

Part 2A Investigation

Treadgold House and Avondale Park Gardens

Royal Borough of Kensington & Chelsea

Project number: 60632092

5 September 2022

Quality information

Prepared by

Holly Fenwick Graduate Environmental Scientist

Emma Toms Senior Consultant

Checked by

David Dyson Associate

Verified by

Rev 0 - Simon Cole Remediation Practice Lead

Rev 1, 2, 3 & 4 - David Dyson Associate

Approved by

David Dyson Associate

Revision History

Revision	Revision date	Details	Authorized	Name	Position
0	2 February 2022	Original Issue	Wh-	David Dyson	Associate
1	1 April 2022	To address RBKC comments	₩j.—	David Dyson	Associate
2	28 April 2022	To address RBKC and SQP comments	₿Ŋ _n —	David Dyson	Associate
3	23 June 2022	To address RBKC and SQP comments	b0h-	David Dyson	Associate
4 - Final	05 September 2022	To address UKHSA comments	₩j.—	David Dyson	Associate

Distribution List

# Hard Copies	PDF Required	Association / Company Name
0	1	Royal Borough of Kensington & Chelsea

Part 2A Investigation

Project number: 60632092

Prepared for:

Royal Borough of Kensington & Chelsea

Prepared by:

AECOM Limited Sunley House 4 Bedford Park Croydon, CR0 2AP, UK

AECOM Limited ("AECOM") has prepared this Report for the sole use of **Royal Borough of Kensington & Chelsea** ("Client") in accordance with the terms and conditions of appointment (**Project number: 60632092**) dated **25 May 2020** (Client reference number Prj_RBKC_17067). No other warranty, expressed or implied, is made as to the professional advice included in this Report or any other services provided by AECOM. This Report may not be relied upon by any other party without the prior and express written agreement of AECOM.

Where any conclusions and recommendations contained in this Report are based upon information provided by others, it has been assumed that all relevant information has been provided by those parties and that such information is accurate. Any such information obtained by AECOM has not been independently verified by AECOM, unless otherwise stated in the Report. AECOM accepts no liability for any inaccurate conclusions, assumptions or actions taken resulting from any inaccurate information supplied to AECOM from others.

The methodology adopted and the sources of information used by AECOM in providing its services are outlined in this Report. The work described in this Report was undertaken between and including **October 2021** and **September 2022** and is based on the conditions encountered and the information available during the said period of time. The scope of this Report and the services are accordingly factually limited by these circumstances. AECOM disclaim any undertaking or obligation to advise any person of any change in any matter affecting the Report, which may come or be brought to AECOM's attention after the date of the Report.

The exploratory holes carried out during the fieldwork, which investigate only a small volume of the ground in relation to the size of the investigation area, can only provide a general indication of conditions within that investigation area. The comments made and recommendations given in this Report are based on the ground conditions apparent at the locations of the exploratory holes. There may be exceptional ground conditions elsewhere in the investigation area which have not been disclosed by this investigation and which have therefore not been taken into account in this Report.

The opinions expressed in this Report concerning any contamination found and the risks arising there from are based on current good practice assessment and comparison with available soil guideline values, generic assessment criteria and other guidance values, including Site Specific Assessment Criteria (SSAC) which were generated either by Detailed Quantitative Risk Assessment within the Stage 2 Investigation into Potential Contamination from the Grenfell Tower fire report (AECOM, 2021a) or within this report.

It should be noted that the effects of ground and water borne contamination on the environment are constantly under review, and authoritative guidance values are potentially subject to change. The conclusions presented herein are based on the guidance and guideline values available at the time this Report was prepared, however, no liability by AECOM can be accepted for the retrospective effects of any changes or amendments to guidance or guideline values. Unless otherwise stated in this Report, the assessments made assume that the sampling areas will continue to be used for their current purpose without significant changes.

Reference to historical Ordnance Survey (OS) maps and/or data provides invaluable information regarding the land use history in the investigation area. However, it should be noted that historical evidence will be incomplete for the period pre-dating the first edition and between the release of successive maps and/or data.

Copyright

© 2022 This Report is the copyright of AECOM. Any unauthorised reproduction or usage by any person other than the addressee is strictly prohibited.

Table of Contents

Acro	nyms ar	nd Abbreviations	8
Exec	utive Su	ummary	10
1.	Introd	duction	12
	1.1	Background	13
	1.2	Objectives	13
	1.3	Approach to Developing the Scope of Work	14
	1.4	Outline Scope of Work	15
2.	Site S	Settings	16
	2.1	Site Locations and Descriptions	16
	2.2	Current and Historical Land Uses	16
	2.2.1	Historical – Treadgold House	16
	2.2.2	Current – Treadgold House	17
	2.2.3	Historical – Avondale Park Gardens	18
	2.2.4	Current – Avondale Park Gardens	18
	2.2.5	Former Brickfield	18
	2.3	Geology, Hydrogeology and Hydrology	18
	2.4	Previous Ground Investigations	19
	2.5	Background Soil Chemistry	20
3.	Conc	eptual Site Model	23
4.	Samp	oling Investigation	25
	4.1	Site Walkover	25
	4.2	Sampling Locations	25
	4.2.1	Treadgold House	25
	4.2.2	Avondale Park Gardens	26
	4.2.3	Scope Amendments during Fieldwork	26
	4.3	Sampling Methodology	27
	4.4	Sampling Dates and Personnel	27
	4.5	Analytical Testing	28
	4.5.1	Treadgold House Bioaccessibility Testing	28
	4.5.2	Avondale Park Gardens Additional Testing	29
	4.5.3	Duplicates	29
	4.5.4	Quality Assurance	29
	4.6	Summary of Ground Conditions	29
	4.7	Laboratory Analysis Results	
	4.7.1	QA/QC	31
	4.7.2	Relative Percent Difference (RPD) Calculation	31
	4.7.3	Lead Analysis – TH165 and TH108	33
	4.7.4	Outliers / Statistical Analysis	34
	4.7.4.	.1'Targeted' sampling – Treadgold House	34
		.2'Targeted' sampling – Avondale Park Gardens	
		.3Outliers – Treadgold House	
	4.7.4.	4Outliers – Avondale Park Gardens	36
5.	Gene	ric Quantitative Risk Assessment	37
	5.1	Introduction	37
	5.1.1	Conceptual Exposure Scenarios	
		Selection of GSC	
		Additional Considerations for Specific Contaminant Groups	
		.1PAHs	
		Asbestos	

	5.1.5	GSC and SSAC for lead from Stage 2	43
	5.2	Data Comparison with GSC and NBC	44
	5.2.1	Treadgold House	45
	5.2.1.	1 Asbestos	45
	5.2.1.	2Metals (excluding lead)	45
	5.2.1.	3Lead	48
	5.2.1.	4Part 2A Risk Evaluation	55
	5.2.2	Avondale Park Gardens	58
	5.2.2.	1Part 2A Risk Evaluation	61
6.	Detail	ed Quantitative Risk Assessment	62
	6.1	Step 1 SSAC Derivation	63
	6.1.1	Lead Bioaccessibility Testing	
		1Lead Bioaccessibility	
		Exposure Frequency, Occupancy Period and Exposure Duration	
		Soil Ingestion Rate	
		Step 1 SSAC Parameters Summary	
	6.1.5	Toxicological Criteria	
	6.1.6	•	
	6.1.7		
	6.2	Comparison of Site Data with Updated Step 1 SSAC – Treadgold House	
	6.2.1		
		Adult Residents	
	6.2.3		
	6.3	DQRA Step 2 – Potentially Unacceptable Risk Threshold for Treadgold House	
	6.3.1		
		Sensitivity Assessment	
		Comparison of Site Data with Step 2 SSAC	
		1Outliers	
		2Summary	
	6.4	Health Risk from Acute and Intermediate Duration Exposure	
7.	•	2A Risk Evaluation	
•	7.1	Introduction	
	711	Expectations for Detailed Inspection	
	7.1.2	Definitions of Significant Harm and Possibility of Significant Harm	
	7.1.2	Significant Possibility of Significant Harm	
	7.1.4	Four Categories of Land	
	7.1.4	Part 2A Evaluation	
	7.2.1	Sufficiency of Detailed Inspection and Risk Assessment	
	7.2.2	Significant Harm	
	7.2.3	· ·	
	7.2.4	Significant Possibility of Significant Harm	
	7.2.4	Updated CSM	
8.	_	lusions and Recommendations	
9.		ences	
-		Figures	
• •		Site Investigation Design	
		Tables	
~hhei	C.1	Table C1 – Soil Sampling Locations	
	C.1	Table C1 – Soil Sampling Locations Table C2 – Duplicate Analysis	
Δηηρη	_	Walkover Photolog and Sample Logs & Photos	
		Freadgold House Laboratory Certificates	
, shhei	IUIA L	Troadyold Floade Laboratory Octilioated	

Appendix F Avondale Park Gardens Laboratory Certificates Appendix G Generic Quantitative Risk Assessment Data Tables Appendix H Detailed Quantitative Risk Assessment Data Tables Appendix I Letter to Residents – Treadgold House Appendix J Data Validation Summary Report Appendix K CLEA Model Inputs and Results Appendix L Laboratory Chains of Custody Appendix M Historical Ordnance Survey Maps. Appendix N Site Investigation Data from Avondale Park	
Figures in text	
Figure 1. PAH ratio plot for Treadgold House soil sample PAH compositions against Culp et al ratios Figure 2. PAH ratio plot for Avondale Park Gardens soil sample PAH compositions against Culp et al ratio Figure 3 – Box and whisker plot showing the beryllium concentrations at Treadgold House (TH) compared Stage 2 Environmental Checks dataset (data from the 2021 Part 2A investigation sampling shown in oran Figure 4 – Box and whisker plot showing the lead concentrations at Treadgold House (TH) investigation a compared to EA Urban Soils and London Earth background datasets and the Stage 2 Environmental Chedataset	es 41 d to the age) 48 area ecks 51
London Earth background datasets	
Tables in text	
Table 1. Summary of Treadgold House Ground Floor Properties	
Table 2. Conceptual Site Model	
Table 4. Samples Scheduled for Lead Bioaccessibility Testing	
Table 5. Summary of duplicate testing completed	
Table 6. Visual and Olfactory Observations of Potential Sources of COPC	
Table 7. RPD results	
Table 8. Results summary of 'Targeted' Samples excluded from averaging	
Table 9. RPD results for 'Targeted' Samples	35
Table 10 Clustered samples at Avondale Park Gardens	
Table 11. Outliers in Treadgold House Shallow Soil Dataset	
Table 12. Sampling Area Land-use Scenario Selection	
Table 13. Basis and applicability of chosen screening criteria	
Table 15. Dutch Asbestos in Soil Criteria	
Table 16. Assessment Criteria for Lead from Grenfell Stage 2 Report	
Table 17. GSC Exceedances for Treadgold House (excluding lead)	
Table 18. Arsenic Exceedances for Treadgold House per depth	
Table 19. Barium Exceedances for Treadgold House per depth	46
Table 20. Beryllium Exceedances for Treadgold House per depth	
Table 21. Lead Exceedances for Treadgold House per depth	
Table 22. Lead Exceedances for Treadgold House per Plot	
Table 23. GSC Exceedances for Avondale Park Gardens	
Table 24. Lead Exceedances for Avondale Park Gardens	
Table 26. Step 2 Outdoor Exposure Frequency (day/year) for a child receptor at Treadgold House	
Table 27. Soil Ingestion Rates from (US EPA, 2017)	
Table 28. Calculation of Modified Child Receptor SIR for Step 1 SSAC	
Table 29. Summary of Step 1 SSAC Modelling Parameters	
Table 30. Updated Step 1 Site-specific Assessment Criteria	68

