41-43 Beaufort Gardens, London SW3
Planning Report Submission
February 2015
The Team

Client:
43 Beaufort Ltd.
Lime Grove House, Green Street,
St Helier, Jersey JE1 2ST
t. +44(0)20 255 7890

Development Manager:
CBG
Berkeley Square House, Berkeley Square,
Mayfair, London, SW1J 6BD
t. +44(0)20 7887 6097

Consultant Development Manager:
Allied London
49 Grosvenor Street
London W1K 3HP
t. +44 (0)20 7255 7820
www.alliedlondon.com

Project Manager & CDM Coordinator:
GVA Second London Wall
80 Cheapside
London EC2V 6EE
t. +44 (0)20 7911 2468
www.gva.co.uk

Concept Architect:
Delta Design Consultancy Ltd.
9 Worfield Street
London SW11 4RB
m. +44 (0)7785 251 094

Executive Architect:
AXIS Architects
77 Parkway
London NW1 7PU
t. +44 (0)20 7504 1700
www.axisarchitects.co.uk

Interior Designer:
Pierre Yovanovitch Architecture
16 Rue De L’Arcade
Paris 75008, France
t. +33 (0)14 266 3398
www.pierreyovanovitch.com

Quantity Surveyor:
Piercehill
72 Cannon Street
London EC4N 6AE
t. +44 (0)20 7489 5800
www.piercehill.co.uk

Structural Engineer:
WSP Buildings
WSP House, 70 Chancery Lane,
London WC2A 1AF
t. +44(0)20 7314 5000
www.wspgroup.com

Services & Fire Engineer, Sustainability Consultant:
Grontmij
1 Bath Road,
Maidenhead SL6 4AQ
(t. +44 (0)16 2859 8300
www.grontmij.co.uk

Partywall & Rights of Light Consultant:
Anstey Horne & Co
4 Chiswell Street
London EC1Y 4UP
t. +44 (0)20 7065 2770
www.ansteyhorne.co.uk

Planning Consultant:
Savills
33 Margaret Street
London W1G 05D
t. +44(0)20 7499 8644
www.savills.com
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>6</td>
</tr>
<tr>
<td>1.1 Background</td>
<td>6</td>
</tr>
<tr>
<td>1.2 Planning History</td>
<td>7</td>
</tr>
<tr>
<td>2. Design Objectives Overview</td>
<td>10</td>
</tr>
<tr>
<td>2.1 Design Objectives Overview</td>
<td>10</td>
</tr>
<tr>
<td>2.2 Existing Section AA</td>
<td>10</td>
</tr>
<tr>
<td>2.3 Existing Section XX</td>
<td>10</td>
</tr>
<tr>
<td>2.4 Proposed Section AA</td>
<td>11</td>
</tr>
<tr>
<td>2.5 Proposed Section XX</td>
<td>11</td>
</tr>
<tr>
<td>3. Site Location</td>
<td>14</td>
</tr>
<tr>
<td>3.1 Location Overview</td>
<td>14</td>
</tr>
<tr>
<td>3.2 Aerial View looking North/East</td>
<td>15</td>
</tr>
<tr>
<td>3.3 Aerial View looking South/West</td>
<td>15</td>
</tr>
<tr>
<td>3.4 Thurloe & Smith Charity Conservation Area</td>
<td>16</td>
</tr>
<tr>
<td>4. Site Analysis</td>
<td>20</td>
</tr>
<tr>
<td>4.1 Noise & Air Pollution</td>
<td>20</td>
</tr>
<tr>
<td>4.2 Environmental Analysis</td>
<td>20</td>
</tr>
<tr>
<td>4.3 Daylight</td>
<td>20</td>
</tr>
<tr>
<td>4.4 Views</td>
<td>20</td>
</tr>
<tr>
<td>4.5 Existing Photographs</td>
<td>21</td>
</tr>
<tr>
<td>4.6 Window Height Study</td>
<td>25</td>
</tr>
<tr>
<td>5. Scale, Massing & Appearance</td>
<td>28</td>
</tr>
<tr>
<td>5.1 Background</td>
<td>28</td>
</tr>
<tr>
<td>5.2 Retained Front Elevation</td>
<td>28</td>
</tr>
<tr>
<td>5.3 New Rear Elevation</td>
<td>28</td>
</tr>
<tr>
<td>5.4 Roof</td>
<td>29</td>
</tr>
<tr>
<td>5.5 Existing Rear View</td>
<td>30</td>
</tr>
<tr>
<td>5.6 Proposed Visual of Rear View</td>
<td>31</td>
</tr>
<tr>
<td>5.7 Rear Window Study</td>
<td>32</td>
</tr>
<tr>
<td>6. Structure</td>
<td>36</td>
</tr>
<tr>
<td>6.1 Structural Outline Specification</td>
<td>36</td>
</tr>
<tr>
<td>6.2 Description of Site</td>
<td>36</td>
</tr>
<tr>
<td>6.3 Substructure:</td>
<td>36</td>
</tr>
<tr>
<td>6.4 Superstructure:</td>
<td>37</td>
</tr>
<tr>
<td>6.5 Structural Engineering Design Criteria:</td>
<td>37</td>
</tr>
<tr>
<td>7. Services</td>
<td>42</td>
</tr>
<tr>
<td>7.1 Outline Building Services Specification</td>
<td>42</td>
</tr>
<tr>
<td>8. Access Statement</td>
<td>46</td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>46</td>
</tr>
<tr>
<td>8.2 Access to the Site</td>
<td>46</td>
</tr>
<tr>
<td>8.3 Access in to the Buildings</td>
<td>46</td>
</tr>
<tr>
<td>8.4 Horizontal Circulation within the Building</td>
<td>46</td>
</tr>
<tr>
<td>8.5 Vertical Circulation within the Building</td>
<td>46</td>
</tr>
<tr>
<td>8.6 Lifetime Homes</td>
<td>47</td>
</tr>
<tr>
<td>9. Cleaning & Maintenance</td>
<td>56</td>
</tr>
<tr>
<td>9.1 Front Elevation Strategy</td>
<td>56</td>
</tr>
<tr>
<td>9.2 Rear Elevation Strategy</td>
<td>56</td>
</tr>
<tr>
<td>9.3 Roof</td>
<td>56</td>
</tr>
<tr>
<td>9.4 Plant Replacement, Access, and Maintenance</td>
<td>57</td>
</tr>
<tr>
<td>10. Provision for Cyclists</td>
<td>60</td>
</tr>
<tr>
<td>10.1 Background</td>
<td>60</td>
</tr>
<tr>
<td>10.2 Bike Access Routes</td>
<td>61</td>
</tr>
<tr>
<td>11. Security</td>
<td>64</td>
</tr>
<tr>
<td>11.1 CCTV System</td>
<td>64</td>
</tr>
<tr>
<td>11.2 Intruder Alarm</td>
<td>64</td>
</tr>
<tr>
<td>11.3 Access Control System</td>
<td>64</td>
</tr>
<tr>
<td>12. Waste Management</td>
<td>68</td>
</tr>
<tr>
<td>12.1 Collections</td>
<td>68</td>
</tr>
<tr>
<td>12.2 Recycling</td>
<td>68</td>
</tr>
<tr>
<td>13. Area Schedule</td>
<td>72</td>
</tr>
<tr>
<td>14. Architectural Drawings</td>
<td>76</td>
</tr>
<tr>
<td>14.1 Summary of Architectural Drawings Included</td>
<td>76</td>
</tr>
<tr>
<td>15. Appendicies</td>
<td>113</td>
</tr>
<tr>
<td>a. Environmental Performance Strategy</td>
<td>113</td>
</tr>
<tr>
<td>b. Acoustic Report</td>
<td>113</td>
</tr>
<tr>
<td>c. Construction Traffic Management Plan</td>
<td>113</td>
</tr>
<tr>
<td>d. Structural Construction Methodology</td>
<td>113</td>
</tr>
</tbody>
</table>
INTRODUCTION
1. **Introduction**

1.1 **Background**

The site consists of numbers 41 to 43 Beaufort Gardens, the properties are conjoined internally and until 2008 were in use as the Parkes Boutique Hotel, which had 32 bedrooms.

Planning permission was granted on appeal in July 2009 for the change of use from hotel to nine self-contained residential units, including subterranean excavation to provide swimming pools for the two ground floor triplex units and a rooflights to the main roof.

Planning permission is now sought by Beaufort 43 Ltd (‘The Applicant’) for the sensitive redevelopment of 41 – 43 Beaufort Gardens, London SW3 to provide 9, high quality and spacious apartments along with associated subterranean accommodation behind a retained façade to Beaufort Gardens.

The proposed residential mix is as follows:-

<table>
<thead>
<tr>
<th>Floor</th>
<th>1 Bed</th>
<th>2 Bed</th>
<th>3 Bed</th>
<th>4 Bed</th>
<th>5 Bed</th>
<th>6+ Bed</th>
<th>% Mix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basement, Lower</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground & Ground</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fourth & Fifth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>100%</td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
<td>2</td>
<td>44%</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>56%</td>
</tr>
</tbody>
</table>

This planning application seeks permission for the following:-

- Demolition of existing rear external wall, internal floors and walls together with the roof
- Retention of existing front elevation and raising of windows to 5th floor
- Replacement of existing windows and balcony doors to front facade in matching materials to accommodate new double-glazed units.
- Excavation of new basement level beneath all three properties
- Construction of a new rear external wall following very closely the outline of the existing
- Construction of new internal floors and walls to create 8 lateral residential floor plates to accommodate nine new apartments:
 - Two triplex apartments at basement, lower ground and ground floor level.
 - Six flats at first, second and third floor level.

