m}^2$

Area loaded for shear: $A_s = 0.655 \text{ m}^2$
Ult. shear force: $V_{su} = 114.781 \text{ kN}$

Shear stresses at d from top face of column (cl 3.5.5.2)

Design shear stress: $v_{su} = 0.165 \text{ N/mm}^2$
Design concrete shear stress: $v_c = 0.471 \text{ N/mm}^2$
Allowable design shear stress: $v_{max} = 4.382 \text{ N/mm}^2$

PASS - $v_{su} < v_c$ - No shear reinforcement required

Calculate ultimate punching shear force at face of column

Ult. pressure for punching shear: $q_{pu} = 190.053 \text{ kN/m}^2$
Avg. effective rein. depth: $d = 394 \text{ mm}$

Area loaded: $A_{pu} = 0.090 \text{ m}^2$
Length of shear perimeter: $u_{pu} = 1200 \text{ mm}$
Ult. punching shear force: $V_{pu} = 551.833 \text{ kN}$

Punching shear stresses at face of column (cl 3.7.7.2)

Design shear stress: $v_{puA} = 1.167 \text{ N/mm}^2$

PASS - Design shear stress is less than allowable design shear stress

Calculate ultimate punching shear force at perimeter of 1.5 d from face of column

Ult. pressure for punching shear: $q_{puA1.5d} = 190.053 \text{ kN/m}^2$
Avg. effective rein. depth: $d = 394 \text{ mm}$

Area loaded: $A_{puA1.5d} = 2.668 \text{ m}^2$
Length of shear perimeter: $u_{puA1.5d} = 3600 \text{ mm}$
Ult. punching shear force: $V_{puA1.5d} = 125.345 \text{ kN}$

Punching shear stresses at perimeter of 1.5 d from face of column (cl 3.7.7.2)

Design shear stress: $v_{puA1.5d} = 0.088 \text{ N/mm}^2$

PASS - $v_{puA1.5d} < v_c$ - No shear reinforcement required
<table>
<thead>
<tr>
<th>WALL WIDTH</th>
<th>CALCULATIONS</th>
<th>OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LEVEL</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>Kw/m</td>
</tr>
<tr>
<td>Roof</td>
<td>15</td>
<td>0.75</td>
</tr>
<tr>
<td>Wall</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>Floor</td>
<td>10</td>
<td>1.5</td>
</tr>
<tr>
<td>Wall</td>
<td>60</td>
<td>-</td>
</tr>
<tr>
<td>1st Floor</td>
<td>10</td>
<td>1.5</td>
</tr>
<tr>
<td>Wall</td>
<td>60</td>
<td>-</td>
</tr>
<tr>
<td>Ground</td>
<td>10</td>
<td>1.5</td>
</tr>
<tr>
<td>Wall</td>
<td>60</td>
<td>-</td>
</tr>
<tr>
<td>Lower Ground</td>
<td>52</td>
<td>1.5</td>
</tr>
<tr>
<td>RC Wall</td>
<td>3</td>
<td>-</td>
</tr>
</tbody>
</table>

- **Wall W1:**

- **Wall W2:**

- **Wall W3:**

 - Load = (W1 + W2 + W3) x wall load

 - 5.8
 - 105.7 - 15.13
RAFT SLAB DESIGN AT COLUMN C1

RAFT FOUNDATION DESIGN (BS8110: PART 1 : 1997)

Soil and raft definition

Soil definition
- Allowable bearing pressure: $q_{adm} = 40.0 \text{ kN/m}^2$
- Number of types of soil forming sub-soil: One type only
- Soil density: Firm to loose
- Depth of hardcore beneath slab: $h_{corebtm} = 0 \text{ mm}$ (Dispersal allowed for bearing pressure check)
- Depth of hardcore beneath thickening: $h_{corebtm} = 0 \text{ mm}$ (Dispersal allowed for bearing pressure check)
- Density of hardcore: $\gamma_h = 20.0 \text{ kN/m}^3$
- Basic assumed diameter of local depression: $\phi_h = 2000 \text{ mm}$
- Diameter under slab modified for hardcore: $\phi_h = \phi_h - \phi_h \times h_{corebtm} = 2000 \text{ mm}$
- Diameter under thickening modified for hardcore: $\phi_h = \phi_h - \phi_h \times h_{corebtm} = 2000 \text{ mm}$

Raft slab definition
- Max dimension/max dimension between joints: $l_{max} = 6.200 \text{ m}$
- Slab thickness: $h_{slab} = 250 \text{ mm}$
- Concrete strength: $f_c = 40 \text{ N/mm}^2$
- Poisson's ratio of concrete: $\nu = 0.2$
- Slab mesh reinforcement strength: $f_y = 500 \text{ N/mm}^2$
- Partial safety factor for steel reinforcement: $f_s = 1.15$
- From CACA document 'Concrete ground floors' Table 5

Minimum mesh required in top for shrinkage: A_{142}
- Actual mesh provided in top: $A_{393} (h_{slab} = 393 \text{ mm}^2/m)$
- Mesh provided in bottom: $A_{393} (h_{slab} = 393 \text{ mm}^2/m)$
- Top mesh bar diameter: $\phi_{top} = 10 \text{ mm}$
- Bottom mesh bar diameter: $\phi_{top} = 10 \text{ mm}$
- Cover to top reinforcement: $c_{top} = 20 \text{ mm}$
- Cover to bottom reinforcement: $c_{btm} = 35 \text{ mm}$
- Average effective depth of top reinforcement: $d_{htop} = h_{slab} \times c_{top} = 220 \text{ mm}$
- Average effective depth of bottom reinforcement: $d_{hbtm} = h_{slab} \times c_{btm} = 205 \text{ mm}$
- Overall average effective depth: $d_{htop} = (d_{hbtm} + d_{hbtm} + d_{hbtm})/2 = 213 \text{ mm}$
- Minimum effective depth of top reinforcement: $d_{htop} = (d_{hbtm} + d_{hbtm} + d_{hbtm})/2 = 215 \text{ mm}$
- Minimum effective depth of bottom reinforcement: $d_{hbtm} = (d_{hbtm} + d_{hbtm} + d_{hbtm})/2 = 200 \text{ mm}$