Table 31.	Treadgold House Updated Step 1 SSAC Data Comparison	39
Table 32.	Summary of Data for Plot 9 and Plot 10, Treadgold House	39
Table 33.	Calculation of Modified Child Receptor SIR for Step 2 SSAC	74
Table 34.	Updated Step 2 SSAC for a child resident receptor at Treadgold House	74
Table 35:	SSAC Sensitivity Matrix	75
Table 36.	Treadgold House Step 2 SSAC Data Comparison	76
Table 37.	Final CSM following Follow-on Intrusive Investigation	36

Acronyms and Abbreviations

AGS	Association of Geotechnical and Geoenvironmental Specialists
APG	Avondale Park Gardens
BAF	Bioaccessible Fraction
bgl	Below ground level
BGS	British Geological Survey
BS	British Standard
BSI	British Standards Institution
CI	Confidence Interval
CIRIA	Construction Industry Research and Information Association
CLs	Contaminant Linkages
CLEA	Contaminated Land Exposure Assessment
COC	UK Department of Health Committee on Carcinogenicity
COPC	Chemicals of Potential Concern
CSM	
	Conceptual Site Model
C4SL Defra	Category 4 Screening Level
	Department for Environment, Food & Rural Affairs
DIV	Dutch Intervention Value
DQRA	Detailed Quantitative Risk Assessment
DVSR	Data Validation Summary Report
EA	Environment Agency
EIC	Environmental Industries Commission
ELCR	Excess Lifetime Cancer Risk
G-BASE	Geochemical Baseline Survey of the Environment
GSC	Generic Screening Criterion
QRA	Quantitative Risk Assessment
HCV	Health Criteria Value
HP	Homegrown Produce
HSE	Health and Safety Executive
IEUBK	Integrated Exposure Uptake Biokinetic
ISO	International Organization for Standardization
LA	Local Authority
LCRM	Land Contamination Risk Management
LLTC	Low Level of Toxicological Concern
LQM	Land Quality Management Ltd
MAP	Multi-Agency Partnership
MDL	Method Detection Limit
mg/kg	Milligrams per kilogram
μg/kg	Micrograms per kilogram
μg/dl	Micrograms per decilitre
NBC	Normal Background Concentration
ng/kg	Nanograms per kilogram
NQMS	National Quality Mark Scheme
PAHs	Polycyclic Aromatic Hydrocarbons

Part 2A PCLs	Part 2A of the Environmental Protection Act, 1990 (the 'Contaminated Land regime')
PCI s	
1 023	Potential Contaminant Linkages
PHE	Public Health England (now re-named as UK HSA)
POSresi	Public Open Space in a residential setting
POSH	Possibility of Significant Harm
PRA	Preliminary risk assessment
QA	Quality Assurance
RBA	Relative Bioavailability
RBKC	Royal Borough of Kensington and Chelsea
Resi-HP	Residential land-use without homegrown produce consumption
RIVM	Dutch National Institute for Public Health and the Environment
RPD	Relative Percent Difference
SSAC	Site Specific Assessment Criterion
SAG	Science Advisory Group
SCL	Significant Contaminant Linkage
SGV	Soil Guideline Values
SIR	Soil Ingestion Rate
SoBRA	Society of Brownfield Risk Assessment
SOM	Soil Organic Matter
SPOSH	Significant Possibility of Significant Harm
SQP	Suitably Qualified Person
Statutory Guidance	2012 Environmental Protection Act, 1990 Environmental Protection Act 1990: Part 2A Contaminated Land Statutory Guidance
S4UL	Suitable 4 Use Level
TDI	Tolerable daily intake
тн	Treadgold House
TN	Technical Notes
тос	Total organic carbon
UKAS	United Kingdom Accreditation Service
UK HSA	United Kingdom Health Security Agency
UKSHS	UK Soil and Herbage Survey
VROM	Dutch Ministry of Housing, Spatial Planning and the Environment
WHO	World Health Organisation

Executive Summary

AECOM has undertaken land contamination site investigation and risk assessment at two areas of land that were identified as having elevated lead concentrations in soil during the Grenfell Stage 2 investigation. These works have been undertaken during the period October 2021 to April 2022, and completed in accordance with Part 2A of the Environmental Protection Act 1990. The work that AECOM has undertaken has been overseen by RBKC and a National Quality Mark Scheme (NQMS) Suitably Qualified Person (SQP), and reviewed by the Multi-Agency Partnership (MAP).

The objectives of these works were to undertake detailed investigation at the Treadgold House and Avondale Park Gardens sites, in response to the recommendations from the Grenfell Stage 2 investigation. The investigation was required to:

- investigate lead within the soil, including whether the spatial distribution indicated a link to the former brickfield within the areas, and investigate other potential contaminants that could be related to historic nonfire sources:
- carry out tiered risk assessment to establish whether there are potential unacceptable risks, and if so to
 assess whether there is a significant possibility of significant harm (SPOSH) to human health as defined by
 Part 2A; and
- to classify each linkage at the two areas into Category 1-4 as defined by Part 2A.

The investigation and assessment of the two sites constitutes a 'detailed inspection' as defined by Paragraph 2.2 of the Part 2A 2012 Statutory Guidance.

The scope of work included:

- Walkover survey of the sites to agree sampling locations and evaluate how residents used the garden areas;
- Collection and analysis of 235 soil samples from 90 hand pit locations at Treadgold House and a further 16 hand pit locations at Avondale Park Gardens.
- Laboratory chemical testing of all soil samples for lead. A sub-set of soil samples was tested for a range of heavy metals, PAHs, and asbestos. Six soil samples from Treadgold House were also tested to assess the bioaccessibility of lead.
- Assessment and interpretation of the laboratory testing data in accordance with the UK's tiered risk
 assessment process. This included initial screening of data using generic screening criteria and the site
 specific assessment criteria developed during the Grenfell Stage 2 investigation, with subsequent chemical
 exposure modelling to calculate updated site-specific assessment criteria.
- Evaluation of the level of risk to human health in accordance with the decision framework set out in the Statutory Guidance for Part 2A.

The investigation found that the source of the lead in soil at Treadgold House and Avondale Park Gardens was most likely the topsoil imported to the site for landscaping, with no evidence that it originated from the Grenfell Tower fire or from fill in the historic brickfield.

The risk assessment was carried out in two tiers, with the first tier comprising the screening of contaminant concentrations against assessment criteria for generic land uses sufficiently conservative to be protective of health at Treadgold House and Avondale Park Gardens. For Treadgold House, the generic land uses included residential without homegrown produce for adult residents, and residential public open space for child residents. For Avondale Park Gardens, the generic land use was residential public open space. The assessment considered chronic (i.e. long term) health effects and assessed average soil concentrations across parts of the investigation areas that might be used most frequently by residents. Average concentrations were assessed across the full investigation area, as well as (for Treadgold House) smaller parts of the garden associated with each ground floor property. Potential hotspot areas were also considered. Where contaminant concentrations did not exceed the assessment criteria, the risk to health was considered to fall into the definition of Category 4 land (i.e. no more than a low risk). Where contaminant concentrations exceeded the generic assessment criteria, these contaminants were taken forwards to detailed quantitative risk assessment.

The DQRA was completed in two steps and was only required for Treadgold House for lead. Step 1 involved calculating site-specific assessment criteria using site-specific information that would be considered to meet the

definition of Category 4 land. Separate Step 1 assessment criteria were calculated for child residents and adult residents. Average soil concentrations were again compared to the Step 1 assessment criterion, and when concentrations did not exceed the criterion the land was considered to fall into Category 4 for the linkage being assessed. When average concentrations exceed the Step 1 assessment criterion, a Step 2 assessment criterion was calculated to identify the threshold at which a significant possibility of significant harm (SPOSH) might exist. Average concentrations at Treadgold House were compared to the Step 2 SSAC to determine whether there was SPOSH. The second tier of risk assessment also considered potential hotspots as well as potential acute and intermediate duration exposure risks to health.

The risk assessment in accordance with Part 2A concluded that:

- AECOM is not aware of any evidence of significant harm occurring at Treadgold House or Avondale Park Gardens associated with the potentially significant contaminant linkages that were investigated;
- Chronic and acute risks to human health associated with exposure to contaminants in soil at Treadgold
 House and Avondale Park Gardens were considered to fall into the Part 2A definition of Category 4 (i.e. low
 to no risk), with the exception of child resident chronic exposure to lead in soil at Treadgold House.
- The risk assessment indicated that the chronic exposure risk to health from lead to child residents was within Category 3, but was considerably closer to the boundary with Category 4 (which defines low risk) than to the upper boundary of Category 3, above which a SPOSH is considered to exist. Hence the risk to health is considered to be closer to a low risk than to a SPOSH. Risks to children visiting Treadgold House were considered to fall into Category 4.
 - The Statutory Guidance defines Category 3 land as "...land where the risks are not low, but nonetheless the authority considers that regulatory intervention under Part 2A is not warranted. This recognises that placing land in Category3 would not stop others, such as the owner or occupier of the land, from taking action to reduce risks outside of the Part 2A regime if they choose...."
- The level of confidence that land does not pose a SPOSH is considered to be very high, with average soil concentrations considered to be representative for exposure having a less than a 2.5% chance of exceeding the Step 2 SSAC. For those contaminant linkages placed into Category 4 this was done with a minimum balance of probabilities level of confidence, with average concentrations more likely than not to be lower than the Step 1 SSAC below which risks were considered to be within Category 4 i.e. low. For those contaminant linkages placed into Category 3 this was also done with a minimum balance of probabilities level of confidence, with average concentrations more likely than not to exceed the Step 1 SSAC above which risks were considered to not necessarily be low.