- One duplex at fourth and fifth floor level.
- Construction of new roof structure and roof plant to closely follow the line of the existing roof incorporating a roof light similar to previous consented scheme
- Refurbishment of existing pavement vault area to provide plant rooms, refuse and cycle storage areas similar to previously consented scheme
- Creation of deeper light wells to the rear of building similar to previously consented scheme
- Reinstatement of the previously fixed shut front doors to Nos 42 & 43 as active main entrances to the common parts and residential unit similar to previously consented scheme
- Raising of existing front entrance level to Nos 41 and 42 to align with No 43 including adapting the entrance door frame and porch.
1.2 Planning History

The properties have a varied planning history. Planning permission was originally granted in February 1966 for the use of numbers 41/42 as a hotel. Permission was then granted in 1984 in respect of numbers 41/43 Gardens for the change of use from a hotel to residential units with roof extension and rear extensions; however this consent was never implemented.

In 1985 a further permission was granted at 41/43 Parkes Hotel for the erection of a fifth floor and rear extension as well as internal alterations to link the two buildings for future tourist accommodation.

Further consents were granted over the next 24 years but were relatively minor and included amendments to the 1985 permission for rear elevational alterations, the installation of a larger roof/lift shaft and six condenser units in 1997 and the retention of flue and ductwork to the rear of the building at lower levels in 2007.

In 2009 consent was granted on appeal for the change of use from hotel to nine self-contained residential units, including sub-terranean excavation to provide swimming pools for the two ground floor triplex units and a rooflights to the main roof.

A planning statement has been prepared by Savills, planning consultants for the development. The Statement provides a comprehensive review of the development proposals set against the key planning considerations.
DESIGN OBJECTIVES
2. Design Objectives Overview

2.1 Design Objectives Overview

The proposals seek to improve on both the existing appearance and the 2009 consented scheme in a number of areas and the Key design criteria are set out below:-

• Improved floor/ceiling heights – generally min 2.5m in accordance with London Housing Design guidance
• New single level floor plates with opportunities for lateral apartments
• New single central core to maximise daylight into apartments
• Retain Beaufort Gardens elevation
• Maintain existing parapet levels and overall building height
• Improve the appearance of the rear elevation
• Improve the appearance of the roofscape
• Improve thermal and acoustic performance of existing building fabric.

2.2 Existing Section AA

2.3 Existing Section XX
02. DESIGN OBJECTIVES

2.4 Proposed Section AA

2.5 Proposed Section XX
SITE LOCATION
3. Site Location

3.1 Location Overview

The site is located in Knightsbridge on the south side of Beaufort Gardens.

The site measures approximately 0.43Ha.

The buildings are not listed but are located within the Thurloe Estate and Smith’s Charity conservation area.

The site is bounded by Beaufort Gardens to the northeast, No 40 Beaufort Gardens to the southeast, No 44 Beaufort Gardens to the northwest and Nos 7 – 11 Beauchamp Place to the southwest.

Beaufort Gardens was originally laid out and built as residential properties between 1861 – 1870 and is now a mix of residential and hotel buildings. The surrounding area is largely residential but with a mix of commercial and retail as well. To the east of the Gardens is Brompton Road, a principal shopping centre which includes Harrods Department Store. Hyde Park is also a short walk away.
3.2 Aerial View looking North/East

3.3 Aerial View looking South/West
3.4 Thurloe & Smith Charity Conservation Area

Map b1
- Listed buildings
- Listed Mews arches
- Tree preservation orders
- Individual trees
- Groups of trees
- Areas of trees
- Properties proposed for listing

Above: Extract from the Thurloe & Smith Conservation Report with Beaufort Gardens indicated in red.
4. Site Analysis

4.1 Noise & Air Pollution
Beaufort Gardens is a relatively quiet residential cul-de-sac set back from the vibrant retail centre of the Brompton Road. An acoustic survey has been carried out and the proposal fully addresses noise issues. See WSP acoustic report.

Air pollution is a potential issue in inner city locations. All apartments can be either naturally or mechanically ventilated via Whole House Heat Recovery units located within each apartment to overcome potential poor air quality.

4.2 Environmental Analysis
The site is predominantly northeast - south west facing. This gives a good orientation as the dual aspect units should get both morning and evening sun. It also allows for southwest facing courtyards and terraces to the triplex apartments, 1st floor and 2nd floor apartments and the duplex.

The prevailing wind is from the South West. The building is no taller than the existing building and so there is no anticipated change to wind levels at street level.

4.3 Daylight
The scheme has been carefully considered in relation to its neighbours and it follows closely the profile of the existing development in section and so avoids any potential daylight issues. The creation of single level floor plates and a central core maximises the external wall available for fenestration and increases the level of daylight within the apartments.

4.4 Views
Outlook is a critical consideration in residential design. The site has excellent views from mid & high level to the rear over the roofs of Beauchamp Place and beyond to the trees in Ovington Square. The frontage onto Beaufort Gardens provides an excellent outlook.
4.5 Existing Photographs
Existing views of 41-43 Beaufort Gardens and surrounding context.

4.5.1 Photograph A
View of front facade angled south west.
4.5.2 Photograph B
View of site, properties 41-43 Beaufort Gardens.

4.5.3 Photograph C
View of neighbouring property, 44 Beaufort Gardens

4.5.4 Photograph D
Existing portico entrance, 41 Beaufort Gardens, formally The Parkes Hotel.
4.5.5 Photograph E
View of front facade angled north east

4.5.6 Photograph F
View of rear elevation
4.5.8 Photograph G
View of rear adjoining property roofs

4.5.7 Photograph H
View of rear elevation
4.6 Window Height Study

Above. Images demonstrating the varying cill height of the 5th Floor throughout Beaufort Gardens.
SCALE, MASSING & APPEARANCE
5. Scale, Massing & Appearance

5.1 Background
The building is an imposing 6 storey townhouse linked internally but appearing externally as three separate properties. It is similar in scale, design and form to its neighbours.

The existing front facade is being retained with the existing roof parapet height being maintained.

The rear façade is being demolished and rebuilt to follow a very similar external profile although adjusted marginally to reflect the amended internal floor levels.

The proposed alterations seek to maintain the building current scale, layout and to a large extent its appearance. The alterations have been formulated to be sympathetic to both the host building and the surrounding Thurloe Estate/Smiths Charity Conservation Area.

5.2 Retained Front Elevation
The front facade will be retained and refurbished together with some minor alterations as follows:-
- The level of the existing windows on 5th floor to be raised to match adjoining property at No.40 Beaufort Gardens.
- The floor level of the entrance to the stepped access to No.41 and No.42 to be raised to match existing entrance level to No.43. This will include an additional riser to the entrance steps and increasing the height of the balustrading either side of the entrance porch to comply with building regulations.
- A small number of additional vents to match the existing cast iron grille.

The refurbishment of the retained facade is outline in the following:-

5.2.1 Existing Brickwork
- Existing brickwork to be cleaned and repointed

5.2.2 Existing Stucco
- Existing stucco to be cleaned and redecorated and where necessary repairs undertaken in matching materials

5.2.3 Existing Windows
- All existing windows and balcony doors are to be replaced with new bespoke units to match existing in material and detail as closely as possible incorporating new double glazed units to provide substantially enhanced thermal and acoustic performance.
- The new units will have no significant impact on the existing frame.

transom or mullion sizes when viewed externally.
- All new windows and balcony doors will be fitted with new brass ironmongery.

5.2.4 Existing Leadwork
- Existing leadwork to top of cornices pilasters and pediments to be repaired/replaced as necessary.

5.2.5 Existing Asphalt to First Floor Balcony
- Asphalt to be repaired as necessary.

5.2.6 Existing Railings
- Railings and handrails to ground, and 1st floor levels to be refurbished and redecorated.
- Ground floor railings and gate to be adapted where existing lower ground floor stairs to Nos 41 & 42 are removed.
- Ground floor railings and gate to be adapted where existing basement stairs to No 43 are removed and reconstructed in new location.

5.2.7 Existing Cast Iron Rainwater Goods
- Existing cast iron rainwater goods to be refurbished/adapted/replaced as required

5.2.8 Existing Front Entrance Porches to No 41 & No 42
- Steps, landings and railings to be adapted to receive additional step to align new ground floor with N° 43
- New floor finish to porch entrance steps and landings - TBC

5.2.9 Front Entrance Doors
- New painted solid timber panelled main entrance doors and screens with glazed fanlights above, brass ironmongery and security fittings to all three properties.
- Door to No 42 (common entrance) to be power-operated from concierge desk.
- All external doorssets to be certified to BS PAS 24 or LPS 1175 (SR) 2 (with a BSI Kitemark tested and approved cylinder)

5.3 New Rear Elevation
The new rear façade follows the massing and outline of the existing building. The arrangement of windows has been amended to suit the reduced number of floor levels from the existing. This has provided the opportunity to have taller windows which is more in keeping with the surrounding properties.

The 5th floor mansard and arrangement of dormers have been improved from the existing random arrangement and now align centrally within each of the vertical bays of the facade.

Following consultation the facade have been detailed with significant improvement over the existing to be in more keeping with the conservation area. In particular:-
- Arch headed window openings with painted rendered reveals,
- Metric stock brickwork in Flemish bond,
- Cornice to the roof of dormers to provide traditional weathering drip.

The facade materials are outline in the following:-

5.3.1 New Cavity Wall from Lower Ground Floor to Fourth Floor
- External metric stock facing brick in Flemish bond to match existing adjacent.
- Cavity Insulation
- Internal 100mm blockwork
- Plasterboard on dabs
- Complete with all lintols, concrete sills, cavity cloaks, dpc’s and movement joints.