Edge beam definition

Overall depth; $h_{edge} = 450 \text{ mm}$
- Width; $b_{edge} = 1000 \text{ mm}$
- Angle of chamfer to horizontal; $\alpha = 45 \text{ deg}$
- Strength of main bar reinforcement; $f_y = 500 \text{ N/mm}^2$
- Strength of link reinforcement; $f_y = 500 \text{ N/mm}^2$
- Reinforcement provided in top; $6 \times 40 \text{ mm}^2$ (Annex E3 $= 393 \text{ mm}$)
- Reinforcement provided in bottom; $6 \times 40 \text{ mm}^2$ (Annex E3 $= 393 \text{ mm}$)
- Link reinforcement provided; $3 \times 12 \text{ mm}^2$ at 100 ctrs ($A_{12} = 3.393 \text{ mm}$)
- Bottom cover to links; $c_{btm} = 35 \text{ mm}$
- Effective depth of top reinforcement; $d_{htop} = h_{slab} \times c_{top} = 220 \text{ mm}$
- Effective depth of bottom reinforcement; $d_{hbtm} = h_{slab} \times c_{btm} = 205 \text{ mm}$

Internal slab design checks

Basic loading
- Slab self weight: $w_{slab} = 24 \text{ kN/m}^2$ (Disn $= 6.0 \text{ kN/m}^2$
- Hardcore: $w_{core} = 0 \text{ kN/m}^2$

Applied loading
- Uniformly distributed dead load: $w_{edl} = 1.5 \text{ kN/m}^2$
- Uniformly distributed live load: $w_{edl} = 1.5 \text{ kN/m}^2$

Internal slab bearing pressure check
- Total uniform load at formation level; $w_{tot} = w_{slab} + w_{core} + w_{edl} + w_{edl} = 9.0 \text{ kN/m}^2$
- $w_{tot} = w_{slab} + w_{core} + w_{edl} + 500 \text{ kN/m}^2$

PASS: $w_{tot} <= q_{adm} - $ Applied bearing pressure is less than allowable

Internal slab bending and shear check

Applied bending moments
- Span of slab; $L = 2220 \text{ mm}$
- Ultimate self weight; $w_{slab} = 1.4 \times w_{slab} = 8.4 \text{ kN/m}^2$
- $M_{edl} = w_{edl} \times L / 6 + 0.8 \text{ kN/m}$
- $M_{edl} = w_{edl} \times L / 6 + 1.3 \text{ kN/m}$
- $V_{edl} = w_{edl} \times L / 4 = 4.7 \text{ kN/m}$

Moments due to applied uniformly distributed loads
- Ultimate applied; $M_{edl} = 1.4 \times M_{edl} = 4.5 \text{ kN/m}^2$
- $M_{edl} = w_{edl} \times L / 2 = 0.7 \text{ kN/m}$
- $V_{edl} = w_{edl} \times L / 4 = 2.5 \text{ kN/m}$

Resultant moments and shears
- Total moment at edge; $M_{edl} = 2.0 \text{ kN/m}$
- Total moment at centre; $M_{edl} = 1.2 \text{ kN/m}$
- Total shear force; $V_{edl} = 7.2 \text{ kN/m}$

Reinforcement required in top
- K factor; $K_{t} = \frac{M_{edl}}{f_y \times A_{1/2}} = 0.001$
- Lever arm; $z_{edl} = A_{1/2} \times \min(0.85, 0.9) = 209.0 \text{ mm}$
- Area of steel required; $A_{edl} = 14 \times 0.02 = 22 \text{ mm}^2$
- Minimum area of steel required; $A_{edl} = 0.0013 \times h_{slab} = 325 \text{ mm}^2$
- Area of steel required; $A_{edl} = 0.0013 \times h_{slab} = 325 \text{ mm}^2$

PASS: $A_{edl} <= A_{slab}$ - Area of reinforcement provided in top to span local depressions is adequate

Reinforcement required in bottom
- K factor; $K_{b} = \frac{M_{edl}}{f_y \times A_{1/2}} = 0.001$
- Lever arm; $z_{edl} = A_{1/2} \times \min(0.85, 0.9) = 194.7 \text{ mm}$
- Area of steel required; $A_{edl} = 14 \times 0.02 = 22 \text{ mm}^2$
- Area of steel required; $A_{edl} = 0.0013 \times h_{slab} = 325 \text{ mm}^2$

PASS: $A_{edl} <= A_{slab}$ - Area of reinforcement provided in bottom to span local depressions is adequate
Shear check
Applied shear stress;
Tension steel ratio;
From BS8110-1:1997 - Table 3.8;
Design concrete shear strength;

Internal slab deflection check
Basic allowable span to depth ratio;
Moment factor;
Steel stress service;
Modification factor;
Modified allowable span to depth ratio;
Actual span to depth ratio;

Edge beam design checks
Basic loading;
Hardcore;
Edge beam;
Rectangular beam element;
Chamber element;
Slab element;
Edge beam self weight;
Edge load number 1;
Load type;
Dead load;
Live load;
Ultimate load;