Therefore, for Treadgold House, although risks to child residents might not be low, the land does not meet the legal definition of Contaminated Land under Part 2A and so there is no obligation under Part 2A to take action to reduce the risks.

Recommendations

RBKC may choose to take action to reduce the risks outside the Part 2A regime. Such measures could include: introduction of clean soils; replacement of soil and turf areas with hardstanding; reducing the potential for access for children to the garden; regular checks of balcony walls at Flats 7 – 10 to confirm that they have not been removed for easier access; and general good management and maintenance of the garden area to minimise the likelihood of residents carrying out their own garden maintenance. If RBKC chooses to take action on a voluntary basis to further reduce risks then it is recommended that a separate remedial options appraisal is completed and a remediation strategy produced.

Following completion of the investigation and risk assessment, it is considered that sufficient information was collected to characterise the site and assess the risk to site users, such that robust decisions could be made with respect to the requirements of the Part 2A Statutory Guidance. Therefore no further investigation is required for RBKC to complete the decision-making required by the Statutory Guidance.

1. Introduction

This report presents the findings of the Part 2A related follow-on actions following the Stage 2 Investigation into Potential Contamination from the Grenfell Tower fire report (AECOM, 2021a), hereafter referred to as the 'Stage 2 investigation'. These works have been completed in accordance with Part 2A of the Environmental Protection Act 1990. The Stage 2 investigation identified elevated lead concentrations at Treadgold House and Avondale Park Gardens but concluded that these were not attributable to the Grenfell Tower fire. However, it was deemed that further works were required to assess whether either Treadgold House or Avondale Park Gardens should be classified as contaminated land under Part 2A.

AECOM Limited (AECOM) was appointed to undertake these works on behalf of the Royal Borough of Kensington & Chelsea (RBKC). The agreed scope of work is described in the Site Investigation Design for Grenfell Stage 2 Follow-up Work, which is included in **Appendix B**. The work that AECOM has undertaken has been overseen and reviewed by the Multi-Agency Partnership (MAP)¹ and the National Quality Mark Scheme (NQMS) Suitably Qualified Person (SQP) Paul Nathanail.

The intrusive investigation into potential land contamination impacts is being carried out under Part 2A (Crown, 1990) and the associated Statutory Guidance (Defra, 2012). This statutory guidance sets out specific requirements on how the intrusive investigation should be undertaken and how the results should be interpreted. The statutory guidance also sets out the actions that should be taken if significant harm or a significant possibility of significant harm (SPOSH) is identified.

The objective of Part 2A is to provide a means of dealing with unacceptable risks to human health and the environment posed by land contamination. This is achieved through the identification of land that poses an unacceptable risk, making that land suitable for use by removing that risk, and doing so in such a way that the burdens faced by individuals, companies and society as a whole are proportionate, manageable and compatible with the principles of sustainable development.

The primary focus of this intrusive investigation is on the risk to human health, and therefore the Part 2A definition of unacceptable risk to human health is of direct relevance. This definition is that "significant harm" is occurring, or there is "a significant possibility of significant harm" (SPOSH). The statutory guidance for Part 2A additionally defines four categories of land when considering if there is a SPOSH from substances in, on or under the land:

- Category 1 Paragraph 4.19 of the Part 2A Statutory guidance states that "The local authority should
 assume that a significant possibility of significant harm exists in any case where it considers there is an
 unacceptably high probability, supported by robust science-based evidence, that significant harm would
 occur if no action is taken to stop it." Land placed in Category 1 meets the legal definition of Contaminated
 Land.
- Category 2 Paragraph 4.25(a) of the Part 2A Statutory guidance states that "Land should be placed into Category 2 if the authority concludes, on the basis that there is a strong case for considering that the risks from the land are of sufficient concern, that the land poses a significant possibility of significant harm, with all that this might involve and having regard to Section 1. Category 2 may include land where there is little or no direct evidence that similar land, situations or levels of exposure have caused harm before, but nonetheless the authority considers on the basis of the available evidence, including expert opinion, that there is a strong case for taking action under Part 2A on a precautionary basis." Land placed in Category 2 meets the legal definition of Contaminated Land.
- Category 3 Paragraph 4.25(b) of the Part 2A Statutory guidance states that "Land should be placed into Category 3 if the authority concludes that the strong case described in 4.25(a) does not exist, and therefore the legal test for significant possibility of significant harm is not met. Category 3 may include land where the risks are not low, but nonetheless the authority considers that regulatory intervention under Part 2A is not warranted. This recognises that placing land in Category 3 would not stop others, such as the owner or occupier of the land, from taking action to reduce risks outside of the Part 2A regime if they choose. The authority should consider making available the results of its inspection and risk assessment to the owners/occupiers of Category 3 land". Land placed in Category 3 does not meet the legal definition of Contaminated Land.

¹ The MAP includes representatives from Royal Borough of Kensington & Chelsea, the Environment Agency, Food Standards Agency, UK Health Security Agency (formerly Public Health England), and Ministry of Housing, Communities and Local Government

Category 4 – Paragraph 4.20 of the Part 2A Statutory guidance states that "The local authority should not
assume that land poses a significant possibility of significant harm if it considers that there is no risk or that
the level of risk posed is low. For the purposes of this Guidance, such land is referred to as a "Category 4:
Human Health case". Land placed in Category 4 does not meet the legal definition of Contaminated Land.
This includes land where:

- no contaminant linkage has been identified.
- only normal levels of contaminants in soil are present.
- soil concentrations do not exceed relevant generic assessment criteria (GAC), or relevant technical tools or advice that may be developed in accordance with the Statutory Guidance (e.g. developed of site-specific assessment criteria (SSAC).
- estimated levels of exposure from soil are likely to form only a small proportion of exposure from other sources.

1.1 Background

The Stage 2 investigation, in accordance with Part 2A, concluded that the sampling did not find detectable concentrations of chemicals in soil that could be linked only to the fire, and that all land investigated directly as part of the Stage 1 and Stage 2 MAP-led Environmental Checks Programme fell into Category 4 (indicating at most a low risk to health), with the exception of Treadgold House and Avondale Park Gardens. The Stage 2 report for these sites identified the following:

- Treadgold House (communal garden to south and west of residential building) soil concentrations of lead (considered to be from historic pre-fire sources) exceed the threshold for 'low' risk; therefore the land does not meet the definition of Category 4 based on the current data. Uncertainty associated with the range of reported soil concentrations and the manner in which residents may use the area is sufficient to justify a recommendation to undertake further assessment in this area. That further assessment should be designed to confirm whether the land meets the definition of Category 2, or Category 3 by reducing the uncertainty associated with average soil concentrations and attempting to define an improved understanding of how the land is typically used by residents.
- Avondale Park Gardens high uncertainty associated with average soil concentrations of lead (considered
 to be from historic pre-fire sources) and how regularly the area is used by residents meant that a decision
 on the category of land could not be made. Additional sampling to reduce uncertainty is recommended to
 allow a decision between Category 2, Category 3 and Category 4 to be made.

The Stage 2 investigation therefore recommended further assessment around Treadgold House and Avondale Park Gardens to resolve the uncertainty associated with health risk from exposure to lead in soil associated with historical contamination from before the Grenfell Tower fire.

In response to the findings of the Stage 2 investigation report, RBKC commissioned AECOM to produce a site investigation design for the further assessment recommended at Treadgold House and Avondale Park Gardens. The site investigation design was presented in AECOM's report "Site Investigation Design, Grenfell Stage 2 Follow-up Work" (AECOM, 2021b), which forms the basis of the intrusive investigation and assessment presented in this report and is included as **Appendix B**.

1.2 Objectives

The primary aim of these works was to undertake intrusive investigation works at the Treadgold House and Avondale Park Gardens sites, in response to the recommendations from the Stage 2 investigation.

The specific objectives in relation to these sites include:

- Undertake an appropriate level of intrusive site investigation work to investigate lead within the soil, including whether the spatial distribution of lead appears to be linked to the former brick pit identified in historical mapping in the area. A number of other substances will also be tested that are relevant to the previous site history.
- Carry out a generic quantitative human health risk assessment using existing GSC and SSAC used within
 the Stage 2 report to establish whether there are potential unacceptable risks to human health as defined by
 Part 2A.

• Carry out further detailed quantitative human health risk assessments to establish whether there is a significant possibility of significant harm (SPOSH) to human health as defined by Part 2A.

Classify each potential contaminant linkage as Category 1-4 in accordance with the Statutory Guidance and
in doing so provide recommendations on whether any land appears to meet the definition of contaminated
land under Part 2A.

The intrusive investigation and assessment of the two sites constitutes a 'detailed inspection' as defined by Paragraph 2.2 of the Part 2A 2012 Statutory Guidance. A plan showing the locations of the Treadgold House and Avondale Park Gardens sites is included as **Figure A1** in **Appendix A**.

1.3 Approach to Developing the Scope of Work

AECOM's approach to developing the scope of works for the two areas (Treadgold House and Avondale Park Gardens) is presented in detail in the Site Investigation Design report (AECOM, 2021b) (included in **Appendix B**) and aimed to fulfil the objectives described in **Section 1.2** above.

All works were designed to adhere to the Contaminated Land Statutory Guidance 2012 and the Environment Agency's Land Contamination Risk Management (LCRM) guidance, including other current good practice guidance referenced within LCRM.

A summary of the approach, based on the detailed approach presented in the Site Investigation Design report (AECOM, 2021b) (included in **Appendix B**), is presented as follows.

The Stage 2 investigation did not consider potential soil contaminants not directly associated with the fire that might also be present in soil as a result of historical land-use activities. Because of this, and at the request of RBKC, the scope of work was developed to include tasks intended to further investigate the potential non-fire related sources of the lead and included an assessment of other potential non-fire related sources and contaminants of concern.