5.3.2 Parapet Wall to Beauchamp Place
- Extended parapet wall to Beauchamp Place party wall in solid brickwork to match existing complete with Concrete coping.

private terraces
- New painted solid timber doors and frames with brass ironmongery and security fittings to all pavement vaults.
- New painted solid timber panelled common service entrance door and screens with glazed fanlight above, brass ironmongery and security fittings to No 42.
- All external doorssets to be certified to BS PAS 24 or LPS 1175 (SR) 2 (with a BSI Kitemark tested and approved cylinder)
5.3.3 New Sash Windows
• Windows set within segmented arch opening with painted render reveals and head.
• Timber custom-made sash windows incorporating new slimline double glazed units and brass ironmongery.
• Windows to have tilt & turn mechanism for cleaning and re-glazing from inside property.
• All windows to be certified to BS 7950 (securely fixed in accordance with the manufacturer’s specifications)

5.3.4 New French Doors
• Doors set within segmented arch opening with painted render reveals and head.
• Custom-made timber French windows with fixed side lights incorporating slimline double glazed units and brass ironmongery.
• All windows to be certified to BS 7950 (securely fixed in accordance with the manufacturer’s specifications)

5.3.5 New Mansard Roof Construction at 1st, 4th and 5th Floor Levels
• Mansard roofs to be framed in timber and steel and finished in slate to match existing.
• Dormer windows within mansard roofs to be framed in timber and clad with lead including cheeks to match existing. The top of the dormer to be completed with cornice detail to form weathering drip.

5.3.6 New Rainwater Goods
• Powder coated aluminium rainwater goods including downpipes and hoppers

5.3.7 New Railings
• Black painted galvanised steel railings to 1st, 2nd and 5th floor terraces.
• Black painted galvanised steel handrail.

5.3.8 New Access Ladder
• Painted galvanised steel access ladder from 5th floor terrace up to roof level

5.3.9 Lower Ground Floor Lightwells
• New lower ground floor light well structural concrete floor with waterproofing, thermal insulation and paving finishes.
• Existing stucco to Beauchamp Place party wall to be cleaned and where necessary repairs undertaken in matching materials.

5.4 Roof
The extent of the roof matches the footprint of the existing. The new lift overrun extends to the height of the existing roof housing at datum 31.830m. Condensing units are located to the rear half of the roof, an acoustic study for the plant is referred in a separate report as part of this application.

The roof light is set back from the frontage such that it is concealed from view at street level.

5.4.1 Roof Finishes
• Areas of concrete paving and ballast on inverted Warm Roof, of rubberized bitumen waterproof membrane on concrete slab (e.g. Permaquick or Hydrotech).
• System to comprise typically of Selected pavers;
 • Proprietary geotextile separation layer;
 • Extruded polystyrene insulation to meet Pt. L2, U-Value ≤ 0.25 W/m²K
 • Rubberized bitumen waterproof membrane on concrete slab (e.g. Permaquick or Hydrotech)

5.4.2 Drainage
Rainwater drainage through rainwater outlets in accordance with Public Health Engineer’s specification.

5.4.3 Lift Overrun
Lift overrun to be formed from extended concrete lift shaft with thermal insulation and brick cladding and parapet to roof. Roof to overrun to be finished as main roof and drained through parapet walls into hoppers down onto main roof.

5.4.4 Edge Protection
Painted galvanised fixed steel balustrade and handrail are provided to perimeter of the plant area and to delineate the means of escape route across roof from adjacent properties forming the secured/safe roof area for day to day access.

Outside this area to the north a foldable handrail system is provided towards the frontage for safe maintenance access to roof outlets. This allows the guard rail to be folded down onto the roof level to conceal the guardrail from view. See Cleaning & Maintenance section for details.

5.4.5 Plant Supports
Plant supports will be mounted on localised supports formed on top of the waterproof membrane and insulation. Specialist acoustic and vibration mitigation measures will be incorporated as necessary beneath each element of plant. Horizontal services distribution between equipment and risers will be at high or low level with appropriate metal walkways, stepovers and access provision.

An automatically opening smoke vent is provided to the central staircore.

5.4.6 Roof Light
Extent – Rooflight as indicated on drawings to the 5th floor duplex
System – Based on Schuco FW50+ or equivalent
Thermal Performance – U-Value of 1.4 overall
Acoustic Performance – The meet criteria as indicated in Appendix I
Glass – Toughened to outer pane, laminated to inner pane. Low-e coating required. Light transmission and solar control to engineer’s specification.
Metal finish – Coloured anodised finish to all exposed aluminium sections
Other requirements – internal motorised blinds
5.5 Existing Rear View
5.6 Proposed Visual of Rear View
5.7 Rear Window Study

Right. Window Study of Rear Facade diagram.

Below. Typical detail of tilt and turn vertical sash window.

- Cornice detail to dormer roof to provide traditional weathering drip
- Width of 5th floor dormer to match central mullion of windows below
- Slope to roof of dormer to reduce massing at head of windows
- Cornice detail to dormer roof to provide traditional weathering drip
- Leadwork to dormer throughout including cheeks
- Recess gap to define separate dormers
- Voussours brickwork to head of window forming segmental arch opening.
- Rendered reveals and head to windows - painted white.
- Vertical sliding sash windows with tilt & turn mechanism for cleaning
- Concrete sill
STRUCTURE
6. Structure

6.1 Structural Outline Specification

6.1.1 Existing Building

41-43 Beaufort Gardens, formerly Parkes Hotel, was a privately owned boutique hotel in Knightsbridge, London SW3. It is part of a continuous terrace of Victorian town houses fronting the west side of Beaufort Gardens and is 6 stores high with a part basement at lower ground level. It was built circa 1861-1870.

The building structure is of load bearing masonry party walls, front and rear perimeter walls and internal spine and cross wall construction. Floors are generally spanning front to back on the front half of the building and front to side on the rear half of the building. Floor investigations have shown that the floors are generally of timber joist and ply floor construction at all levels except the lower ground floor which is of reinforced concrete.

The rear half of the building comprises 9 floor levels compared to the front which has only 7 levels. The brickwork of the rear elevation is modern and together with the rear half of the building was rebuilt totally in 1986. The floor levels at the front do not match those at the rear and stair access at the front and rear of the building link each floor.

The existing lower ground floor is approximately 2.5m below ground floor which is raised about 0.4m above external pavement level. The lower ground floor is founded directly on the ground. At the front of the property there are lightwells with access from pavement level to the lower ground level.

The foundations to the internal and party walls have been investigated by trial pits and were found to be conventional brick and concrete strip footings under the load bearing perimeter, spine, cross and party walls.

6.1.2 Design Proposals

The proposals for conversion of the existing hotel to private residential accommodation include amongst other works, the creation of a new basement level below the existing lower ground floor. Underpinning is proposed to the party walls on all sides and is to extend to the basement level under the existing front façade and pavement vaults,

6.2 Description of Site

6.2.1 Site Constraints:

The building occupies the whole footprint of the site and the only external access to the building for removal/delivery of materials is at the front of the building either through the front door entrances or via the lightwells at the front into the lower ground floor. The quantities of materials to be removed from the required excavations and for the supply of new construction materials is likely to require the forming of a temporary opening through the front wall/window at ground and lower ground level. It may also be necessary to take up part of the ground floor at the front to permit this access. The appointed contractor will provide detailed methodology and logistics prior to undertaking the works.

6.2.2 Geotechnical Assessment:

It was known from studies of the BGS maps of the area that the site geology consisted of Terrace Gravels over London Clay. This was then confirmed by the geotechnical site investigation in 2009. The upper levels of the Terrace Gravels consist of a covering of sandy silty clay overlying irregular layers of gravel and sand.

The main founding strata for the existing building foundations are in the upper layers of the Terrace Gravels. The Terrace Gravels at depth are denser in both sand and gravel and provide a good medium for carrying increased loadings of the building (in the order of 200-250kPa). The depth of the Terrace Gravels is in the order of 6.5m below the existing lower ground floor level. Below this the London Clay will offer reduced bearing capacities and therefore any new works will need to be constrained within the depth of the existing Terrace.

6.2.3 Gravels:

The party walls will be undermined by the development proposals and therefore must be underpinned to a depth within the Terrace Gravels and to below the proposed lower ground floor slab level.

The construction of the new basement floor slab will be some 2m above the base of the Terrace Gravels. It is envisaged that both basement slab and perimeter walls will be constructed using a watertight membrane and waterproof reinforced concrete.

The existence and depth of the perched water table is approximately close to the Terrace Gravel/London Clay soil interface at +0.15m OD but it is known from preliminary shaft construction works undertaken within the site to the proposed full depth of the development, that the excavation remained dry throughout to a depth of +0.5m OD.

6.3 Substructure:

6.3.1 Piled Raft Foundation:

In order to support the vertical and horizontal loads imposed on the new lift and stair core walls, a piled raft foundation is to be utilised with approximately 30 no. 4500, 18m long concrete piles.

6.3.2 Underpinning & Retaining Walls:

The existing perimeter walls require underpinning prior to the excavation of the new basement. The underpinning is to be undertaken in small sections allowing the concrete to cure before constructing adjacent sections of underpin.

On the inside face of the underpin a new 200mm thick R.C. wall is to be constructed. This will act as a retaining wall in the temporary condition and is to connect with the future basement and lower ground floor slabs in the permanent condition.

6.3.3 Waterproofing:

Basement waterproofing will be designed to BS8102: as Grade 3. Hydrophilic waterstops will be provided at all construction joints in the basement slab and capping beams.

6.3.4 Basement Slab:

The basement slab will be a 350mm thick ground bearing slab.

6.3.5 Column Foundations:

Columns on party wall lines are to be built directly onto a new R.C. capping beam spreading the load between the new underpinning and internal retaining wall. The internal columns are to sit onto R.C. piled foundations.

6.3.6 Front Façade Support:

The façade retention scheme relies on a new support structure being installed in the basement prior to the demolition of the structure above. Temporary works will be required to install a steel column and beam frame to support the façade.
6.4 Superstructure:

6.4.1 Stability:
There are two stability cores that are located centrally within the building, the stair and lift cores. These cores will be in reinforced concrete and provide the lateral stability system for the building in combination with the rigid concrete floor diaphragms. They resist the wind forces on the building by cantilevering vertically from the basement raft.