Limiting max dispersal to say 6 x beam depth;
Total dispersal width of point loads;
Equivalent ultimate udl of edge load 1;
Equivalent unfactored udl of edge load 1;

Center of longitudinal and equivalent line loads from outside face of raft
Load x distance for edge load 1;
Load x distance for edge load 2;
Sum of ultimate longitudinal and equivalent line loads;
Sum of load x distances;
Center of loads;
Initially assume no moment transferred into slab due to load/reaction eccentricity
Sum of unfactored longitudinal and effective line loads;
Allowable bearing width;
Pressure bearing due to line/point loads;
Total applied bearing pressure;

Now assume moment due to load/reaction eccentricity is resisted by slab
Bearing width required;
Effective bearing width at u/s of slab;
Load/reaction eccentricity;
Ultimate moment to be resisted by slab;
From slab bending check
Moment due to depression under slab (hoggling);
Total moment to be resisted by slab top steel;
K factor;

Edge beam bending pressure check
Effective bearing width of edge beam;
Total uniform load at formation level;
Longitudinal dispersal of point loads
Total dead point load;
Total live point load;
Total ultimate point load;
Min width of point loads parallel to edge of raft;
Approx moment capacity of bottom steel;
Non transverse line loads therefore;

Moment in edge beam due to transverse line loads;
Residual moment capacity of beam;
Max allow beam dispersal based on mt cap;

Hand calculation:
M = 596.9kNm
Slab thickness = 350mm
[Raft analysis software only allows slab depths up to 250mm, actual depth is 350mm]
Top cover = 25mm
Bar Ø = 25mm
d = 350-25-25/2 = 312.5mm
f'y = 40N/mm²
k = 596.9 x 10⁷/(1000x312.5)² = 0.153<0.156
z = 312.5x(0.5 + (0.25-0.153/0.9)) = 245mm
A_dreq = 596.9x10⁷/(0.87x500x245) = 5600mm²
Use H25 @ 100mm centres and H12 @ 150mm centres locally at Column C1
A_preq = 5663mm²

Edge beam bending check
Diviner for moments due to udl's;
β inland = 10.0
Sum for moments due to point loads;
β inland = 6.0

Applied bending moments
Span of edge beam;
Ultimate self weight udl;
Total ultimate udl (approx);

Pringuer-James Consulting Engineers Ltd
Self weight and slab bending moment:
\[M_{edge} = (W_{edge} + W_{ul}) \times l_{edge}^2/2 = 10.0 \, kNm \]
Self weight shear force:
\[V_{edge} = (W_{edge} + W_{ul}) \times l_{edge}/2 = 20.9 \, kNm \]

Moments due to applied uniformly distributed loads

Ultimate udl (approx):
\[w_{edge} = 1000 \, kNm \]
Bending moment:
\[M_{edge} = w_{edge} \times l_{edge}/2 = 1.9 \, kNm \]
Shear force:
\[V_{edge} = w_{edge} \times l_{edge}/2 = 4.0 \, kN \]
Moment and shear due to load number 1
Bending moment:
\[M_{edge} = w_{edge} \times l_{edge}/2 = 123.9 \, kNm \]
Shear force:
\[V_{edge} = w_{edge} \times l_{edge}/2 = 310.0 \, kN \]
Moment and shear due to load number 2
Bending moment:
\[M_{edge} = w_{edge} \times l_{edge}/2 = 95.7 \, kNm \]
Shear force:
\[V_{edge} = w_{edge} \times l_{edge}/2 = 199.5 \, kN \]

Resultant moments and shears
Total moment (hoggling and sagging):
\[M_{edge} = 231.6 \, kNm \]
Maximum shear force:
\[V_{edge} = 534.5 \, kN \]

Reinforcement required in top
Width of section in compression zone:
\[b_{wedge} = b_{edge} = 1000 \, mm \]
Average web width:
\[b_w = b_{edge} \times \tan(\alpha/2) = 1225 \, mm \]
K factor:
\[K_{edge} = M_{edge}/(b_w \times h_{edge} \times f_y) = 0.037 \]
Lever arm:
\[z_{edge} = (d_{edge} / 2 \times h_{edge}) / \sin(\alpha/2) = 378 \, mm \]
Area of steel required for bending:
\[A_{edge} = 0.0013 \times 1.0 \times b_w \times h_{edge} = 717 \, mm^2 \]
Minimum area of steel required:
\[A_{edge} = 0.0013 \times 1.0 \times b_w \times h_{edge} = 717 \, mm^2 \]
Area of steel required:
\[A_{edge} = \max(A_{edge, min}, A_{edge, required}) = 1409 \, mm^2 \]

PASS - A_{edge, required} < A_{edge} - Area of reinforcement provided in top of edge beams is adequate

Reinforcement required in bottom
Width of section in compression zone:
\[b_{wedge} = b_{edge} = 1000 \, mm \]
Average web width:
\[b_w = b_{edge} \times \tan(\alpha/2) = 1440 \, mm \]
K factor:
\[K_{edge} = M_{edge}/(b_w \times h_{edge} \times f_y) = 0.268 \]
Lever arm:
\[z_{edge} = (d_{edge} / 2 \times h_{edge}) / \sin(\alpha/2) = 373 \, mm \]
Area of steel required for bending:
\[A_{edge} = 0.0013 \times 1.0 \times b_w \times h_{edge} = 1427 \, mm^2 \]
Minimum area of steel required:
\[A_{edge} = 0.0013 \times 1.0 \times b_w \times h_{edge} = 1427 \, mm^2 \]
Area of steel required:
\[A_{edge} = \max(A_{edge, min}, A_{edge, required}) = 1427 \, mm^2 \]