The scope of work was designed to include sufficient detail to make final Part 2A decisions and prepare a remediation strategy (if needed). The scope of work was also developed through liaison with RBKC, including discussion with RBKC Environmental Health and RBKC Housing Management.

The principal approach to the site investigation design was to achieve a non-targeted grid based sampling dataset (in accordance with the recommendations of BS10175:2011+A2:2017) that may be suitable for the application of statistical methods in accordance with the CL:AIRE 2020 statistical guidance (Marriott, 2020). Some targeted sampling was also included to assess the local variability around the Stage 1 and Stage 2 sampling locations and to investigate the potential for deeper contamination associated with the historic brickfield (mapped at the southern edge of the Treadgold House site and across the majority of the Avondale Park Gardens site).

Treadgold House

At Treadgold House, the site investigation design was intended to focus only on the ground level soils in the communal garden to the south and west of the residential building. This is because the highest concentrations of lead in soil were encountered in this communal garden area and a number of residential properties have direct access onto this garden, unlike the communal residential garden to the northeast of the building, which is set slightly away from properties. Soils sampled from raised beds during Stage 2 had lower concentrations of lead and were identified to be suitable for continued use. The distribution and number of sample locations were initially based on one averaging area encompassing the entire communal garden area, plus six sub-areas (the areas immediately outside private access doors for Flats 1-6) within this area requiring a higher sampling density. As described in **Section 2.2**, the part of the garden to the west of the building outside the balconies of Flats 7-10 was supplemented with further sample locations at the time of the sampling works to increase the sampling density where potential unofficial access over balcony walls had been identified. These additional samples were warranted based on the assumption of four potential separate averaging areas associated with residents of Flats 7-10 predominantly using the garden area immediately outside their own balcony.

The samples taken up to 0.2m bgl were located so that between five and ten of the sampling locations were situated within the estimated averaging areas for an individual property (designated as the area outside of the back doors in the southern part of the garden and outside the balconies in the western part of the garden). Samples taken to 0.4m, 0.7m and 1.2m bgl were taken in a regular grid pattern across the full communal garden area to provide a good spatial coverage between the southern area (which has a historical use as a brick works)

and the western area (the northern part of which is outside of the footprint of the historical brick works). The sample depth variation also aimed to determine whether contamination can be attributed to the former brickfield. More details on the reasoning for sample locations is given in the Site Investigation Design document (AECOM, 2021b), which is included in **Appendix B**.

Avondale Park Gardens

At Avondale Park Gardens the area was considered to be a single averaging area with samples distributed relatively evenly throughout. The intrusive investigation design was intended to significantly reduce the uncertainty associated with the average soil concentrations of lead in the gardens to the south and west of the building. In addition, the intrusive investigation design at Treadgold House was intended to assess the conceptual model in terms of other potential chemicals of concern from historical land-uses.

At Avondale Park Gardens, the site investigation was intended to cover the entirety of the landscaped communal garden in the middle of the residential cul-de-sac. Only two samples were collected in this area in the Stage 1 investigation, and no samples were collected during the Stage 2 investigation, resulting in very high uncertainty in the average soil concentrations. Neither of the reported lead concentrations exceeded the Step 2 SSAC derived in the Stage 2 report. Therefore, the key aim of the intrusive investigation in this area was to reduce the uncertainty associated with the average soil concentrations and to collect sufficient data to refine the Step 2 SSAC (if this becomes necessary).

Samples taken up to 0.2m bgl were located to provide a good spatial coverage; the aim of these samples was to assess the average concentration of contaminants in the shallow soils to which residents using the site are most likely to be exposed to, whilst deeper samples (up to 0.6m bgl) are intended to provide information on whether contamination present may be related to the historical land use.

The laboratory analytical approach for the site investigation design in both areas was to focus on the total concentrations of lead in soil to identify areas of higher concentrations and to provide a more reliable estimate of average concentrations. In addition, the approach also includes further site-specific lead bioaccessibility testing to help with refinement of Step 2 SSAC.

1.4 Outline Scope of Work

AECOM has completed the following tasks in accordance with the Site Investigation Design report (AECOM, 2021b) and in order to achieve the objectives stated in **Section 1.2** above:

- Task 1: Site Walkover
 - To gather further information about the garden layouts and (if possible) their usage and to confirm site investigation locations.
- Task 2: Soil Sampling
 - Completion of soil sampling at Treadgold House and Avondale Park Gardens sites as detailed in the SID report (AECOM, 2021b).
- Task 3: Laboratory Analysis.
- Task 4: Risk Assessment and Reporting
 - Preparation of this report including risk assessment to establish whether SPOSH exists and to recommend whether the sites fall into Category 1, 2, 3 or 4.

Further details of the completed scope of work are included in **Section 4**.

2. Site Settings

2.1 Site Locations and Descriptions

The two sites discussed in this report are the communal garden of Treadgold House located to the west and south of the building (hereafter for simplicity referred to as Treadgold House) and the communal garden area in the centre of the residential street Avondale Park Gardens (hereafter for simplicity referred to as Avondale Park Gardens). Both are located within the Royal Borough of Kensington and Chelsea (RBKC), centred at approximate grid references 523986 180879 (Treadgold House) and 524025 180718 (Avondale Park Gardens). Their locations are shown on **Figure A1**.

The area surrounding the sites is a densely populated, predominantly residential urban area. The Treadgold House site is a gated communal garden to south and west of the residential building, to which certain properties from the ground floor level have direct access. This direct access is likely to allow and encourage use of the garden in a manner more typical of a private garden for these particular residents. For residents in ground floor properties looking over the western part of the garden, the only access is by climbing over a waist-high balcony wall, which will restrict access to the garden area. Currently, one of the properties has a section of this wall removed, although this has not been sanctioned by RBKC Housing Management and it is intended that the wall will be repaired and maintained such that access to the garden is restricted.

The Avondale Park Gardens site is a gated communal garden area at the centre of a cul-de-sac, surrounded by terraced residential housing for which the residents hold a key.

2.2 Current and Historical Land Uses

2.2.1 Historical – Treadgold House

AECOM has reviewed the environmental setting and historical mapping information from the Stage 1 and Stage 2 investigations relating to Treadgold House. Relevant extracts covering the area of Treadgold House are included in **Appendix M**. Historical mapping from 1874 shows the southern part of the site was occupied by the northern edge of a brickfield with the rest of the site occupied by what appears to be residential terraced housing including gardens. The approximate extent of the brickfield, based on GIS mapping provided by RBKC, is shown in more detail on **Figure A2** in **Appendix A**. This suggests that the southern part of the communal garden under investigation as well as the southern quarter of the communal garden to the west of the building was formerly occupied by the brickfield; whereas the northern three-quarters of the communal garden to the west of the building was beyond the footprint of the former brickfield and within an area occupied by terraced housing. The site was located 400m east of an iron works, with additional terraced housing, including gardens, located north of the investigation area.

By 1896, the brickfield is no longer shown on the maps and there has been redevelopment of the site resulting in terraced housing with a different footprint to the previous map. The investigation area is occupied by what appears to be residential buildings in the south-west corner, south-east corner and northern corner, with adjacent land (likely to be gardens, yards, paths or other associated outdoor space) in the central southern part of the investigation area and in the central part of the garden area to the west of the current Treadgold House. To the south of the site, on the former area of the brickfield there is additional residential development, as well as additional terraced housing to the north of the investigation area.

There is no significant change on site or to the surrounding area on the maps for 1920 to 1951. By 1957, the footprint of the buildings on site has changed; there appears to be some smaller, detached buildings / properties (which have a smaller and different footprint to the mapping from 1951) in the central part of the wider Treadgold House site. Within the communal garden investigation area, residential buildings remain in the northern, south-eastern and south western corners of the site, although the footprints have a different appearance to the earlier mapping and the building in the southwest corner appears to extend further north into the central part of the garden to the west of the present day Treadgold House building. There are no significant changes to the surrounding area noted.

On the 1967 map, the site has been developed into the Treadgold House layout that remains on site to the present day. There are no significant changes to the surrounding area noted.

In 1971, the residential housing to the north and west of the investigation area has been removed, leaving vacant land. There are no significant changes noted in the area to the south and south east of the investigation area. By 1984, the area surrounding the investigation area has been developed into the present day layout, with continued development occurring north of the investigation area until 1996.

2.2.2 Current – Treadgold House

The area to be investigated at Treadgold House is a gated communal garden to the south and west of the building. The investigation area is approximately 0.07 hectares, and the garden is largely covered by turf, with some ground level plant beds containing shrubbery and occasional trees. The garden also contains three raised beds constructed from railway sleepers which are intended as community kitchen garden growing areas. The soil quality in these raised beds was assessed during the Stage 2 investigation and considered to be acceptable. The presence of these raised beds significantly reduces the likelihood that residents would attempt to cultivate home-grown produce in ground level soils. The main ground cover types (turf, partial turf, soil) are noted in **Table C1** in **Appendix C**, and also on the sample logs in **Appendix D**. The main features of the Treadgold House garden (raised beds, ground level beds, locations of paving slabs and trees) are detailed on **Figure A2** in **Appendix A**.

RBKC Housing Management has confirmed that the two external access gates to the garden remain locked and residents within the block do not have keys to these gates. This means that only the ground floor properties have access to the garden: this is summarised in **Table 1** below. An approximate (not surveyed) layout of the key features within Treadgold House gated communal garden are shown on **Figure A2** in **Appendix A**.

Table 1. Summary of Treadgold House Ground Floor Properties

Apartments	Garden Access	Likely Residents	
1-6	Direct access to the gated garden	Studio apartments only suitable for single adult occupancy.	
7-10	No official direct access to the garden, though evidence provided by RBKC Housing Management suggests that residents may access the garden by climbing over the waist height balcony walls. One of these balcony walls has had a gap cut into it to allow easier access into the garden. There was evidence on-site that the western area of the garden (outside flats 7-10) is used by residents, including a bench, some chairs, a folding table, discarded clothing, a small paddling pool and a deflated bouncy castle. This evidence supports the information given by RBKC Housing Management.	Apartments suitable for families.	

Benches and garden decoration outside of the rear doors to flats 1 to 6 suggest use of the gardens by residents. Furthermore, evidence of a deflated bouncy castle, balls and clothing items in the garden suggest some use by children. Based on conversations with the RBKC Housing Management team, this is understood to be infrequent use. There are no restrictions on whether the residents undertake gardening/ planting in the beds at ground level, and whilst on site no evidence of ground level gardening activities was observed. An estate ground maintenance team maintain the ground level plant beds in the garden.