6.4.2 Floor Slabs:
The ground floor to roof slabs are generally 225mm thick insitu R.C. flat slabs spanning between core walls and columns. At lower ground and first floors there are external terraces where the slab thickness is reduced to 150mm. Major slab openings for internal stairs are to be trimmed using steel beams and columns.

6.4.3 Column Layout:
Generally all of the superstructure columns are 225mm thick R.C. blade columns to sit within new wall locations. At third floor, to manage a step in the rear elevation of the building, the columns are to ‘walk’ 1000mm. This requires a full storey of 1400mm long columns to aid in the transfer of the load vertically down the column.

6.4.4 Roof Level:
The roof area is split between areas of plant and areas of maintenance access only. The plant strip as well as the roof perimeter is supported by R.C. upstand beams spanning between existing columns below. Between 5th floor and roof level, above the 5th floor terrace, there is a new inclined steel supported mansard. The lightweight steel frame will sit on the slab edge at 5th floor and connect into the edge upstand beam at roof level.

6.4.5 Façade Retention:
As previously stated, the front façade is to be supported by a new steel frame at lower ground floor. At slab levels up the building the façade is to be connected back to the new slab and columns using angle cleats which will provide restraint to the façade without transferring any load.

6.5 Structural Engineering Design Criteria:

6.5.1 Structural Design Standards:
The base building will comply with all relevant Statutory Regulations, Building Acts, Building regulations and British Standards. The standards and codes of practice used in the design will include:

6.5.1.1 BS5950: Structural Steelwork
- Part 1: 2000 Structural use of steelwork in building
- BS6399: Loading for buildings

6.5.1.2 Dead Loads:
Dead loads are calculated from the known self-weight of the materials used for the construction of the frame.

6.5.1.3 Superimposed Dead Loads:
Additional allowance is made for fixed finishes and services as follows. Partitions have been taken as a dead load for residential areas as locations are unlikely to change:
- Residential (ceiling, raised floors, finishes, services) - 2.00 kN/m²
- Partitions - 1.00 kN/m²
- Main roof (access for maintenance only) - 1.50 kN/m²
- Partitions - 1.00 kN/m²
- Plant areas on roof - 7.50 kN/m² (or as determined by specific plant weights)
- Staircase - Communal - 3.00 kN/m²
- Staircase - Private - 1.5 kN/m²

6.5.1.4 Impaired Loads:
The following loads will be adopted in the design:
- Main roof (access for maintenance only) - 1.50 kN/m²
- Residential Areas - 1.50 kN/m²
- Partitions - 1.00 kN/m²
- Plant areas on roof - 750 kN/m² (or as determined by specific plant weights)
- Staircase - Communal - 3.00 kN/m²
- Staircase - Private - 1.5 kN/m²

6.5.1.5 Wind Loads:
Wind loads acting on the main building frame and the various elements of cladding are determined based on preliminary calculations in accordance with the requirements of BS 6399; Part 2 assuming the following:
- Basic wind speed Vb = 21.5 m/s
- Altitude factor Sa = 1.0
- Direction factor Sd = 1.0
- Seasonal factor Ss = 1.0
- Probability factor Sp = 1.0
- Terrain and building factor Sb = 1.0

6.5.1.6 Lift Loads:
All lift shaft walls and lift pit slab will be designed for lift loadings provided by the Services consultant and checked against actual equipment provided.

6.5.1.7 Construction Loads:
Permanent structure will not be designed to support the loads from temporary cranes and hoists.

6.5.1.8 Structural Movements:
A complete Movement & Tolerances report on the design of the superstructure and substructure concrete frames will be produced in a later design phase.

6.5.1.9 Sway:
Overall sway deflection of the building due to design wind load will not exceed H/500 where H = height of the building. Sway deflection of any one storey will not exceed h/500 where h = storey height. The wind load used in conjunction with these design criteria is based on the 1 in 50 year design wind speed. Building acceleration will be limited to 15mg for the residential occupancy for 10 years wind return.

6.5.1.10 Deflections:
Deflections have been calculated and compared with the serviceability requirements given in BS 8110-1 which are based on span to effective depth ratios for the elements under consideration.

6.5.1.11 Material Properties:
- Substructure Concrete – Grade 40 concrete: underpinning, retaining walls, slabs, piles and foundations.
- Superstructure Concrete – Grade 40-60 concrete: main core walls, columns, beams and slabs.
- Structural Steelwork – Grade S355 (in accordance with BS EN 10 025)
- Reinforcement – Grade B500, deformed type 2 conforming to BS8666: 2005

6.5.2 Demolition:
The existing building is to be demolished using a conventional top-down process paying particular attention to conserving the condition of the existing party walls as well as the existing front façade.

The façade retention scheme is reliant on the construction on an external facade retention frame. This selfsupported steel frame will span the full external height of the building, restraining the façade at regular locations. It is envisaged that internal temporary works propping (flying shores) will be required between party walls and supported vertically through the existing building.
6.5.3 Legislation, codes of practice, health & safety regulations and guidance:

Comply with the following British Standards, Health & Safety Regulations and Guidance Documents, and other legislation, as appropriate, subject to any qualifications given herein:

- BS 6187 Code of Practice for Demolition.
- BS 5228: Parts 1 & 2 Noise Control on Construction and Open Sites.
- BS 5950: Part 1 Structural use of steelwork in building Part 1 Code of practice for design in simple and continuous construction: hot rolled sections
- BS 5975 Code of practice for falsework.
- BS 8004 Code of practice for foundations.
- CP3: Chapter V Part 2 Code of practice data for the design of buildings Chapter V: Loading Part 2 Wind loads
- HSE Guidance Note GSS1 Facade Retention.
- HSE HS (G) 58 Evaluation and Inspection of buildings and structure.
- HSE HS (G) 66 Protection of Workers and the General Public during the development of contaminated land.
- HSE HS (G) 47 Avoiding Danger from Underground Services.
- HSE L27 The Control of Asbestos at Work Regulations and ACOP.
- HSE L28 Work with Asbestos Insulation, Coatings and Insulation Board.
- HSE EH10 Asbestos - Exposure Limits and Measurement of Airborne Dust Concentrations.
- HSE EH35 Probable Asbestos Dust Concentrations at Construction Processes.
- HSE EH37 (rev) Work with Asbestos Insulating Board.
- HSE EH50 Training Operatives and Supervisors for Work with Asbestos Insulation and Coatings.
- HSE EH51 Enclosures Provided for Work with Asbestos Insulation, Coatings and Insulation Board.
- HSE EH52 Removal Techniques and Associated Waste Handling for Asbestos Insulation, Coatings and Insulation Board.
- HSE EH57 The Problems of Asbestos Removal at High Temperatures.

6.5.4 Third Party Approvals

- Highways Authority:
 - The proposed construction works (underpinning and basement construction) will extend under the existing pavement vaults and as a result will require approval from Highways Authority of the Royal Borough of Kensington and Chelsea.
- Party Wall Agreements:
 - Adjacent properties at no. 40 and 44 Beaufort Gardens and no. 6-10 Beauchamp Place will require Party Wall Agreements to undertake the construction works.
7. Services

7.1 Outline Building Services Specification

7.1.1 Mechanical Services

The heating is to be derived from landlord roof mounted heat pump units from which a low temperature hot water supply serves each apartment through an energy meter. The background heating within the apartments is through a zoned underfloor system with each area being temperature controlled. The cooling to the apartments is through a refrigerant VRF system which can also provide heating boost to aid the apartment warm up and increase the local temperature from the design set point. The controls will have a facility to prevent simultaneous heating and cooling.

Ventilation will be through a number of Whole House Heat recovery units located in each apartment. These will provide a measured amount of outside air continuously to the apartment with the facility to provide an automatic boost of air supply and extract when bathrooms are used. The kitchen will have a dedicated extract system. The client has asked for an option to provide high grade filtration and /or humidity control of the fresh air. The specification of the kitchens may also require additional fresh air to offset the exhaust from the kitchen hood. These all form part of an options report in this services briefing document.

Water services are derived from the cold water storage and boost facility located in the pavement vaults. Cold water will be metered and provided to the sanitary ware and hot water calorifiers. This may be softened by local salt type treatment units. The metered drinking water will be connected to the kitchens and wash basins within each bathroom.

Hot water is stored locally within each apartment and serves all sanitary ware and required appliances. The hot water is to be circulated to reduce the cold run time at the taps. The cold water sizing is enhanced to provide a wet fire sprinkler system. This will be available to all apartments to enhance current or future layout flexibility.

Decorative fires are proposed for the apartments. These are gas fired and intended for occasional use not contributing to the heating within the building. The fires have fan assisted flues with the flue terminal located on the rear elevation. Ventilation for combustion is provided through the rear elevation.

7.1.2 Electrical Services

3No. incoming DNO 400/230 Volts 3 phase 4 wire 50Hz supplies shall be derived from landlord basement electrical plant room to supply the 9 apartments and the landlord provision. Meters in accordance with DNO requirements shall be located in the landlord's basement electrical plant room. All outgoing ways from meters to various distribution boards/consumer units located in each apartment shall be provided.

A further supply derived from a UPS shall back up life safety items such as Lifts, Smoke Extract and Escape Staircase Lighting etc. and shall be fed from one of the provided electrical supplies as described.

From each distribution board/consumer unit located in each apartment, the following shall be provided: Lighting. (Inclusive of External lighting, Staircase lighting, Emergency lighting.) Lighting controls. General purpose socket outlets. Power supplies to designated cooling and ventilation equipment. Power supplies to kitchen equipment including final connections. General purpose power to IT, AV, Security, Fire Detection and Alarm Systems. Power supplies for wine stores, saunas, cinema equipment

A full cable management system for new general power installation shall be installed throughout.

7.1.3 Telecommunication Services

10No. incoming telecommunications supplies/provisions shall be installed deriving from the landlord basement electrical plant room. 9No. supplies for apartments and 1No. for landlord.