PASS - A_{edge, required} < A_{edge} - Area of reinforcement provided in bottom of edge beams is adequate

Edge beam shear check
Applied steel stress:
\[V_{edge} = V_{ul} \times (b_w \times d_{edge}) = 1.096 \, N/mm^2 \]
Tension steel ratio:
\[f_{edge} = 100 \times A_{edge}/(b_w \times d_{edge}) = 0.387 \]
From BS8110-1:1997 - Table 3.8
Design concrete shear strength:
\[V_{concrete} = 0.539 \, N/mm^2 \]
\[V_{edge} > V_{concrete} + 0.4N/mm^2 - Therefore designed links required \]
Link area to spacing ratio required:
\[A_{u, upon, \, edge} = (V_{edge} - V_{concrete}) / ((1.0/y) / f_y) = 1.570 \, mm \]
Link area to spacing ratio provided:
\[A_{u, upon, \, edge} = N_{edge} \times (d_{edge} / 4 \times s_{edge})^2 = 3.393 \, mm \]

PASS - A_{u, upon, \, edge} < A_{u, upon, \, edge, required} - Shear reinforcement provided in edge beams is adequate

Corner design checks

Basic loading
Total uniform load at formation level:
\[W_{ul} = W_{load} + W_{dead} + W_{bar} + W_{stabilizer} = 13.4 \, kN/m^2 \]

PASS - W_{load} < Q_{allow} - Applied bearing pressure is less than allowable
RAFT SLAB DESIGN (TYPICAL)

RAFT FOUNDATION DESIGN (BS8110 : PART 1 : 1997)

Soil and raft definition

Soil definition

Allowable bearing pressure; qallow = 40.0 kN/m²
Number of types of soil forming sub-soil; One type only
Soil density; Firm to loose
Depth of hardcore beneath slab; hcorethick = 0 mm
Depth of hardcore beneath thickenings; hcorethick = 0 mm
Density of hardcore; ρ = 20.0 kN/m³
Basic assumed diameter of local depression; dallow = 2000 mm
Diameter under slab modified for hardcore; d = 2000 mm
Diameter under thickenings modified for hardcore; d = 2000 mm

Raft slab definition

Max dimension/max dimension between joints; lbas = 6.200 m
Slab thickness; hbas = 250 mm
Concrete strength; fck = 40 N/mm²
Poison ratio of concrete; ν = 0.2
Slab mesh reinforcement strength; fsteel = 500 N/mm²
Partial safety factor for steel reinforcement; ksteel = 1.15
Partial safety factor for concrete; kConcrete = 1.0

From CACA document ‘Concrete ground floors’ Table 5
Minimum mesh required in top for shrinkage; A142;
Actual mesh provided in top; A393 (Aallow ≤ A393 = 393 mm²/m)
Mesh provided in bottom; A393 (Aallow ≤ A393 = 393 mm²/m)
Top mesh bar diameter; østeel = 10 mm
Bottom mesh bar diameter; østeel = 10 mm
Cover to top reinforcement; ctop = 20 mm
Cover to bottom reinforcement; cbottom = 35 mm
Average effective depth of top reinforcement; dsteel = hbas - ctop - østeel = 220 mm
Average effective depth of bottom reinforcement; dsteel = hbas - cbottom - østeel = 205 mm
Overall average effective depth; dsteel = (dsteel + dsteel)/2 = 213 mm
Minimum effective depth of top reinforcement; dsteel = hbas - ctop - østeel/2 = 215 mm
Minimum effective depth of bottom reinforcement; dsteel = hbas - cbottom - østeel/2 = 200 mm

Edge beam definition

Overall depth;
Width;
Angle of chamfer to horizontal;
Strength of main bar reinforcement;
Strength of link reinforcement;
Reinforcement provided in top;
Reinforcement provided in bottom;
Link reinforcement provided;
Bottom cover to links;
Effective depth of top reinforcement;
Effective depth of bottom reinforcement;

Internal slab design checks

Basic loading
Slab self weight;
Hardcore;

Applied loading
Uniformly distributed dead load;
Uniformly distributed live load;

Internal slab bearing pressure check
Total uniform load at formation level;

Internal slab bending and shear check

Applied bending moments
Span of slab;
Ultimate self weight udl;
Self weight moment at centre;
Self weight moment at edge;
Self weight shear force at edge;

Moments due to applied uniformly distributed loads
Ultimate applied udl;
Moment at centre;
Moment at edge;
Shear force at edge;

Resultant moments and shears
Total moment at edge;
Total moment at centre;
Total shear force;

Reinforcement required in top
K factor;
Lever arm;
Area of steel required for bending;
Minimum area of steel required;
Area of steel required;

Reinforcement required in bottom
K factor;
Lever arm;
Area of steel required for bending;
Area of steel required;

PASS - Aallow ≤ Asteel - Area of reinforcement provided in top to span local depressions is adequate
PASS - Aallow ≤ Asteel - Area of reinforcement provided in bottom to span local depressions is adequate
Shear check

Applied shear stress; v = V/vsdef = 0.033 N/mm²
Tension steel ratio; ρ = 100 × A_steel/vsdef = 0.183
From BS8110:1.1997 - Table 3.8;
Design concrete shear strength; \(v_c = 0.490 \text{ N/mm}^2 \)