It is noted that although **Figure A2** in **Appendix A** indicates the approximate layout of the gated communal garden, there is a level of detail that it is not possible to capture on the site plan. Twenty locations outside of the 'ground level beds' were noted to be 'partial turf' (TH101, TH103, TH110, TH114, TH117, TH121-TH123, TH129, TH159, TH169, TH174, TH176, TH181-TH187). Details of these locations are also included in **Table C1** in **Appendix C**, and on the sample logs in **Appendix D**. Of these 20 locations, 14 were located in the part of the garden to the west of the building. The 14 locations were distributed throughout this area (though the majority located in Plot 9), with three in Plot 10, seven in Plot 9, three in Plot 8 and one in Plot 7. Of the remaining six, three were located close to the raised growing beds to the south of the building (so may therefore be more worn by more concentrated footfall), one (TH169) was located in the area recessed into the building to the west of Plot 6, one was located in Plot 6, and one was located adjacent to patio stones in Plot 2.

The locations of the partial turf sampling locations suggest that grass cover is thinner in the more shaded area of the garden to the west of the building, as well as around areas of probable more frequent footfall such as raised growing beds and near to patios.

2.2.3 Historical – Avondale Park Gardens

AECOM has reviewed the environmental setting and historical mapping information from the Stage 1 and Stage 2 investigations relating to Avondale Park Gardens. Relevant extracts covering the area of Avondale Park Gardens are included in **Appendix M**.

Historical mapping from 1874 shows the large majority of the investigation area to be located within a brickfield. Only a very small portion in the southeast of the investigation area is indicated to be outside the former brickfield. To the East of the investigation area are industrial units potentially associated with the brickfield. The brickfield extends to the north, west and south of the investigation area.

By 1896, the mapping indicates that the brickfield is no longer present, and the investigation area and immediate surroundings lie within an area labelled as a 'Workhouse'. The website www.workhouses.org.uk indicates that the Workhouse at Avondale Park Gardens included trades such as breaking stone, corn grinding and oakum picking. A church and school have been built west of the investigation area, and another school plus a park to the south. The rest of the surrounding area appears to be occupied by residential terraced housing.

By 1920, the investigation area is still noted to be within the workhouse, but the footprint of the workhouse has changed north and east of the investigation area. There are no significant changes to the surrounding area noted. On the map for 1951, there are no significant changes to the investigation area and surroundings.

By 1957, the investigation area has been redeveloped, and no longer shows a workhouse – the area has been developed into a layout resembling the current site configuration, with a garden occupying the investigation area, surrounded by residential terraced housing on all sides. The historical mapping indicates that the present-day layout with the communal garden area in the centre of the residential street has remained largely unchanged from 1957 through to present-day.

2.2.4 Current – Avondale Park Gardens

Avondale Park Gardens is a gated communal garden which residents have access to and is kept locked with the key held by one of the residents. The investigation area is a landscaped garden with a combination of turf, vegetated shrub borders and trees and covers approximately 0.08 hectares. The main ground level cover types (turf, soil) are noted in **Table C1** in **Appendix C**, and also on the sample logs in **Appendix D**. The main features of the Avondale Park Gardens communal garden (ground level beds and trees) are detailed on **Figure A3** in **Appendix A**. The layout is simple as a single access space with no internal partitioning. Residents are not permitted to excavate soil in the public open space themselves and are therefore unlikely to be exposed to soils deeper than the upper 5-10cm. The area is subject to general maintenance by the RBKC Parks team which may result in the turning over of soil in the plant and shrub beds to depths of around 30cm.

2.2.5 Former Brickfield

The information from the historical and environmental review indicates that the former brickfield (now backfilled), has the potential to have caused contamination at both Treadgold House and Avondale Park Gardens. Specific contaminants associated with infilling of the brickfield have been identified in previous intrusive investigations at Avondale Park, details of which are summarised in **Section 2.4**.

2.3 Geology, Hydrogeology and Hydrology

The geological sequence beneath the sites was summarised in the Stage 1 PRA (TN16) (AECOM, 2019c) and comprised made ground, overlying Langley Silt, overlying Kempton Park Gravel, overlying London Clay Formation.

The presence of variable thickness and composition of made ground in the area (likely associated with the infilling of the former brickfield) is likely to result in variable concentrations of constituents (including some of the COPC) in the surface and shallow soils. The depth and nature of the made ground at the sites is unknown based on previous investigations completed at Treadgold House and Avondale Park Gardens (exploratory locations were not deep enough to encounter the made ground fill) however according to logs available from investigations at nearby Avondale Park (2011), the made ground here was greater than 6m deep (refer to **Section 2.4** below). Although Avondale Park is not located within the area clearly labelled as a brickfield on the historic maps, it was

an unlabelled area of open land with a labelled brickfield to the northwest and a kiln in close proximity to the east. Given this setting and the deep made ground encountered, the Phase 1 and Phase 2 investigation reports described in Section 2.4 concluded that the deep made ground was likely to be filled pits either worked and filled between map editions, or simply left unlabelled on the map. On this basis the material encountered in made ground at Avondale Park gives an indication of what could be present in deep fill in other areas of the brickfield.

The Langley Silt and London Clay are classified as Unproductive Strata, whilst the Kempton Park Gravel is classified as a Secondary-A aquifer.

The nearest surface water feature to the sites recorded in the Landmark Envirocheck report obtained for the Stage 2 investigation report is reported to be 242m south west of Grenfell Tower, but this has not been designated and not identified by any other documented evidence reviewed by AECOM and its existence is uncertain. This is the only surface water feature noted within 500m of the sites.

2.4 Previous Ground Investigations

Sampling has previously been completed at Treadgold House and Avondale Park Gardens as part of the Stage 1 and Stage 2 investigation sampling phases related to the Grenfell Tower fire investigations. The relevant data from these intrusive investigations is tabulated in **Appendix G** and discussed within this report.

Also of relevance, are two previous reports in relation to Avondale Park, prepared by MLM Environmental – a Phase II Geotechnical Assessment (MLM Environmental, 2011) and a Phase 1 Preliminary Contamination Assessment (MLM Environmental, 2012). The nearest entrance to Avondale Park is located approximately 50m southeast of the Avondale Park Gardens site. The historical maps for the area of Avondale Park also show brickfields in the area from 1867-1895, therefore has a similar historical land use to that of Avondale Park Gardens and Treadgold House. For this reason, the available reports were used to help identify possible contaminants of concern that may also be present at Avondale Park Gardens and Treadgold House.

The Phase II Geotechnical Assessment report (MLM Environmental, 2011) concluded that there was a significant thickness of Made Ground (up to 6.45mbgl) of 'poor quality' which included deleterious materials. A strong organic odour was also noted from the Made Ground arisings. The Phase I Preliminary Contamination Assessment (MLM Environmental, 2012), also concerning Avondale Park, concluded that 'potentially complete' source pathway receptor linkages are present between the Made Ground and site users, with the potential contaminants of concern identified as metals, PAHs, TPHs, asbestos and ground gas. The assessment further suggested the source is likely associated with the historical brickfield in the area and that similar potential linkages could exist to the surrounding area also underlain by the former brickfield.

The logged shallow Made Ground (<1m) reported in the MLM report for Avondale Park is similar to that encountered at Avondale Park Gardens and Treadgold House, although with a greater proportion of grey / black clayey sandy ash and clinker gravel, which was not encountered at Avondale Park Gardens or Treadgold House.

Based on the conclusions of these two reports from Avondale Park, it was appropriate to consider the risk from the identified contaminants of concern (metals, asbestos, PAHs, TPHs and ground gas) at both Avondale Park Gardens and Treadgold House, as these sites also sit (either partially or wholly) within the footprint of the former brickfield. The available laboratory analytical data for the main COPC (lead, PAHs and asbestos) from Avondale Park is summarised in Appendix N. Asbestos was encountered in four of 78 samples tested, with all four of these being at depths between 0.1m and 0.3m bgl. As no asbestos was encountered in deeper soils potentially associated with brickfield fill then asbestos was considered unlikely to be a COPC associated with the historic brickfield use. Lead concentrations ranged between 16mg/kg and 4,445mg/kg, with the higher concentrations generally encountered in the deeper soils. The arithmetic mean lead concentration in samples shallower than 1m depth was 305mg/kg, whereas the mean concentration for samples 1m depth or deeper was 665mg/kg. This simple observation of apparently higher lead concentrations at depth was considered to provide some evidence that elevated lead concentrations could be associated with brickfield fill. For PAHs, the BaP concentration ranged between 0.17mg/kg and 590mg/kg, with mean and median concentrations of 19.3mg/kg and 3mg/kg respectively. The highest BaP concentrations were generally encountered in the shallow soils indicating that the high PAH concentrations did not appear to be associated with potential brickfield fill materials.

Ramboll (Ramboll, 2014) carried out a ground investigation at Avondale Park in 2014 which included ground gas monitoring of eight monitoring wells. Elevated concentrations of CO₂ and CH₄ were identified however the gas flow remained below the detection limit except for at one location during one monitoring round. The report concluded a worst case Characteristic Situation (CS) of CS2, but this was based on the single occasion on which a gas flow was encountered. All other gas screening values (GSVs) indicated a classification as CS1.

Part 2A Investigation

The Ramboll report for Avondale Park reports lead concentrations ranging from 41 – 1,976 mg/kg for a sample set of 52 samples which is similar to the range for Avondale Park Gardens, and slightly lower than for Treadgold House. The PAH concentrations were much higher in certain samples from Avondale Park than detected at Avondale Park Gardens (e.g. benzo(a)pyrene up to 590mg/kg at Avondale Park, compared to a maximum detection of 9.7mg/kg at Avondale Park Gardens and 5mg/kg at Treadgold House).'

A MLM report written for the adjoining Kensington Academy and Leisure Centre (KALC) (MLM, 2012a) site interpreted soil, groundwater and ground gas/vapour sampling. For the ground gas data, the site was classified as NHBC Traffic Light Amber 1 condition due to a maximum CO_2 concentration of >5% (6.9%). However the methane concentrations and flow rates were found to be low. The lead concentrations were reported to be between 14 and 12,000mg/kg, for samples collected up to 2m depth. The sample with a result of 12,000mg/kg was from 0.3-0.4mbgl, and is within the same order of magnitude as the highest concentrations reported at Treadgold House. It is noted that this sampling was completed prior to the redevelopment of the KALC area and therefore this high concentration is not necessarily indicative of current soil conditions in that area.