Data points (RJ45) are to be provided where required for the following, telephone, wireless access points, BMS, AV and Security. Each apartment shall be capable of providing WiFi (802.11ac). The apartment infrastructure should also be capable of supporting a Power over Ethernet (PoE) system. In addition, the landlord shall be provided with a Redcare communicator to allow remote monitoring from a 24 hour help desk/station.

A digital IRS (Integrated Reception System) television and cable/satellite distribution system shall be provided. The installation shall comprise landlord satellite dish(es), aerial(s), distribution equipment, amplifiers and receivers and TV/FM outlets to each apartment. The IRS shall receive signals from one or a small number of aerials and satellite dishes and distributes those signals to each of the apartment via a central riser distribution system. Satellite dish on should be for standard Sky satellite including Sky+ or Sky HD. The second dish should be installed for the provision of foreign channels such as is available from the Astra satellite.

An access control and intercom system shall be provided. Also a CCTV monitoring system shall be provided covering main front and rear access, and core areas.

7.1.4 Vertical Transportation

Single lift sized to reflect the transportation of refuse (if stored in the basement) and furniture. Refer to section 3.8.2 for details. Duplex and future lifts should be considered.

7.1.5 Fire Protection

Initial advice requires ventilated lobbies at each floor, domestic sprinklers / mist mitigating extended escape distances and protecting escape routes. The lobby ventilation is to be extended into the Gymnasium at LGF level. A dry riser is required within the staircase.

7.1.6 Public Health Services

The level at which the soil stacks traverse horizontally is either lower ground or basement ceiling void (to reflect external soil connection invert level (IL)). Basement / lower ground drainage will need to be pumped (one or both floors to suit IL)
ACCESS STATEMENT
8. Access Statement

8.1 Introduction
The purpose of this statement is to outline the overall approach to inclusive design within the scheme in accordance with local and national planning guidance.

8.2 Access to the Site
The site has excellent public transport connections being only a 5 – 10 min walk from both Knightsbridge tube (Piccadilly line) and South Kensington tube (Piccadilly, Circle and District lines) and served by the bus routes running along the Brompton Road.

Victoria mainline station is approx. 1.3 miles away to the southeast.

Collectively these transport modes provide the site with a large public transport catchment area which will be a great benefit to all.

There is no parking provided with this property and this application does not propose any alteration to this situation.

8.3 Access in to the Buildings
The proposal is a substantial refurbishment of an existing building on a constrained site where the existing historic façade is to be retained.

The main common entrance to the property is approached from street level up a short flight of stone steps to the existing entrance of No 42 Beaufort gardens.

The two triplex apartments are approached via similar flights of stone steps to the existing entrances to Nos 41 and 43 Beaufort gardens. These entrances are to be maintained although the principal entrances to these units will be via the common entrance hall.

An additional step will be provided to the entrances to Nos 41 and 42 Beaufort Gardens in order that the internal floor level can align with that of No 43.

The existing historic entrances are considered to make up part of the character of this building and it is not proposed to change this. There is ample room to provide a stair lift should this be required for future generations and the three entrance doors from street level will each have a clear opening width in excess of 1m.

External lighting will be sensitively incorporated to ensure all entrances are clearly visible and the concierge will have the benefit of CCTV coverage of the entrance approach and will be able to remotely operate the main entrance door from the his desk to assist residents.

The building will be managed with a concierge service present 24/7 available to assist both residents and visitors alike.

8.4 Horizontal Circulation within the Building
Once in the common entrance hall residents and visitors have level access via a generous hall to the concierge desk, passenger lift, and common staircase or direct into the two triplex apartments.

On the upper and lower floors level access to the apartments is provided from the lift either direct into the apartments (at 1st, 4th and 5th floor levels) or via a common lobby (2nd and 3rd floor levels) of suitable width to accommodate wheelchair users.

All entrance doors into apartments will provide a minimum 825mm clear width.

Within the apartments the layouts will generally comply with the requirements of Lifetime Homes except for where the constraints of the existing retained fabric dictate otherwise. This is covered in detail under item 7.5 below.

8.5 Vertical Circulation within the Building
There is a single central circulation core proposed providing a common stair and an 8 person lift suitable for wheelchair access.

The stair core will be compliant with Part M of the Building regulations having a clear width of 900mm and treads and risers compliant with ADM.

A passenger lift of 630kg capacity (8 person) will be provided in accordance with the requirements of Part M of the Building Regulations. The lift car will have an extended height through the use of a “top hat” ceiling and roof construction to facilitate the movement of furniture.

Internal stairs are provided within both the two triplex and the duplex apartments and these will comply with the requirements of the Building Regulations Part M and also those of Lifetime Homes.

Provision for future disabled platform lifts is made within the two triplex apartments in accordance with Lifetimes Homes requirements.
8.6 Lifetime Homes

The design of this new development seeks to comply with the Lifetimes Homes guidance where possible and appropriate however there are some areas where it has not been possible to accommodate all the requirements and the table below summarises the key issues, identifies the limited areas of non-compliance and provides justification for the same.

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Requirement</th>
<th>Compliant</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>APPROACHING THE HOME</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>PARKING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.2</td>
<td>Parking dimensions for communal parking</td>
<td>• Where communal parking is provided is one space with the required minimum dimensions located close to each block entrance or core?</td>
<td>N/A</td>
<td>There is no parking currently provided with this property. This application does not propose any alteration to this situation.</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Parking width for ‘private’ (on plot) parking</td>
<td>• Where private ‘on-plot’ is provided for an individual dwelling, does one space have the required minimum width, or potential to have it?</td>
<td>N/A</td>
<td>There is no parking currently provided with this property. This application does not propose any alteration to this situation.</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Gradients and surfaces of parking spaces</td>
<td>• Are the spaces (referred to in 3.2.2 and 3.2.3) ‘level’? • Do the spaces (referred to in 3.2.2 and 3.2.3) have suitable surfaces?</td>
<td>N/A</td>
<td>There is no parking currently provided with this property. This application does not propose any alteration to this situation.</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Car Ports</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>ACCESSIBLE ROUTE(S) BETWEEN PARKING AND DWELLINGS OR BLOCKS OF DWELLINGS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.1</td>
<td>Provision of accessible route(s)</td>
<td>• Is the principal access route to the relevant entrances from these parking spaces an accessible route (see 3.3.3-3.3.6 below)?</td>
<td>N/A</td>
<td>There is no parking currently provided with this property. This application does not propose any alteration to this situation.</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Relevant entrances for accessible route(s)</td>
<td>• Where the principal access route is to a block of dwellings, is it to the block’s main entrance, or (in the case of basement parking) to the lift core entrance? • Where the principal access route is to an individual dwelling, is it to both the dwelling’s principal entrance and any secondary entrance? Where it is to only one entrance of the dwelling can it be demonstrated that topography and/or regulation prevent an accessible route to both entrances? • Where the accessible route is to only one entrance of the dwelling, is it to the principal entrance? If it is to a secondary entrance, can it be demonstrated that topography and/or regulation prevent the accessible route being to the principal entrance? • If the accessible route is to only one entrance of the dwelling, is this the entrance closest to the parking spaces discussed in 3.2.3 above?</td>
<td>N/A</td>
<td>There is no parking currently provided with this property. This application does not propose any alteration to this situation.</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Distance of accessible route(s)</td>
<td>• Are the accessible routes as short as practicable?</td>
<td>N/A</td>
<td>There is no parking currently provided with this property. This application does not propose any alteration to this situation.</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Gradients along the accessible route(s)</td>
<td>• Do the accessible routes meet the required maximum gradient/distance ratios? • Do any slopes have top and bottom level landing5, and any required level resting areas</td>
<td>N/A</td>
<td>There is no parking currently provided with this property. This application does not propose any alteration to this situation.</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Width of accessible route(s)</td>
<td>• Do these accessible routes have the required minimum width?</td>
<td>N/A</td>
<td>There is no parking currently provided with this property. This application does not propose any alteration to this situation.</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Level landings at external entrance(s)</td>
<td>• Do the accessible routes have a level landing of the required size adjacent to the associated entrance doors?</td>
<td>N/A</td>
<td>There is no parking currently provided with this property. This application does not propose any alteration to this situation.</td>
</tr>
</tbody>
</table>
Section 3.3.7 - Surface of accessible route(s)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Compliant</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do the accessible routes have suitable surfaces?</td>
<td>N/A</td>
<td>There is no parking currently provided with this property. This application does not propose any alteration to this situation.</td>
</tr>
</tbody>
</table>

Section 3.3.8 - Additional stepped approach

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Compliant</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>If a principal accessible route to a communal entrance involves slopes/ramps is there also an additional stepped approach in accordance with AD M41?</td>
<td>N/A</td>
<td>The existing historic entrances are considered to make up part of the character of this building and it is not proposed to change this. There is ample room to provide a stair lift should this be required for future generations. The building will be managed with a concierge service present 24/7 available to assist both residents and visitors alike.</td>
</tr>
</tbody>
</table>

Section 3.4 - OTHER APPROACH ROUTES TO DWELLINGS (FROM OTHER PARKING OR FROM THE HIGHWAY)

3.4.1 Gradients on other approach routes

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Compliant</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do all other approaches to entrances from any parking, or highway, have suitable gradient/distance ratios? If not, is the site steeply sloping? If the site is steeply sloping, have the proposed details for these other approaches (which are in addition to the required accessible routes discussed in 3.3.1-3.3.6) been discussed and agreed, with the local planning authority?</td>
<td>No</td>
<td>The existing historic entrances are considered to make up part of the character of this building and it is not proposed to change this. There is ample room to provide a stair lift should this be required for future generations. The building will be managed with a concierge service present 24/7 available to assist both residents and visitors alike.</td>
</tr>
</tbody>
</table>

3.4.2 Width on all approach paths

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Compliant</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do these other approach paths also have the required minimum widths?</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