PASS - v < v_c - Shear capacity of the slab is adequate

Internal slab deflection check
Basic allowable span to depth ratio; \(R \) = 26.0
Moment factor; \(M_{fact} = M_{fact,allow} / M_{def} = 0.028 \text{ N/mm}^2 \)
Steel service stress; \(f_s = 2 / 3 \times f_{steel,allow} \)
Modification factor; \(M_{fact,allow} = M_{fact,allow} / M_{def} = 0.007 \text{ kN/m} \)
Modified allowable span to depth ratio; \(R_{fact,allow} = R_{fact,allow} / R = 5.1 \text{ kN/m} \)
Actual span to depth ratio; \(R_{fact,allow} = R_{fact,allow} / R = 7.1 \text{ kN/m} \)

PASS - R < R - Slab span to depth ratio is adequate

Edge beam design checks
Basic loading
Hardcore; \(w_{core} = 1.6 \text{ kN/m} \)
Edge beam; \(w_{edge} = 1.2 \text{ kN/m} \)
Rectangular beam element; \(w_{rbe} = 2 \text{ kN/m} \)
Chamber element; \(w_{chamber} = 1.0 \text{ kN/m} \)
Slab element; \(w_{slab} = 1.0 \text{ kN/m} \)
Edge beam self weight; \(w_{edge} = 1.0 \text{ kN/m} \)
Edge load number 1
Load type; \(w_{load} = 50 \text{ kN/m} \)
Dead load; \(w_{dead} = 20 \text{ kN/m} \)
Live load; \(w_{live} = 20 \text{ kN/m} \)
Ultimate load; \(w_{ult} = 20 \text{ kN/m} \)
Longitudinal line load width; \(b_{edge} = 25 \text{ mm} \)
Centroid of load from outside face of raft; \(A_{edge} = 150 \text{ mm}^2 \)
Effective bearing width of edge beam; \(A_{effective,edge} = 1200 \text{ mm}^2 \)
Effective bearing width of edge beam; \(A_{effective,edge} = 1200 \text{ mm}^2 \)
Total uniform load at formation level; \(A_{effective,edge} = 13.4 \text{ kN/m}^2 \)

Centroid of longitudinal and equivalent lines loads from outside face of raft
Load x distance for edge load 1; \(S_{edge} = 28.6 \text{ kN/m} \)
Sum of ultimate load and equivalent load lines; \(S_{ult,edge} = 190.7 \text{ kN/m} \)
Sum of load x distances; \(A_{edge} = 150 \text{ mm} \)
Initial assumed moment transferred into slab due to load/reaction eccentricity

Resultant moments and shears
Total moment to be resisted by slab top steel; \(M_{allow} = M_{ult} + M_{dead} = 453.0 \text{ kN/m} \)
K factor; \(K = M_{allow} / (K_w \times A_{effective,edge}) = 0.245 \)
PASS - K > 0.156 - Therefore compression reinforcement is required
The design is outside the scope of this calculation

Hand calculation:

M = 453.0 kN/m
Slab thickness = 350 mm
[Raft analysis software only allows slab depths up to 250mm, actual depth is 350mm]
Top cover = 25mm
Bar Ø = 25mm
d = 350-25-25 = 312.5mm

Load and reaction eccentricity on raft slab:
Load type; \(w_{load} = 50 \text{ kN/m} \)

Effective bearing width of edge beam; \(A_{edge} = 150 \text{ mm}^2 \)
Effective bearing width of edge beam; \(A_{edge} = 1200 \text{ mm}^2 \)
Effective bearing width of edge beam; \(A_{edge} = 13.4 \text{ kN/m}^2 \)

Moment due to load/reaction eccentricity is resisted by slab

Bearing width required; \(b_{req} = 3 \times S_{ult,edge} / (w_{dead} + w_{edge}) = 5030 \text{ mm} \)
Effective bearing width at u/s of slab; \(b_{ueffective} = 3 \times S_{ult,edge} / (w_{dead} + w_{edge}) = 3030 \text{ mm} \)

PASS - A_{effective,edge} < A_{edge} - Area of reinforcement provided in top of edge beams is adequate
Width of section in compression zone:

\[b_{\text{edge}} = b_{\text{edge}} + (h_{\text{edge}} - h_{\text{slab}}) \tan(\alpha_{\text{edge}}) + 0.1 \times l_{\text{edge}} = 1440 \text{ mm} \]

K factor:

\[K_{\text{edge}} = \frac{M_{\text{edge}}}{f_{\text{cu}} \times b_{\text{edge}} \times d_{\text{edge}}} = 0.011 \]

Lever arm:

\[z_{\text{edge}} = d_{\text{edge}} \times \min(0.95, 0.5 + \sqrt{(0.25 - K_{\text{edge}}/0.9)}) = 373 \text{ mm} \]

Area of steel required for bending:

\[A_{\text{s,edge}} = \frac{M_{\text{edge}}}{(1.0/\gamma_{s}) \times f_{y} \times z_{\text{edge}}} = 625 \text{ mm}^2 \]

Minimum area of steel required:

\[A_{\text{s,min}} = 0.0013 \times b \times h_{\text{edge}} = 717 \text{ mm}^2 \]

Area of steel required:

\[A_{\text{s,req}} = \max(A_{\text{s,edge}}, A_{\text{s,min}}) = 717 \text{ mm}^2 \]

PASS - \(A_{\text{s,req}} \leq A_{\text{s,edge}} \) - Area of reinforcement provided in bottom of edge beams is adequate

Edge beam shear check

Applied shear stress:

\[\nu_{\text{edge}} = \frac{V_{\text{edge}}}{b_{\text{w}} \times d_{\text{edge}}} = 0.520 \text{ N/mm}^2 \]

Tension steel ratio:

\[\nu_{\text{edge}} = \frac{100 \times A_{\text{s,edge}}}{b_{\text{w}} \times d_{\text{edge}}} = 0.387 \]