2.5 Background Soil Chemistry

The focus of the intrusive investigations at Treadgold House and Avondale Park Gardens is on lead in soil, with other heavy metals, asbestos and PAHs also being evaluated. This section summarises the background data sets available for these compounds that were considered during the Stage 1 and Stage 2 Environmental Checks investigations. Where relevant, these background data-sets have been presented and discussed in **Sections 5**, 6 & **7** of this report.

The Landmark Envirocheck reports presented in the Stage 2 report provide an overview of the background urban soil chemistry for a small number of metal elements, including arsenic, cadmium, chromium, lead and nickel. The data presented in these maps is taken from British Geological Survey (BGS) Geochemical Baseline Survey of the Environment (G-BASE) and London Earth soil chemistry surveys (British Geological Survey, 2010). The BGS GBASE / London Earth sampling project only includes analysis of metals (including lead) and hence there is no data-set for the other COPC from this source.

As part of the Stage 1 assessment, AECOM produced two technical notes related to urban soil pollution ('TN9: Published Data on National and Regional Urban Background Soil Concentrations' (AECOM, 2019a) and 'TN13: Potential Source Contributions to Urban Soil Pollution' (AECOM, 2019b)). TN9 identified a number of useful datasets for helping to define background soil concentrations, including the UK Soil and Herbage Survey (SHS) (Environment Agency, 2007a) (for metals and PAHs), London Earth (British Geological Survey, 2010) (for metals, part of the BGS G-BASE survey as noted above) and Vane, et al., 2014 in the Greater London area (for PAHs).

As part of the Stage 2 assessment, AECOM purchased the licence for the BGS London Earth datasets in the area around Grenfell Tower and the background data for lead was collated. The London Earth project is part of a nationwide project to determine the distribution of chemical elements in the surface environment, namely the Geochemical Baseline Survey of the Environment (G-BASE). Soil samples were collected at a density of four samples from every square kilometre and from a standard depth in the soil profile, 5cm – 20cm. Reported lead concentrations in soil taken from this study within a 5km radius of Grenfell Tower range from 20mg/kg to 10,000mg/kg. After the maximum reported value of 10,000mg/kg (sample location approximately 3km south west of the Tower), the next highest reported background concentration in topsoil within this 5km radius was 3821.3mg/kg (approximately 1km south east of the Tower). The Treadgold House and Avondale Park Gardens sites are located approximately 75m and 240m from the Tower respectively and therefore the background data extending to a 5km range from Grenfell Tower is equally relevant to these sites.

For the UKSHS dataset the two nearest sample locations to the investigation areas are Hyde Park and Richmond Park and these data are also included in the London Earth dataset. As a result the London Earth dataset is considered to be more indicative of local background, although the UKSHS dataset gives an indication of national urban background for comparison. London Earth data are not available for PAHs and therefore background PAH concentrations specific to the local West London area are not available in the same way as for lead.

The normal background concentrations (NBCs) (Johnson, et al., 2012) described in TN9 (AECOM, 2019a) are intended to be utilised in accordance with the Part 2A Statutory Guidance, which states that "Normal levels of contaminants in soil should not be considered to cause land to qualify as contaminated land, unless there is a particular reason to consider otherwise." The NBCs were derived by the BGS in associated with Defra with the explicit objective "to give guidance on what are normal levels of contaminants in English soils in support of the Part 2A Contaminated Land Statutory Guidance". It is noted that the values are intended to be used on a 'national to regional scale' and they are derived mainly using the G-BASE (including London Earth) above for

which AECOM has identified the specific samples local to the investigation areas. The NBCs have been calculated as the 95% upper confidence limit of the 95th percentile for each dataset and are therefore considered to be upper threshold values. Concentrations of a contaminant are considered to be typical and widespread for the identified contaminant domain up to (and including) the calculated NBC. For lead, the NBC in the urban domain has been defined as 820mg/kg and for benzo(a)pyrene the NBC in urban soils has been defined as 3.6mg/kg.

The literature review reported in TN9 did not identify any sources of information for background soil concentrations of asbestos. Since completion of the Stage 1 assessment, SoBRA has published a paper in 2020 titled 'The Distribution of Asbestos in Soil – what can the data mining of sample results held by UK laboratories tell us?' The SoBRA (2020) paper, and a paper 'Asbestos Contamination on Brownfield Development Sites in the UK' (Hellawell & Hughes, 2021) has been published in Environmental Research.

SoBRA (2020) focused on gaps related to the risk management of asbestos in soil, such as the lack of a collective understanding on the typical background concentrations of asbestos in soil across the UK. As part of the work, anonymised data from five UK laboratories was reviewed.

The anonymised data collated from the five laboratories as part of the study indicated that:

- Asbestos is not detected in the majority of samples;
- The majority of asbestos that is detected is chrysotile;
- The majority of the reported concentrations of free fibres detected in soils are below the method reporting limit of 0.001%wt/wt;
- Anecdotal information from the industry suggests that asbestos is detected at the majority of brownfield sites that are investigated. This data suggests that, on average, asbestos is detected in a small (but nevertheless potentially significant) proportion of samples from those sites.

The Hellawell & Hughes (2021) paper focuses on site investigations that included the collection of soil samples for asbestos contamination analysis. This project analysed the resource of brownfield asbestos data dated 2001-2019, using site investigation data from over 100 reports submitted to a local Borough Council, in Surrey, UK. Despite a high proportion of asbestos-containing samples containing more carcinogenic amphibole type, the results showed the asbestos concentrations to be very low, with 74% of samples having concentrations below the limit of detection of the laboratory and were predominantly of fibrous form. Most of the asbestos was found in the top 1m of made ground soil. Former gasworks were shown to have the highest asbestos detection rates.

Relevant data regarding asbestos based on the findings of the Stage 2 report has been summarised below. The asbestos content from samples previously collected and tested as part of the Stage 2 Environmental Checks investigation can be used to indicate what could be considered normal presence of asbestos in the area surrounding the Treadgold House and Avondale Park Gardens investigation areas. The relevant observations from the Stage 2 investigation are:

- Asbestos was detected in 20 sample areas out of a total of 45 sample areas at Stage 1 and 2 (44%).
- Asbestos was detected in 43 of the 502 soil samples taken across the Stage 1 and Stage 2 investigations (<9%).
- With the exception of the sampling areas of Waynflete Square and Lancaster Walkways, asbestos was
 identified in a minority of soil samples in each area (typically 1-3 samples out of the 10 samples taken per
 area). Where asbestos was found it does not therefore appear to be widespread when considering the
 spatial scale of the sampling in each area.
- The spatial distribution of soil samples identified to contain asbestos does not conform to an evident pattern across the investigation area.
- Of the 43 detections, 21 were reported in soils beneath turf ground cover. Asbestos detections below turf
 included amosite AIB debris and chrysotile ACM debris. Fragments of debris, if deposited on the surface,
 are less likely to penetrate turf surfaces than individual fibres or small bundles of fibres, suggesting that at
 least some of the identified asbestos is more likely to be associated with historic pre-fire contamination.
- Asbestos was detected at or above the reporting limit for quantification (0.001%wt/wt) in eleven samples (GTCS1-43, GTCS1-46, GTCS1-59, GTCS2-S035, GTCS2-S166, GTCS2-S197, GTCS2-S199, GTCS2-S305, 0-2cm, GTCS2-S313, GTCS2-S349, GTCS2-S381) at analytical Step 2 and in two samples (GTCS2-S191 and GTCS2-S349) in Step 3.

It is therefore expected that asbestos could be detected in a minority of samples in land that has been subject to repeated development, such as in London. The locations and concentrations of this asbestos are expected to be variable and unpredictable in most cases. The presence of asbestos in urban soils and made ground is typically known to be sporadic and unpredictable, and this is consistent with the asbestos identified in the Stage 2 assessment.

Part 2A Investigation

Project number: 60632092

3. Conceptual Site Model

The conceptual site model (CSM) related to Part 2A potential significant contaminant linkages to be addressed by the scope of works has been developed taking the final CSM presented in the Stage 2 report and augmenting it based on a data-gap analysis completed as part of the site investigation design (AECOM, 2021b) included in **Appendix B**. The data-gap analysis was completed to identify issues associated with potential non-fire related sources and contaminants that require further investigation within this scope of work. This updated CSM relevant to the current assessment of Treadgold House and Avondale Park Gardens is presented in **Table 2** below.

Table 2. Conceptual Site Model

	Sources		Pathways	Receptors	Discussion
Treadgold House (communal gardens to south and west of residential building)	Lead and other metals in soil PAHs in soil Petroleum hydrocarbons in soil	•	Ingestion of soil and indoor dust Dermal contact with soil (outdoor) Dermal contact with soil derived dust (indoor) Inhalation of dust (indoor and outdoor)	Ground floor residents	Treadgold House was not placed into a Part 2A Category previously following the Stage 2 investigation due to the high uncertainty associated with average lead concentrations and uncertainty with the manner that the communal garden is used by residents, and how this relates to standard land use assumptions. The higher concentrations of lead in soil in the south and west part of the gardens could have arisen from a variety of historical sources, including redevelopment works such as stripping and discarding of leaded paint and old roofing materials, or soils being imported from other unknown contaminated sources during redevelopment and landscaping, and nearby historical land-uses such as the brickworks which formerly occupied land now within the southern part of Treadgold House communal gardens. The concentrations of lead previously analysed from the four samples collected in ground level soil in the communal garden to the south and west of were 992mg/kg, 1,168mg/kg, 1,385mg/kg and 2,216mg/kg (during
to south and	Asbestos in soil	>	Inhalation of dust (indoor and outdoor)	(flats 1-10) of Treadgold House and their visitors	the Stage 2 Environmental Checks intrusive investigation). The historical use of the site as a former brickfield indicates the potential for other COPC to be present, possibly at slightly greater depth than the very shallow samples collected during Stage 1 and Stage 2. Taking into account the historical site investigation completed at Avondale Park (refer to Section 2.4), asbestos, PAHs, other
e (communal gardens to	Ground gas	>	Accumulation of ground gas in buildings – inhalation Inhalation of ground gas outdoors		metals and petroleum hydrocarbon fractions have been included as potential COPC due to the potential that the deeper fill of the old brickfield is encountered during the works. Asbestos was also encountered in samples collected at Treadgold House during the Stage 2 investigation, albeit at concentrations considered to be associated with a Category 4 linkage. Metals and PAHs were also assessed during Part 2A and considered likely to fall into Category 4; however they have been included here as a precautionary approach. Petroleum hydrocarbons were not assessed during Stage 2 as they were not considered to be a COPC associated with the Grenfell Tower fire. These contaminants are also expected to cover the most likely COPC that would arise from the
Treadgold Hous	•	•	Accumulation of ground gas in buildings – explosive atmosphere	Treadgold House (property receptor)	residential redevelopment of the site between 1957 and 1967. Ground gas is sometimes considered as a COPC for areas with a historical backfilling. Although gas monitoring as part of a previous Avondale Park investigation (refer to Section 2.4) consistently recorded carbon dioxide in ground gas, methane was rarely present and borehole gas flow was recorded on a single occasion. The age of the filling activities (all pre-1967 and likely much earlier) and the lack of borehole gas flow suggested a low risk from ground gas. However, ground gas has been included as a