3.4.3 Surface treatments on all approach paths

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Compliant</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do these other approach paths also have suitable surfaces?</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Section 4.0 - ENTRANCES

4.2 EXTERNAL LIGHTING

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Compliant</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does every external entrance have fully diffused external lighting?</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

4.3 ACCESSIBLE THRESHOLDS

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Compliant</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>With the exception of 'Juliet' balconies and balconies/roof terraces over habitable rooms, do all external entrances (including all other balconies and roof terraces) have accessible thresholds?</td>
<td>No</td>
<td>Existing external doors in the front elevation at ground, lower ground and 1st floor levels do not have accessible thresholds - refer to Item 3.4.1 above. All new external thresholds to terraces and balconies on rear elevation will have level thresholds.</td>
</tr>
</tbody>
</table>

4.3.2 Maximum up-stand

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Compliant</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do the accessible thresholds have a maximum total up-stand of 15 mm (consisting of a number of smaller up stands and sloping infill connection between)?</td>
<td>Yes</td>
<td>Other than 4.3.1 above</td>
</tr>
<tr>
<td>Is the slope on any sill between the threshold and the external surface 15° or less?</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

4.3.3 Internal transition units

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Compliant</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>If an internal transition unit is provided does it have a slope of 15° or less?</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Section 4.4 - EFFECTIVE CLEAR OPENING WIDTHS OF ENTRANCE DOORS

4.4.1 Dwelling entrance doors

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Compliant</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do all dwelling entrance doors have the required effective minimum clear opening widths?</td>
<td>No</td>
<td>• The individual leaves of the existing 1st floor front elevation double casement doors do not individually provide a clear width of 800mm, however they do when both leaves are opened. New internal espagnolet ironmongery will be fitted to allow easy access through both leaves. • The individual leaves of the new rear elevation double casement doors at lower ground and 5th floor levels do not individually provide a clear width of 800mm, however they do when both leaves are opened. New internal espagnolet ironmongery will be fitted to allow easy access through both leaves. • All new internal dwelling entrance doors will have the required effective min width.</td>
</tr>
</tbody>
</table>

4.4.2 Communal entrance doors

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Compliant</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do all communal entrance doors have the required effective minimum clear opening widths (according to the width and direction of approach)?</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Section 4.5 - NIBS

4.5.1 Application

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Compliant</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do all entrance doors have the required nib?</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Section 4.6 - IRONMONGERY AND ACCESS CONTROLS

4.6.1 Height

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Compliant</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are all handles, locks and other access controls within the required height band?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Requirement</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Location</td>
<td>• Are all handles, locks and other access controls located away from the corner of any side wall return?</td>
</tr>
<tr>
<td>4.7</td>
<td>EXTERNAL LEVEL LANDINGS AT MAIN ENTRANCES</td>
<td></td>
</tr>
<tr>
<td>4.7.1</td>
<td>Application</td>
<td>• Are level landings provided at all relevant entrances?</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Dimensions</td>
<td>• Do the level landings have the required dimensions?</td>
</tr>
<tr>
<td>4.8</td>
<td>WEATHER PROTECTION AT MAIN ENTRANCES</td>
<td></td>
</tr>
<tr>
<td>4.8.1</td>
<td>Covers and canopies</td>
<td>• Is overhead weather protection provided at relevant entrances?</td>
</tr>
<tr>
<td>4.8.2</td>
<td>Size and form of cover</td>
<td>• Is the size of the cover adequate for local conditions, and the position of entry controls?</td>
</tr>
<tr>
<td>5.0</td>
<td>INTERNAL CIRCULATION WITHIN COMMUNAL AREAS</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>INTERNAL COMMUNAL DOOR WIDTHS</td>
<td>• Do all communal doors have the required minimum clear opening widths, depending on the direction of approach to each door and the width of that approach?</td>
</tr>
<tr>
<td>5.3</td>
<td>NIBS</td>
<td></td>
</tr>
<tr>
<td>5.3.1</td>
<td>Provision</td>
<td>• Do all communal doors have the required nib to the leading edge on the pull side?</td>
</tr>
<tr>
<td>5.4</td>
<td>COMMUNAL HALLWAY, CORRIDOR AND LANDING WIDTHS</td>
<td>• Do all communal hallways, corridors and landings have the required minimum widths in accordance with the clear opening widths provided to doorways in their side walls?</td>
</tr>
<tr>
<td>5.5</td>
<td>COMMUNAL STAIRS</td>
<td></td>
</tr>
<tr>
<td>5.5.1</td>
<td>Pitch/5.5.3 Application</td>
<td>• Do all communal stairs that provide a principal access route to a dwelling, regardless of whether or not a lift is provided, have an "easy going" pitch?</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Handrails</td>
<td>• Is the height and extension of handrails on communal stairs as required?</td>
</tr>
<tr>
<td>5.6</td>
<td>COMMUNAL PASSENGER LIFTS</td>
<td></td>
</tr>
<tr>
<td>5.6.1</td>
<td>Size of lift</td>
<td>• Where provided, do passenger lifts have the required minimum internal dimensions?</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Position of lift controls</td>
<td>• Where provided, do passenger lifts have correctly positioned controls?</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Landings</td>
<td>• Are adequately dimensioned landing provided adjacent to passenger lifts on all storeys served by the lift(s)?</td>
</tr>
<tr>
<td>6.0</td>
<td>ENTRANCE LEVEL FACILITIES WITHIN THE HOME</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>INTRODUCTION</td>
<td>• Does the perceived ‘entrance level’ of the dwelling accord with the definition of ‘entrance level’ for Lifetime Homes purposes?</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Requirement</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>6.2</td>
<td>LIVING SPACE</td>
<td>• Is there a permanent living room/space on the entrance level?</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Provision</td>
<td></td>
</tr>
<tr>
<td>6.2.2</td>
<td>Sight line through windows of principal living spaces</td>
<td>• If the living space in 6.2.1 is the principal living space, does its main window/glazing area achieve the required glazing line height?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Does this window also offer a suitable sight line to the outside from a seated position?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If this living space is not the principal living space, is the required glazing line height and sight line from a seated position, provided in the principal living space?</td>
</tr>
<tr>
<td>6.3</td>
<td>POTENTIAL FOR AN ENTRANCE LEVEL BED-SPACE</td>
<td></td>
</tr>
<tr>
<td>6.3.1</td>
<td>Provision/6.3.2 Size of space</td>
<td>• Unless there is a bedroom on the entrance level, is there a suitable area on the entrance level that could be used as a temporary bed-space?</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Provision of electrical socket</td>
<td>• Does this potential temporary bed-space have an electrical socket?</td>
</tr>
<tr>
<td>6.4</td>
<td>PROVISION OF AN ACCESSIBLE WC BASIN AND SHOWER DRAINAGE</td>
<td></td>
</tr>
<tr>
<td>6.4.1</td>
<td>Provision of floor drainage for and a future accessible shower 6.4.5</td>
<td>• Do all dwellings have floor drainage on their entrance level to enable a future accessible shower?</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Accessible WC</td>
<td></td>
</tr>
<tr>
<td>6.4.4</td>
<td>Accessible basin</td>
<td>• Do all dwellings, other than one or two bed houses/maisonettes (as defined in chapter 6), have an entrance-level accessible WC with: an accessible WC at an acceptable distance from a side wall, a correctly positioned flush control and the required approach zone?</td>
</tr>
<tr>
<td>6.4.6</td>
<td>Wall construction</td>
<td>Does the wall construction of the room containing the entrance-level WC enable immediate firm fixing of support rails within the required height band?</td>
</tr>
<tr>
<td>7.0</td>
<td>CIRCULATION AND ACCESSIBILITY WITHIN THE HOME</td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>INTERNAL HALLWAYS, LANDINGS AND DOORWAYS</td>
<td></td>
</tr>
<tr>
<td>7.2.1</td>
<td>Minimum hallway and landing widths</td>
<td>• Do all hallways and landings within a dwelling have the necessary minimum widths (depending on the width and locations of associated door openings)?</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Minimum internal doorway widths</td>
<td>• Do all the internal doorways that a person may pass through within the dwelling, have the required minimum clear opening width (depending on the approach direction and the width of that approach)?</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Nibs</td>
<td>• Do all the internal doorways to rooms on the entrance level of each dwelling have the required nib to the leading edge/pull side?</td>
</tr>
<tr>
<td>7.3</td>
<td>LIVING ROOMS/AREAS AND DINING ROOMS/AREAS</td>
<td></td>
</tr>
<tr>
<td>7.3.1</td>
<td>Turning circle or ellipse</td>
<td>• Do living rooms/areas and dining rooms/areas have the required turning circles or ellipses?</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Requirement</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Circulation space between items of furniture</td>
<td>• Do living rooms/areas and dining rooms/areas have minimum space between furniture on essential circulation routes?</td>
</tr>
<tr>
<td>7.4</td>
<td>KITCHENS</td>
<td></td>
</tr>
<tr>
<td>7.4.1</td>
<td>Space in front of kitchen units and appliances</td>
<td>• Is there the required clear distance in front of all kitchen units and appliances in the kitchen?</td>
</tr>
<tr>
<td>7.5</td>
<td>BEDROOMS</td>
<td></td>
</tr>
<tr>
<td>7.5.1</td>
<td>Circulation space within a main bedroom</td>
<td>• Does one main bedroom have the required clear width around both sides, foot and corners of a double bed?</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Relationship of a main bedroom to the accessible bathroom/potential for through-floor lift access and ceiling hoist</td>
<td>• Is a main bedroom close to an accessible bathroom (see 7.6.2) and on the storey with potential access from a through floor lift (unless entrance level)? • Is the structure above the ceiling over the main bedroom close to the accessible bathroom, and the ceiling over the accessible bathroom, capable of supporting (or capable of adaptation to support) ceiling hoists?</td>
</tr>
<tr>
<td>7.5.3</td>
<td>Circulation space within other bedrooms</td>
<td>• Can all other bedrooms have the required clear space to one side of the bed? • Where it is necessary to pass the foot of the bed to approach the window, is the required clear width (to pass the foot of the bed) available?</td>
</tr>
<tr>
<td>7.6</td>
<td>BATHROOMS AND WCs</td>
<td></td>
</tr>
<tr>
<td>7.6.2</td>
<td>Accessible bathroom</td>
<td>• Does the dwelling have an accessible bathroom, does to, and on the same storey as a main bedroom, either on the entrance level or on the storey with potential access from a through-floor lift? • Does this accessible bathroom have the following facilities: an accessible WC at an acceptable distance from a side wall; a correctly position flush control and the required approach zone; an accessible basin with the required approach zone; either a bath, or an accessible floor shower (or both), with the required associated approach zone(s) and manoeuvring zone(s)? Where a shower is provided, is the floor drainage and showering area as specified? • Unless provided elsewhere in the dwelling, does this bathroom (even where no shower is provided from the outset) have drainage (possibly under a bath) to enable a level-entry accessible shower? Are there shallow falls in the floor to the drainage, or is there a floor constructon that will enable easy provision of a laid-to-fall floor surface (and connection to existing drainage) in the future?</td>
</tr>
<tr>
<td>7.6.3</td>
<td>All bathrooms, en-suites and WCs</td>
<td>• Does every bathroom, en-suite and WC compartment have the required minimum clear door opening widths (see 7.2.2)? • Does every bathroom, en-suite and WC compartment have a wall constructon on capable of immediate firm fixing and support for grab rails and similar at any location within the required height band?</td>
</tr>
<tr>
<td>8.0</td>
<td>CIRCULATION BETWEEN STOREYS WITHIN THE HOME</td>
<td></td>
</tr>
<tr>
<td>8.2</td>
<td>STAIRS</td>
<td></td>
</tr>
<tr>
<td>8.2.2</td>
<td>Form of stairs</td>
<td>• Do all staircases within the dwelling enable future fitting of stair-lifts without the need for significant alteration or reinforcement?</td>
</tr>
</tbody>
</table>
8.2.3 Stair width