From BS8110-1:1997 - Table 3.8

Design concrete shear strength:

\[\nu_{\text{edge}} = \frac{0.539 \text{ N/mm}^2}{V_{\text{edge}}} \leq 0.4 \text{ N/mm}^2 \] - Therefore minimum links required

Link area to spacing ratio required:

\[A_{\text{s,upon,edge}} = 0.4 \times (1.0/\gamma_{s}) \times f_{y} = 1.127 \text{ mm} \]

Link area to spacing ratio provided:

\[A_{\text{s,upon,edge}} = \frac{N_{\text{edgelink}} \times \pi \times \phi_{\text{edgelink}}^2}{4 \times s_{\text{edge}}} = 3.393 \text{ mm} \]

PASS - \(A_{\text{s,upon,edge}} \leq A_{\text{s,upon,edge}} \) - Shear reinforcement provided in edge beams is adequate
PROPPED RETAINING WALL DESIGN

RETAINING WALL ANALYSIS (BS 8002:1994)

Wall details
Retaining wall type; Cantilever
Height of wall stem; h_{stem} = 2700 mm
Length of toe; l_{toe} = 1000 mm
Overall length of base; l_{base} = 1200 mm
Height of retaining wall; h_{wall} = 3150 mm
Depth of downstand; d_{ds} = 0 mm
Position of downstand; l_{ds} = 750 mm
Depth of cover in front of wall; d_{cover} = 0 mm
Height of ground water; h_{water} = 1700 mm
Density of wall construction; \gamma_{wall} = 23.6 kN/m^3
Density of base construction; \gamma_{base} = 23.6 kN/m^3
Angle of soil surface; \beta = 0.0 deg
Mobilisation factor; M = 1.5
Moist density; \gamma_{mb} = 18.0 kN/m^3
Design shear strength; \phi_d = 24.2 deg
Design shear strength; \phi_b = 24.2 deg
Moist density; \gamma_{md} = 18.0 kN/m^3

Using Coulomb theory
Active pressure; K_a = 0.369
At-rest pressure; K_0 = 0.590

Loading details
Surcharge load; Surcharge = 0.0 kN/m^2
Vertical dead load; W_{dead} = 116.9 kN/m
Horizontal dead load; F_{dead} = 0.0 kN/m
Position of vertical load; l_{load} = 1100 mm

Mobilisation factor; M = 1.5
Moist density; \gamma_{mb} = 18.0 kN/m^3
Design shear strength; \phi_d = 24.2 deg
Design shear strength; \phi_b = 24.2 deg
Moist density; \gamma_{md} = 18.0 kN/m^3

Using Coulomb theory
Active pressure; K_a = 0.369
At-rest pressure; K_0 = 0.590

Loading details
Surcharge load; Surcharge = 0.0 kN/m^2
Vertical dead load; W_{dead} = 116.9 kN/m
Horizontal dead load; F_{dead} = 0.0 kN/m
Position of vertical load; l_{load} = 1100 mm

Wall details
Retaining wall type; Cantilever
Height of wall stem; h_{stem} = 2700 mm
Length of toe; l_{toe} = 1000 mm
Overall length of base; l_{base} = 1200 mm
Height of retaining wall; h_{wall} = 3150 mm
Depth of downstand; d_{ds} = 0 mm
Position of downstand; l_{ds} = 750 mm
Depth of cover in front of wall; d_{cover} = 0 mm
Height of ground water; h_{water} = 1700 mm
Density of wall construction; \gamma_{wall} = 23.6 kN/m^3
Density of base construction; \gamma_{base} = 23.6 kN/m^3
Angle of soil surface; \beta = 0.0 deg
Mobilisation factor; M = 1.5
Moist density; \gamma_{mb} = 18.0 kN/m^3
Design shear strength; \phi_d = 24.2 deg
Design shear strength; \phi_b = 24.2 deg
Moist density; \gamma_{md} = 18.0 kN/m^3

Using Coulomb theory
Active pressure; K_a = 0.369
At-rest pressure; K_0 = 0.590

Loading details
Surcharge load; Surcharge = 0.0 kN/m^2
Vertical dead load; W_{dead} = 116.9 kN/m
Horizontal dead load; F_{dead} = 0.0 kN/m
Position of vertical load; l_{load} = 1100 mm

Wall details
Retaining wall type; Cantilever
Height of wall stem; h_{stem} = 2700 mm
Length of toe; l_{toe} = 1000 mm
Overall length of base; l_{base} = 1200 mm
Height of retaining wall; h_{wall} = 3150 mm
Depth of downstand; d_{ds} = 0 mm
Position of downstand; l_{ds} = 750 mm
Depth of cover in front of wall; d_{cover} = 0 mm
Height of ground water; h_{water} = 1700 mm
Density of wall construction; \gamma_{wall} = 23.6 kN/m^3
Density of base construction; \gamma_{base} = 23.6 kN/m^3
Angle of soil surface; \beta = 0.0 deg
Mobilisation factor; M = 1.5
Moist density; \gamma_{mb} = 18.0 kN/m^3
Design shear strength; \phi_d = 24.2 deg
Design shear strength; \phi_b = 24.2 deg
Moist density; \gamma_{md} = 18.0 kN/m^3

Using Coulomb theory
Active pressure; K_a = 0.369
At-rest pressure; K_0 = 0.590

Loading details
Surcharge load; Surcharge = 0.0 kN/m^2
Vertical dead load; W_{dead} = 116.9 kN/m
Horizontal dead load; F_{dead} = 0.0 kN/m
Position of vertical load; l_{load} = 1100 mm
Calculate propping force

Propping force;

\[F_{\text{prop}} = 0.0 \text{kN/m} \]