	Sources	Pathways	Receptors	Discussion
				potential COPC, to be initially evaluated qualitatively during the intrusive investigation. This can be done by observation of whether any fill is present that is likely to generate gas to a greater extent than that encountered in the previous Avondale Park investigation. It is noted that although outdoor gas inhalation has been included as a pathway for completeness, it is considered that outdoor gas inhalation is a linkage that on its own would be likely to cause a negligible risk to residents.
Avondale Park Gardens	Lead and other metals in soil PAHs in soil Petroleum hydrocarbons in soil	Ingestion of soil and indoor dust Dermal contact with soil (outdoor) Dermal contact with soil derived dust (indoor) Inhalation of dust (indoor and outdoor)	Residents of Avondale Park Gardens and their	The higher concentrations of lead in soil in Avondale Park Gardens could have arisen from a variety of historical sources, including soils being imported during redevelopment and landscaping, and historical land-uses such as the brickworks which formerly occupied the land which now includes Avondale Park Gardens. The concentrations of lead encountered during Stage 1 at Avondale Park Gardens were 659mg/kg and 2,099mg/kg. The historical use of Avondale Park Gardens as a brickfield (now backfilled) and the subsequent residential development indicates the potential for other COPC to be present, possibly at slightly greater depth than the very shallow samples collected during Stage 1. Taking into account the historical site investigation completed at Avondale Park and KALC related investigations (refer to Section 2.4), asbestos, PAHs,
Avondale P	Asbestos in soil	Inhalation of dust (indoor and outdoor)	visitors	other metals and petroleum hydrocarbon fractions have been included as potential COPC in the event that deeper fill of the old brickfield is encountered. These contaminants are also expected to cover the most likely COPC that would arise from the subsequent uses as a workhouse and the residential redevelopment of the site between the 1920s and 1950s.
	Ground gas	Inhalation of ground gas outdoors	•	The age of filling activities (all pre-1967 and likely earlier), the lack of borehole gas flow in the Avondale Park investigation, and the lack of buildings within the investigation area suggests a very low risk from ground gas. It is noted that although outdoor gas inhalation has been included as a pathway for completeness, it is considered that outdoor gas inhalation is a linkage that on its own would be likely to cause a negligible risk to residents.

4. Sampling Investigation

This section sets out the details of the Stage 2 Follow on Soil Sampling exercise, which was carried out in accordance with the final agreed Site Investigation Design for the Stage 2 Follow on Work (AECOM, 2021b), which is included in **Appendix B**.

4.1 Site Walkover

David Dyson and Emma Toms of AECOM completed a walkover of the proposed sampling areas on the 9th November 2021, to identify any potential problems with sampling in the proposed areas, plan logistics for the sampling works, and select specific sampling locations within each area. The AECOM staff were accompanied by a representative from RBKC and the SQP. Letters were sent to the residents in advance to notify them of the walkover and the proposed works. Copies of these letters are included in **Appendix I**.

During the walkover, the indicative sampling locations detailed in the Site Investigation Design document (AECOM, 2021b) were compared to the actual site layouts, and also to available utility drawings. Physical evidence of utilities was also examined during the walkover, such as consideration of the presence of manhole covers and drainpipes. As a result of the walkover, it was identified that there were no significant issues with the indicative sampling locations chosen. No residents were encountered during the walkovers, and therefore no additional information regarding the specific use of the gardens could be gathered at this time. A photolog from the site walkover is included in **Appendix D** and plans showing the locations of the photos are included as **Figure A17** (Treadgold House) and **Figure A18** (Avondale Park Gardens) in **Appendix A**.

4.2 Sampling Locations

Sampling locations were chosen in accordance with the Stage 2 Follow on Site Investigation Design document (AECOM, 2021b).

The sampling locations within each area were finalised during the site walkover and were based on the indicative locations shown on the drawings included in the site investigation design, which is included in **Appendix B**. The Site Investigation Design includes the rationale for the distribution of sampling locations, which comprised the following principles:

- the site investigation design was to achieve a non-targeted grid based sampling dataset (in accordance with
 the recommendations of BS10175:2011+A2:2017) that may be suitable for the application of statistical
 methods in accordance with the CL:AIRE 2020 statistical guidance (Marriott, 2020). This was intended
 allow a more reliable statistical assessment of average concentrations within individual averaging areas;
 and
- Some targeted sampling was included to assess the local variability around the Stage 1 and Stage 2
 sampling locations and to investigate the potential for deeper contamination associated with the historic
 brickfield (mapped at the southern edge of the Treadgold House site and across the majority of the
 Avondale Park Gardens site). The targeted samples were excluded from statistical assessments to
 maintain the validity of the statistical approach.

The strategy for selecting each sample location and the depths of sampling at each location is presented in **Table 2** and **Table 3** of the Site Investigation Design document (AECOM, 2021b), and the proposed laboratory analysis is detailed in **Table 4** of that document, which is included in **Appendix B**. Any minor changes to the locations that were made to the scope compared with the Site Investigation Design document are detailed in **Table C1** in **Appendix C** of this report. A summary of the key scope amendments is included in **Section 4.2.3**.

4.2.1 Treadgold House

At Treadgold House, 90 individual pits were excavated (20 to 0.05m bgl, 43 to 0.2m bgl, 14 to 0.4m bgl, nine to 0.7m bgl, and four to 1.2 m bgl (though three of the four to 1.2m bgl were stopped early at 0.75m, 0.9m and 1.09m due to obstructions)):

- 1. For a hand pit depth of 0.05m bgl, one sample was taken between 0-0.05m;
- 2. For a hand pit depth of 0.2m bgl, two samples were taken between 0-0.05m and 0.1-0.2m;
- 3. For a hand pit depth of 0.4m bgl, three samples were taken between 0-0.05m, 0.1-0.2m and 0.3-0.4m;

4. For a hand pit depth of 0.7m bgl, four samples were taken between 0-0.05m, 0.2-0.1m, 0.3-0.4m and 0.6-0.7m:

5. For a hand pit depth of 1.2m bgl, four samples were taken between 0-0.05m, 0.3-0.4m, 0.6-0.7m and 1.0-1.2m (the deepest sample was not collected in the three 1.2m hand pits that encountered shallower refusals).

The final locations are shown on **Figure A2** and avoided any hardstanding (paths, paving slabs etc.), areas of underground utilities, and potentially intrusive or obstructive locations (such as directly outside windows/doors), whilst maintaining the general pattern of sample distribution to provide relatively evenly spaced grid-based spatial coverage of the identified exposure averaging areas. The final locations take into account the scope amendments described below in Section 4.2.3.

4.2.2 Avondale Park Gardens

At Avondale Park Gardens, 16 pits were excavated (12 to 0.2m bgl and four to 1.0m bgl). At Avondale Park Gardens the target excavation depths were 0.2 m bgl and 1.0 m bgl, with the number of samples taken as follows:

- 1. For a hand pit depth of 0.2m bgl, two samples were taken between 0-0.05m and 0.1-0.2m;
- For a hand pit depth of 1.0m bgl, four samples were taken between 0-0.05m, 0.1-0.2m, 0.5-0.6m, and 0.9-1.0m.

The final locations are shown on **Figure A3** and avoided any underground utilities or obstructions such as very densely vegetated borders or tree roots whilst maintaining the general pattern of sample distribution to provide relatively evenly spaced grid-based spatial coverage of the identified exposure averaging areas. The final locations take into account the scope amendments described below in Section 4.2.3.

4.2.3 Scope Amendments during Fieldwork

Treadgold House

A hand pit to 1.2m depth, with potential requirement for follow-on window sampling, was originally proposed to be excavated at TH145 (refer to SID in **Appendix B**). However, due to the relative proximity of an underground utility to location TH145, the 1.2m depth hand pit was switched to location TH142, with TH145 completed as a shallower hand pit to 0.4m depth.

For three locations at Treadgold House (TH142, TH161 and TH170), the proposed depth was not achieved due to obstructions within the hand pit and therefore at these locations, a sample was not collected at the proposed 1.0-1.2m depth.

Based on field observations the decision was taken not to progress any of the 1.2m depth hand pits to 3m depth using window sampling. This decision was based on the fact that fill material had already been encountered within three of these hand pits (therefore deeper drilling was not required to sample it) and the material appeared to be granular construction / demolition type material with a low potential for ground gas generation. In addition it was considered that there would be a high chance of the window sampling drilling method encountering refusal on the construction / demolition material, which typically comprised gravel and cobble of brick and concrete as well as ceramic and glass fragments, in a silty / clayey matrix, with larger concrete obstructions encountered at all three locations at depths between 0.7m and 1.07m. At the fourth location (TH104) apparent natural ground was encountered at 0.7m depth indicating that there was not deeper fill at this location and hence deeper drilling was not necessary. This decision was agreed with RBKC and the SQP at the time of the works, acknowledging that the composition of any different, deeper fill would remain unknown following the investigation. This was considered to be an acceptable uncertainty given the information presented in Section 2.4 regarding the ground gas risk potential of deeper fill associated with the former brickfield.

During the sampling a further 20 locations were added to the scope for Treadgold House (hand pits to 0.05m bgl). This was discussed and agreed between AECOM, RBKC and the SQP to increase the sample density in the garden area to the west of the building where it had become more apparent that access to the garden by children may be occurring over the ground floor balcony walls that face onto this part of the garden.