- **Requirement**: Do all staircases have the required minimum width?
- **Compliant**: Yes

8.3 ROUTE FOR A FUTURE THROUGH FLOOR LIFT

8.3.1 Provision

- **Requirement**: Is a potential route for a through-floor lift identified that connects storeys containing the necessary rooms?
- **Compliant**: Yes

8.3.2 Potential route

- **Requirement**: Are the potential lift route and potential lift entrance and exit routes clear of all services?
- **Compliant**: Yes

8.3.3 Requirements if the potential arrival point is directly into a bedroom

- **Requirement**: If the lift is to arrive into a double bedroom can this still function as a double room (with a compromised room layout) or is there another main (double or twin) bedroom on the same storey?
 - If the lift arrives into a bedroom which then needs to function as a single bedroom, is there at least one other bedroom on that storey which can function as a main (double or twin) room?
- **Compliant**: Yes

8.3.4 Aperture

- **Requirement**: Is the identified potential lift aperture area of the minimum required size and of a suitable orientation to enable access?
 - Is the identified aperture area clear of services?
 - If the potential lift route passes through a concrete floor, is a ‘knock-out’ panel to be pre-formed within the floor structure?
 - Where necessary, has the floor design taken account of the potential loadings associated with the possible lift void?
- **Compliant**: Yes

9.0 SERVICE AND VENTILATION CONTROLS

9.2 SPACE TO APPROACH A WINDOW

- **Requirement**: With the exception of kitchens and bathrooms that have all windows behind fixtures and fittings, is there potential for an approach route of the minimum required width to an opening light of a window in each room? Are handles on this opening light no higher than 1200 mm from the floor?
- **Compliant**: No
 - Generally the design will be compliant however both the new and existing retained fenestration will be of a period design in sympathy with the conservation area utilising vertically sliding sash windows with some window ironmongery located at heights above 1200mm.

9.3 WINDOW HANDLE HEIGHTS

- **Requirement**: Do all rooms with a window have at least one opening light with handles no higher than 1200 mm from the floor?
- **Compliant**: No
 - See item 9.2 above

9.4 ELECTRICAL CONTROLS

- **Requirement**: Are all frequently used electrical controls within the required height band and the minimum distance away from any internal corner?
- **Compliant**: Yes

9.5 CENTRAL HEATING CONTROLS

- **Requirement**: Are central heating programmer controls and any thermostat or temperature controls within the required height band and the minimum distance away from any internal corner?
- **Compliant**: Yes

9.6 MAINS WATER STOP TAPS AND CONTROLS

- **Requirement**: Are controls such as main stop taps (used to shut down water flow in an emergency) located within the required height band and the minimum distance away from any internal corner?
- **Compliant**: Yes
CLEANING & MAINTENANCE
9. Cleaning & Maintenance

9.1 Front Elevation Strategy

The windows to the lower ground floor will be cleaned from the lower ground floor lightwell.

The windows to the raised ground floor will be cleaned either by a reach and wash unit or via a mobile cherry picker (see adjacent).

The windows to the 1st floor will be cleaned either from the balcony, via a cherry picker or via a reach and wash pole-mounted unit.

The windows to the 2nd – 5th floor levels will be cleaned either via cherry picker or a reach and wash pole-mounted unit.

9.2 Rear Elevation Strategy

The windows to the lower ground floor lightwells will be cleaned from within the lightwells.

The windows to the raised ground floor will be able to hinge inward to facilitate cleaning from within the apartment.

The windows to the first floor will either be cleaned from the rear terraces or will be able to hinge inward to facilitate cleaning from within the apartment.

The windows to the second, third & fourth floors will either be cleaned from the rear terraces or will be able to hinge inward to facilitate cleaning from within the apartment.

Windows on the fifth floor will be cleaned from the terrace.

9.3 Roof

Maintenance access to the roof is via the 5th floor terrace reached by the internal stair/lift core. From the terrace an external companionway on the mansard adjacent to the boundary with No.44 provides access to the main roof plant area.

The safe working zone on the roof is provided by a fixed guard rail which also controls the escape routes from/to the adjacent roof properties.

Access to roof outlets to the front of the building and cleaning of the rooflight is provided by a foldable guard rail system.
9.4 Plant Replacement, Access, and Maintenance Strategy

Basement plant shall be accessed via the lower ground floor lightwell. The plant is all arranged so it can be broken down and man handled up the lightwell staircase to street level. Internal plant located within apartments is limited to domestic sizing and can be taken through doorways, corridors and within the lift to street level. Corridors are sized to allow replacement of plant.

Access to roof plant is to be provided via the stairs and an external ladder to give access for maintenance personnel their tools and component parts. It is proposed that demountable lifting equipment is provided to allow hoisting of component parts to the upper terrace where these components can be taken down to street level within the lift.

Replacement of larger plant shall require use of mobile cranes.

Maintenance access to the lift machinery shall be from the top landing.
PROVISION FOR CYCLISTS
10. Provision for Cyclists

10.1 Background

The development provides storage for 10 number cycles to be located in a dedicated secure store in the existing pavement vaults on the Lower Ground Floor.

Access to the cycle store from street level is provided by a new communal external staircase outside 43 Beaufort Gardens.

The door to the cycle store will have access control as well as provision for locking the cycles to the rack.

The rack system stores the cycles in an incline in a staggered vertical arrangement, there are many products available of this type, an example is the “FalcoVert” semi-vertical cycle rack from Falco UK Ltd.

FalcoVert Semi-Vertical Cycle Rack

Providing a stylish alternative to traditional cycle racks, the new FalcoVert semi-vertical rack offers users an easy and accessible way to park a bicycle. With its cost-effective price and compact design, the cycle rack provides secure cycle parking for high popular densities such as; stations, shopping centres, schools etc.

Bicycles are parked either horizontally or semi vertically with both front and rear wheels located in a custom designed trough.

- Close spacing of 305mm ensures maximum use of available space
- Suitable to store all types of cycle – from racing cycles to mountain bikes and cycles with extra wide tyres
- Available to store any number of cycles
- Fully locates both wheels in a custom designed tapered steel trough to BS1716/51
- Manufactured from RHS sectional solid steel tube and rolled steel angle
- All steelwork is fully hot dipped galvanised to BS1497
- Polyester powder coating to BS6497 (over galvanised finish)

Semi Vertical Option

The height of the cycle rack is 1,829mm with a width of 1,143mm.

Horizontal Option

The width of the cycle rack is 1,753mm with a height of 560mm.

Lengths dependant upon spaces required.

Right: Extract of bike storage details sourced from the manufacturer.
10.2 Bike Access Routes

- External metal staircase serving pavement level
- Lifts, cycle spaces provided by.
- Stairs, semi-vertical metal rack stands from entrance or similar

Lower Ground Floor

Section thro Cycle Store
11. Security

11.1 CCTV System
A discreet CCTV System comprising external and internal colour dome type cameras discreetly integrated to monitor the ground level entrances, external lightwells and courtyards, the roof access and internal corridors. This shall be monitored by the concierge through main and split screen monitors, digital recording device and multiplexer.

The initial location of the CCTV cameras are indicated on the elevations

The overall System shall cover the external perimeter of the building to monitor access to the building.

The main and split screen monitors, multiplexer and digital recording device shall be located in Reception.

11.2 Intruder Alarm
An Intruder Alarm System shall be provided to the landlord and apartment areas and include window, door and gate contacts, (which may be fob controlled by either residents or staff as appropriate).

The System shall be flexible enough that there may remain an option for windows to be left ajar whilst still affording protection through PIRs and similar provision to arm the respective part of the System.

Each apartment shall be provided with an intruder system and panic alarm integrated into the landlord system. Facilities shall be given to allow the system to be “upgraded” allowing assisted care functions.