Check bearing pressure

Total vertical reaction;

\[R = 159.3 \text{kN/m} \]

Distance to reaction;

\[x_{\text{bar}} = 600 \text{ mm} \]

Eccentricity of reaction;

\[e = 0 \text{ mm} \]

\text{Reaction acts within middle third of base}

Bearing pressure at toe;

\[p_{\text{toe}} = 132.7 \text{kN/m}^2 \]

Bearing pressure at heel;

\[p_{\text{heel}} = 132.7 \text{kN/m}^2 \]

\text{PASS - Maximum bearing pressure is less than allowable bearing pressure}

Calculate propping forces to top and base of wall

Propping force to top of wall;

\[F_{\text{prop, top}} = -5.404 \text{kN/m} \]

Propping force to base of wall;

\[F_{\text{prop, base}} = 5.404 \text{kN/m} \]
RETYING WALL DESIGN (BS 8002:1994)

Ultimate limit state load factors
- Dead load factor; \(\gamma_D = 1.4 \)
- Live load factor; \(\gamma_L = 1.6 \)
- Earth pressure factor; \(\gamma_E = 1.4 \)

Calculate propping force
- Propping force; \(F_{\text{prop}} = 0.0 \) kN/m

Calculate propping forces to top and base of wall
- Propping force to top of wall; \(F_{\text{prop_top_f}} = -7.527 \) kN/m
- Propping force to base of wall; \(F_{\text{prop_base_f}} = 15.806 \) kN/m

Design of reinforced concrete retaining wall toe (BS 8002:1994)

Material properties
- Strength of concrete; \(f_{\text{cu}} = 40 \) N/mm²
- Strength of reinforcement; \(f_y = 500 \) N/mm²

Base details
- Minimum reinforcement; \(k = 0.13 \) %
- Cover in toe; \(c_{\text{toe}} = 40 \) mm

Design of retaining wall toe
- Shear at heel; \(V_{\text{toe}} = 173.8 \) kN/m
- Moment at heel; \(M_{\text{toe}} = 105.1 \) kN/m

Check toe in bending
- Reinforcement provided; 12 mm dia. bars @ 150 mm centres
- Area required; \(A_{\text{s_toe_req}} = 629.7 \) mm²/m
- Area provided; \(A_{\text{s_toe_prov}} = 754 \) mm²/m

Check shear resistance at toe
- Design shear stress; \(V_{\text{toe_des}} = 0.430 \) N/mm²
- Allowable shear stress; \(V_{\text{adm_toe}} = 5.000 \) N/mm²
- Concrete shear stress; \(V_{\text{c_toe}} = 0.422 \) N/mm²

Design of reinforced concrete retaining wall stem (BS 8002:1994)

Material properties
- Strength of concrete; \(f_{\text{cu}} = 40 \) N/mm²
- Strength of reinforcement; \(f_y = 500 \) N/mm²

Wall details
- Minimum reinforcement; \(k = 0.13 \) %
- Cover in stem; \(c_{\text{stem}} = 40 \) mm
- Cover in wall; \(c_{\text{wall}} = 30 \) mm

Design of retaining wall stem
- Shear at base of stem; \(V_{\text{stem_base}} = 48.3 \) kN/m
- Moment at base of stem; \(M_{\text{base}} = 23.4 \) kN/m

Check wall stem in bending
- Reinforcement provided; 12 mm dia. bars @ 150 mm centres
- Area required; \(A_{\text{s_stem_req}} = 367.4 \) mm²/m
- Area provided; \(A_{\text{s_stem_prov}} = 754 \) mm²/m

Check shear resistance at wall stem
- Design shear stress; \(V_{\text{stem_des}} = 0.313 \) N/mm²
- Allowable shear stress; \(V_{\text{adm_stem}} = 5.000 \) N/mm²
- Concrete shear stress; \(V_{\text{c_stem}} = 0.740 \) N/mm²

Design of retaining wall at mid height
- Moment at mid height; \(M_{\text{wall_mid}} = 11.8 \) kN/m

Check retaining wall deflection
- Max span/depth ratio; \(\text{Ratio}_{\text{max}} = 38.80 \)
- Actual span/depth ratio; \(\text{Ratio}_{\text{act}} = 17.53 \)

PASS - Span to depth ratio is acceptable
CONTINUOUS BEAM ANALYSIS - RESULTS

Unfactored support reactions

<table>
<thead>
<tr>
<th>Support</th>
<th>Dead (kN)</th>
<th>Imposed (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.7</td>
<td>-1.6</td>
</tr>
<tr>
<td>B</td>
<td>-27.0</td>
<td>-6.8</td>
</tr>
<tr>
<td>C</td>
<td>-20.4</td>
<td>-2.3</td>
</tr>
</tbody>
</table>

See Tadd's Analysis for prop loads & reinforcement design.
CONCRETE SLAB DESIGN – HOGGING – OUTER LAYER OF STEEL (CL 3.5.4)

Design hogging moment (per m width of slab); \(m_{u\text{h}} = 8.1 \text{kNm/m} \)

Moment Redistribution Factor; \(\gamma = 1.0 \)

Area of reinforcement required
\[
A_{\text{req,h}} = \frac{\text{abs}(m_{u\text{h}})}{(0.5 + \gamma)} = 0.009
\]
\[
K_{s} = \min (0.156 , (0.402 \times (f_{c} - 0.4) - (0.18 \times (f_{c} - 0.4)^{2})) = 0.156
\]

Slab requiring outer tension steel only - bars (hogg)
\[
z_{\text{req,h}} = \min ((0.95 \times d_{\text{d}})/(d_{\text{d}} - d_{\text{h}} - h_{\text{c}} - h_{\text{c}})) = 146 \text{ mm}
\]