Facilities shall be provided within the Intruder Alarm System panel for connection to a remote monitoring station such as BT “Red Care”

11.3 Access Control System
An Access Control System linked to the video Intercom System shall be provided to external and internal entrance doors. A central access control panel shall be provided to the main front door at No 42. The triplex apartments shall have dedicated systems adjacent to the street access doors and linked to the central processor. Access to the triplex apartments shall also be offered via the concierge central system.

The System shall incorporate access fobs, electronic locks and a central processor with programmable levels of access. The processor shall be located within the concierge office and provide an auditable record / means of confirming entry / egress to & from specified doors.

For entrances with intercom the card (fob) reader shall be incorporated within the call station.
11. SECURITY

11.3.2 Rear Elevation

11.3.3 Roof Plan

Intercom with Camera

Typical IP Wall Mounted Camera

41-43 BEAUFORT GARDENS, LONDON SW3
WASTE MANAGEMENT
12. Waste Management

The waste strategy will be managed by the 24 hour per day concierge. The waste will be split into normal and recycled by the occupiers. This will be collected by the concierge and stored in black bags for normal waste and clear bags for recycled waste in accordance with the requirements of Kensington and Chelsea waste collection requirements. Storage has been allowed within the basement on the basis of 50 litres per bedroom per week. The requirement of Kensington and Chelsea are as follows:

12.1 Collections

Collections take place twice a week, and as normal on most bank holidays (road signs and local advertising will highlight any special arrangements). If your property has a refuse storage area then you should use it; otherwise please leave your rubbish and recycling on the pavement, as near the kerb as possible and without causing obstruction, before 7am on your day of collection and not the night before.

12.2 Recycling

Residents living on estates, in mansion blocks or in flats can use large 1100 litre recycling banks. Recyclable material is placed directly into the recycling bank – there is no need to separate the materials.

You do not need to use orange recycling bags if you have a recycling bank, simply place your recyclable material in loose (or in supermarket carrier bags). Recycling banks are emptied once a week or more often if necessary. The flaps on recycling banks are kept locked to prevent contamination of the bank.

Recycling bags are now clear in a bid to tackle bad recycling and reduce contamination costs.

The change, from orange to clear recycling bags, is to help residents to recycle responsibly and prevent people from putting the wrong items out for recycling. This includes items such as food, dirty packaging, plastic wrappers, shredded paper, polystyrene, tissues and textiles. Clear bags will encourage people to recycle correctly and allow the Council’s recycling collectors to spot incorrect items in the sacks.

Clear recycling bags are delivered every three months to all residents receiving collections from a private storage area or the kerb side. Residents can still continue to use orange recycling bags until they run out.
13. Area Schedule

Preliminary Schedule of Floor Areas
Gross External & Internal Area

<table>
<thead>
<tr>
<th>Floor</th>
<th>gross-external</th>
<th></th>
<th>gross-internal</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m²</td>
<td>ft²</td>
<td>m²</td>
<td>ft²</td>
</tr>
<tr>
<td>Roof</td>
<td>8.7</td>
<td>94</td>
<td>4.0</td>
<td>43</td>
</tr>
<tr>
<td>Fifth floor</td>
<td>2213</td>
<td>2,384</td>
<td>200.4</td>
<td>2,157</td>
</tr>
<tr>
<td>Fourth floor</td>
<td>2611</td>
<td>2,830</td>
<td>233.5</td>
<td>2,513</td>
</tr>
<tr>
<td>Third floor</td>
<td>263.9</td>
<td>2,862</td>
<td>235.0</td>
<td>2,530</td>
</tr>
<tr>
<td>Second floor</td>
<td>265.9</td>
<td>2,862</td>
<td>237.2</td>
<td>2,557</td>
</tr>
<tr>
<td>First floor</td>
<td>291.3</td>
<td>3,136</td>
<td>261.0</td>
<td>2,809</td>
</tr>
<tr>
<td>Ground floor</td>
<td>318.2</td>
<td>3,425</td>
<td>282.4</td>
<td>3,040</td>
</tr>
<tr>
<td>Lower ground floor</td>
<td>332.8</td>
<td>3,675</td>
<td>284.6</td>
<td>3,063</td>
</tr>
<tr>
<td>Lower ground Vaults</td>
<td>56.1</td>
<td>604</td>
<td>33.8</td>
<td>364</td>
</tr>
<tr>
<td>Basement</td>
<td>376.7</td>
<td>4,056</td>
<td>356.4</td>
<td>3,779</td>
</tr>
</tbody>
</table>

Total: 2,388.2 m², 25,701 ft², 2,323.0 m², 22,844 ft²

Notes:
The areas are approximate and can only be verified by a detailed dimensional survey of the completed building.

Any decisions to be made on the basis of these predictions, whether as to project viability, pre-letting, lease agreements or the like, should include due allowance for the increases and decreases inherent in the design development and building processes.

Figures relate to the likely areas of the building at the current state of the design and using the Gross External Area (GEA) / Gross Internal Area (GIA) / Nett Internal Area (NIA) method of measurement from the Code of Measuring Practice, 5th Edition (RICS Code of Practice).

All areas are subject to Town Planning and Conservation Area Consent, and detailed Rights to Light analysis.
Preliminary Schedule of Floor Areas

Net Sales Area

<table>
<thead>
<tr>
<th>Fitness Room</th>
<th>Unit 1</th>
<th>Unit 2</th>
<th>Unit 3</th>
<th>Unit 4</th>
<th>Unit 5</th>
<th>Unit 6</th>
<th>Unit 7</th>
<th>Unit 8</th>
<th>Unit 9</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net Sales</td>
<td></td>
</tr>
<tr>
<td>m²</td>
<td></td>
</tr>
<tr>
<td>FT²</td>
<td></td>
</tr>
<tr>
<td>Roof</td>
<td>0.0</td>
</tr>
<tr>
<td>Fifth Floor</td>
<td>0.0</td>
</tr>
<tr>
<td>Fourth Floor</td>
<td>0.0</td>
</tr>
<tr>
<td>Third Floor</td>
<td>0.0</td>
</tr>
<tr>
<td>Second Floor</td>
<td>0.0</td>
</tr>
<tr>
<td>First Floor</td>
<td>0.0</td>
</tr>
<tr>
<td>Ground Floor</td>
<td>0.0</td>
</tr>
<tr>
<td>Lower Ground Floor</td>
<td>0.0</td>
</tr>
<tr>
<td>Basement</td>
<td>43.8</td>
<td>471</td>
<td>362.2</td>
<td>3,988</td>
<td>548.8</td>
<td>3,758</td>
<td>231.5</td>
<td>2,017</td>
<td>191.8</td>
<td>471</td>
</tr>
<tr>
<td>External Terrace</td>
<td>0</td>
</tr>
<tr>
<td>Patio Garden - Front</td>
<td>0.0</td>
<td>19.7</td>
<td>31.2</td>
<td>6.2</td>
<td>67</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Patio Garden - Rear</td>
<td>0.0</td>
<td>8.6</td>
<td>93</td>
<td>14.3</td>
<td>51.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cellar</td>
<td>3.1</td>
<td>36</td>
<td>1.8</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>43.8</td>
<td>471</td>
<td>362.2</td>
<td>3,988</td>
<td>548.8</td>
<td>3,758</td>
<td>231.5</td>
<td>2,017</td>
<td>191.8</td>
<td>471</td>
</tr>
</tbody>
</table>

Notes:
- The areas are approximate and can only be verified by a detailed dimensional survey of the completed building.
- Any decisions to be made on the basis of these predictions, whether as to project viability, pre-letting, lease agreements, or the like, should include due allowance for the increases and decreases inherent in the design development and building processes.
- Figures relate to the likely areas of the building at the current state of the design and using the Gross External Area (GEA) / Gross Internal Area (GIA) / Nett Internal Area (NIA) method of measurement from the Code of Measuring Practice 5th Edition (RICS Code of Practice).
- Common SVPs and Flues are excluded from Net Sales Area.

Area adjusted to suit Flues, SVP, drain cavity wall to LG and migration to latest survey information from XYZ.
14. Architectural Drawings

14.1 Summary of Architectural Drawings Included

14.1.1 Location Drawings
- 9084-02-001 Location Plan 1:1250
- 9084-02-101 Proposed Scheme Site Section 1:200
- 9084-02-121 Site Plan 1:200

14.1.2 Existing Survey Drawings
- 9084-02-122 Lower Ground Floor Plan 1:100
- 9084-02-123 Ground Floor Plan 1:100
- 9084-02-124 First Floor Plan 1:100
- 9084-02-125 Second Floor Plan 1:100
- 9084-02-126 Third Floor Plan 1:100
- 9084-02-127 Fourth Floor Plan 1:100
- 9084-02-128 Fifth Floor Plan 1:100
- 9084-02-129 Sixth Floor Plan 1:100
- 9084-02-130 Seventh Floor Plan 1:100
- 9084-02-131 Roof Plan 1:100
- 9084-02-151 Front Elevation 1 1:100
- 9084-02-152 Rear Elevation 1 1:100
- 9084-02-153 Section AA 1:100
- 9084-02-154 Section BB 1:100

14.1.3 Proposed Drawings
- 9084-02-200 Basement Plan 1:100
- 9084-02-201 Lower Ground Floor Plan 1:100
- 9084-02-202 Ground Floor Plan 1:100
- 9084-02-203 First Floor Plan 1:100
- 9084-02-204 Second Floor Plan 1:100
- 9084-02-205 Third Floor Plan 1:100
- 9084-02-206 Fourth Floor Plan 1:100
- 9084-02-207 Fifth Floor Plan 1:100
- 9084-02-208 Roof Plan 1:100
- 9084-02-251 Front Elevation 1 1:100
- 9084-02-252 Rear Elevation 2 1:100
- 9084-02-254 Lightwell Elevations 1:100
- 9084-02-301 Section XX 1:100
- 9084-02-302 Section YY 1:100
- 9084-02-303 Section AA 1:100
- 9084-02-304 Section BB 1:100