Neutral axis depth; \(x_{\text{h}} = (d_{\text{d}} - z_{\text{h}})/0.45 = 17 \text{ mm} \)

Area of tension steel required
\[
A_{\text{req,h}} = \frac{\text{abs}(m_{u\text{h}})}{(1/\gamma \times f_{c} z_{\text{h}})} = 127 \text{ mm}^{2}/\text{m}
\]

Tension steel
\[
\text{Provide 10 dia bars @ 150 centres; outer tension steel resisting hogging}
A_{\text{req,h,prov}} = A_{\text{req,h}} = 524 \text{ mm}^{2}/\text{m}
\]

CONCRETE SLAB DESIGN – SAGGING – OUTER LAYER OF STEEL (CL 3.5.4)

Design sagging moment (per m width of slab); \(m_{u\text{s}} = 9.6 \text{kNm/m} \)

Moment Redistribution Factor; \(\gamma = 1.0 \)

Area of reinforcement required
\[
A_{\text{req,s}} = \frac{\text{abs}(m_{u\text{s}})}{(0.5 + \gamma)} = 0.008
\]
\[
K_{c} = \min (0.156 , (0.402 \times (f_{c} - 0.4) - (0.18 \times (f_{c} - 0.4)^{2})) = 0.156
\]

Slab requiring outer tension steel only - bars (sag)
\[
z_{\text{req,s}} = \min ((0.95 \times d_{\text{d}})/(d_{\text{d}} - d_{\text{h}} - h_{\text{c}} - h_{\text{c}})) = 161 \text{ mm}
\]

Neutral axis depth; \(x_{\text{s}} = (d_{\text{d}} - z_{\text{s}})/0.45 = 19 \text{ mm} \)

Area of tension steel required
\[
A_{\text{req,s}} = \frac{\text{abs}(m_{u\text{s}})}{(1/\gamma \times f_{c} z_{\text{s}})} = 138 \text{ mm}^{2}/\text{m}
\]

Tension steel
\[
\text{Provide 10 dia bars @ 150 centres; outer tension steel resisting sagging}
A_{\text{req,s,prov}} = A_{\text{req,s}} = 524 \text{ mm}^{2}/\text{m}
\]
Shear resistance of concrete slabs (CL 3.5.5)

Outer tension steel resisting sagging moments
- Depth to tension steel from compression face; \(d_t = 169 \text{ mm} \)
- Area of tension reinforcement provided (per m width of slab); \(A_{sx,prov} = 754 \text{ mm}^2/\text{m} \)
- Design ultimate shear force (per m width of slab); \(V_u = 33 \text{ kN/m} \)
- Characteristic strength of concrete; \(f_{cu} = 40 \text{ N/mm}^2 \)

Applied shear stress
\[
\nu = \frac{V_u}{d_t} = 0.19 \text{ N/mm}^2
\]

Check shear stress to clause 3.5.5.2

\[
\nu_{allowable} = \min (0.8 \sqrt{f_{cu}}, 5 \text{ N/mm}^2) = 5.00 \text{ N/mm}^2
\]

Shear stresses to clause 3.5.5.3

Design shear stress
\[
f_{u,cx,req} = \frac{f_{cu} \times A_{sx,req}}{2 \times A_{sx,prov}} = 40 \text{ N/mm}^2
\]
\[
\nu_{cx} = \frac{0.79 \times A_{sx,req} \times \min(3, \frac{A_{sx,req}}{d_t})^{1/3} \times \max(0.67, \frac{400}{d_t})^{1/4}}{1.25 \times f_{u,cx,req}^{1/3}} = 0.70 \text{ N/mm}^2
\]

Applied shear stress
\[
\nu = 0.19 \text{ N/mm}^2
\]

No shear reinforcement required

Concrete slab deflection check (CL 3.5.7)
- Slab span length; \(l = 1.900 \text{ m} \)
- Design ultimate moment in shorter span per m width; \(M_{ux} = 10 \text{ kNm/m} \)
- Depth to outer tension steel; \(d_t = 169 \text{ mm} \)

Tension steel
- Area of outer tension reinforcement provided; \(A_{sx,prov} = 754 \text{ mm}^2/\text{m} \)
- Area of tension reinforcement required; \(A_{sx,req} = 138 \text{ mm}^2/\text{m} \)
- Moment Redistribution Factor; \(\beta_{bx} = 1.00 \)

Modification factors
- Basic span / effective depth ratio (Table 3.9); \(\frac{\text{ratio}_{span,depth}}{20} \)

The modification factor for spans in excess of 10m (ref cl 3.4.6.4) has not been included.
\[
\nu = 2 \times f_y \times A_{sx,req} / (3 \times A_{sx,prov} \times \beta_{ux}) = 60.8 \text{ N/mm}^2
\]
\[
\text{factor}_{css} = \min \left(2, 0.55 + \frac{477 \text{ N/mm}^2}{\nu}, \frac{\nu}{120}, \frac{0.9 \text{ N/mm}^2}{120} \right) = 2.000
\]

Calculate maximum span
This is a simplified approach and further attention should be given where special circumstances exist. Refer to clauses 3.4.6.4 and 3.4.6.7.

Maximum span; \(l_{max} = \frac{\text{ratio}_{span,depth} \times \text{factor}_{css} \times d_t}{6.76} = 6.76 \text{ m} \)

Check the actual beam span

Actual span/depth ratio; \(l / d_t = 11.24 \)
Span depth limit; \(\frac{l}{d_t} \times \text{factor}_{css} = 40.00 \)

Span/depth ratio check satisfied