Avondale Park Gardens

An amendment to the scope at Avondale Park Gardens was made whilst on site, to collect an additional sample from 0.9-1.0m depth in the four deeper hand pits (APG101, APG106, APG113 and APG114). This was because

at APG101 and APG114, the material at 0.9-1.0m depth differed from the material at 0.5-0.6m depth, therefore it was considered that collection of additional samples was warranted, to ensure that the Made Ground could be assessed in greater detail. Samples were also collected at the same depth for APG106 and APG113 for completeness, although the material at 0.9-1.0m bgl was not identified to differ significantly from the material at 0.5-0.6m bgl in these locations.

4.3 Sampling Methodology

The sampling method was in accordance with the AECOM 'Grenfell Stage 2 Follow-on Scope – Soil Sampling Protocol' included in **Appendix B**. The method included:

- decontamination of sampling equipment between collection of each sample;
- using a stainless steel hand trowel and / or spade for excavating hand pits and collecting samples;
- placing excavated soil on plastic sheeting to prevent contamination of the ground surface;
- using dedicated nitrile gloves for each sample to avoid cross-contamination;
- photographing sample locations and soil arisings as a photographic record of the works;
- making a detailed description of the soil arisings;
- placing sampled soil in clean laboratory supplied sample containers for off-site transport;
- packaging samples for courier shipment to the laboratory in sealed, cooled boxes with chain of custody documentation;
- reinstatement of the ground using residual arisings, topped up with shop bought topsoil and with original turf (if present) replaced on the surface; and
- accurate measurement of the position of each sample location relative to fixed site features.

The sample location IDs were prefixed with TH (Treadgold House) and labelled from TH101-TH190 and APG (Avondale Park Gardens) labelled APG101-APG116. Blind duplicate samples were collected to cover a variety of testing and depths at the sites, and were labelled DUP01-DUP09 (for Treadgold House) and DUP10-DUP11 (for Avondale Park Gardens).

One full set of sample containers (1x tub, 2x 250g glass jar and 1x 60g glass jar) was collected for each soil sample. During the sampling activities, a supply of cool packs was kept in a dedicated project freezer at the Grenfell Tower site office. Each morning, empty sample containers were stored in cool boxes along with frozen cool packs. Fresh frozen cool packs were placed in the cool boxes once the samples had been collected to maintain a low temperature during transport. Samples were then submitted to the laboratory using the laboratory organised overnight courier or an AECOM team member taking the samples to a drop off at the courier depot. For any samples collected after the daily courier pick up, these were kept with two ice packs in the cool box in the Grenfell Tower site office and the ice packs were replaced immediately before collection the next morning. Scans of the signed Chains of Custody documents sent to the laboratory with the samples are presented in **Appendix L**.

During sampling, there were instances where excavated material was too large to fit into the designated sampling jars (for example, cobbles of brick, concrete, metal fragments). This material was described on the sample logs and photographed, however could not be sent to the laboratory for analysis due to its size.

4.4 Sampling Dates and Personnel

The exploratory soil sampling works were undertaken between the 22nd and 26th November 2021 (Treadgold House) and on the 6th December 2021 (Avondale Park Gardens). The AECOM sampling team comprised David Dyson, Emma Toms, Holly Fenwick and Ben Disney. The weather conditions during the sampling are included on the sample logs in **Appendix D**, but the general weather conditions were generally dry and cold, with some sun, except for on 26th November when there were some light rain showers during the morning, and 6th December, when there was steady rain from late morning and throughout the afternoon.

RBKC representatives Robert Tyler, Rebecca Brown and Kesha Smith were in attendance periodically during the sampling. The SQP visited, observed, and took photos of the sampling activities on the 24th November and 6th December 2021.

Sampling was completed with care, and the process was carried out in accordance with the sampling procedure provided in Appendix B of the Site Investigation Design document (**Appendix B** of this report) to ensure that the samples were collected, preserved and transported in line with best practice. The sampling was completed successfully and all proposed locations were sampled as per the Site Investigation Design other than the amendments listed in **Section 4.2.3**.

4.5 Analytical Testing

The full list of samples and their associated analytical testing is included in **Table C1** in **Appendix C**. Full details of the analytical methods, detection limits and laboratory accreditation are given in the Site Investigation Design document (AECOM, 2021b), which is included in **Appendix B**, and in the laboratory certificates, which are included in **Appendix E** and **Appendix F**.

The soil samples collected as part of the works were scheduled for testing for a selection of the following analytes: lead, asbestos (and asbestos quantification where fibres were detected), a suite of 13 metals (including lead)², a suite of 9 metals (including lead)², PAH-16 and lead bioaccessibility. All samples were analysed for lead, with the other analytes scheduled on a reduced selection of samples as defined by the site investigation design. A summary of the total number of tests completed is included in **Table 3** below.

Table 3. Summary of analytical testing completed

			Number	Number of results		
Investigation Area	Depth (mbgl)	Lead	Asbestos	Other metals	PAH-16	
Treadgold House	All	197	74	36	13	
	0-0.05	90	62	22	4	
	0.1-0.2	66	3	5	0	
	0.3-0.4	27	3	4	4	
	0.6-0.7	13	2	4	4	
	1.1-1.2	1	1	1	1	
Avondale Park	All	38	14	14	14	
Gardens	0-0.05	16	4	4	4	
	0.1-0.2	16	4	4	4	
	0.5-0.6	4	4	4	4	
	0.9-1.0	2	2	2	2	

4.5.1 Treadgold House Bioaccessibility Testing

Following receipt of the lead results for Treadgold House, lead bioaccessibility testing was scheduled on six samples. The samples tested are detailed in **Table 4** below.

Table 4. Samples Scheduled for Lead Bioaccessibility Testing

Sample	Depth (m)	Original Sample Lead Concentration (mg/kg)	Ground Conditions
TH109	0-0.05	1576	Bare soil
TH109	0.1-0.2	8259	Bare soil
TH155	0-0.05	1485	Turf
TH155	0.1-0.2	3623	Turf
TH120	0-0.05	1065	Bare soil
TH169	0-0.05	3649	Turf

² '9 metals' includes As, Cd, Cr, Cu, Pb, Hg, Ni, Se, Zn. '13 metals' includes the '9 metals' plus Ba, Be, B, V

These samples were chosen to provide spatial coverage of the Treadgold House investigation area, cover a variety of surface conditions (turf vs. bare soil) and also capture one of the highest lead concentration of 8,259mg/kg at TH109 (discounting potential outliers >10,000mg/kg). At two locations, both the 0-0.05m and 0.1-0.2mbgl samples were tested, to determine if there was variation in the bioaccessibility result with depth. Testing of the deeper fill material was not carried out as potential exposure of residents to the deeper soils was considered to be much lower and the lead concentrations appeared to be lower in the deeper samples.

4.5.2 Avondale Park Gardens Additional Testing

At Avondale Park Gardens, four additional samples outside the original scope of works were collected between 0.9-1.0m bgl (APG101, APG106, APG113 and APG114). Two of these were scheduled for testing due to observed changes of material within the Made Ground between samples collected at 0.5-0.6m and 0.9-1.0 m (TH101 and TH114), with the changes to the soil type described in detail in the logs in **Appendix D.** The two remaining samples collected (TH106 and TH113) did not appear to display a change in soil type between the shallower and deeper sample therefore these were not scheduled for analysis.

4.5.3 Duplicates

A total of 11 blind duplicate samples were collected during the soil sampling. The duplicate samples were scheduled for the same analytical suite as their corresponding primary soil sample in all cases, except for DUP01 (scheduled for lead and asbestos only), DUP05 (scheduled for lead only) and DUP08 (scheduled for lead only). Duplicates were chosen to ensure a good spatial distribution of testing, in accordance with the total number proposed in Table 4 of the Site Investigation Design document (AECOM, 2021b). This resulted in the above listed duplicates not requiring the same testing as the primary soil sample.

For the purposes of statistics and averaging calculations in this report, the 'original' sample concentration has always been used. The concentrations from the duplicate samples are only considered for the purposes of this section of the report.

The sample locations where the blind duplicates were collected, and their corresponding soil samples are summarised in **Table C1** in **Appendix C**. A summary of the total duplicate tests completed is provided in **Table 5**.

Table	e 5.	Summary	ot o	dupl	icate	testing	j comp	leted
-------	------	---------	------	------	-------	---------	--------	-------

Investigation Area	Sample Analysis	No of primary samples tested	Total QA/QC duplicate samples tested
Treadgold House	Lead	197	9
	Asbestos	71	4
	Other metals	36	1
	PAH-16	13	1
Avondale Park Gardens	Lead	38	2
	Other metals, asbestos & PAH-16	14	1

4.5.4 Quality Assurance

The review and checking process for the Field Records was performed as per AECOM Field Procedure 'FP26 - Field Sampling and Laboratory Quality Assurance and Quality Control Procedures'. The completed field records were checked by the originators on the day of the field work.

Review of field notes was completed as soon as possible for all locations by the project manager David Dyson. The review included performing a detailed check of field data sheets for completeness and accuracy.

4.6 Summary of Ground Conditions

The full description and sampling notes for each sampling location and a photographic log is presented in **Appendix D**.

At Treadgold House, the ground conditions encountered were: topsoil (generally comprising dark brown sandy silt to silty clay with varying amounts of rootlets) overlying Made Ground (generally heterogeneous across the investigation area, comprising sandy gravelly silt to gravelly clay). The topsoil was either exposed in soil beds and borders with varying vegetation cover (e.g. rose bushes, underneath hedges, ivy-covered) or was present beneath grassed areas. The grass cover varied across the garden from good turf entirely covering the soil, through to much thinner grass cover without an appreciable turf thickness, showing exposed soil. The areas with thin grass cover are listed as partial turf in **Table C2** in **Appendix C** and these locations were more frequent in the western part of the garden where the garden is more shaded than by tree cover and the building. In the southern part of the garden, good turf cover was more common and partial turf was more localised.

At the four locations planned to be excavated to 1.2m depth (TH104, TH142, TH161 and TH170), three (all except TH104) were terminated at shallower depths of 0.7m – 1.07m due to refusal within Made Ground typical of construction / demolition materials At TH142 a large concrete obstruction (possible in-situ slab) was encountered at 0.7m depth, which could not be by-passed despite extending the hand pit by 50cm in two directions. At TH161 cobbles of concrete and brick were encountered through the Made Ground in the depth range 0.3m to 0.9m, with a large concrete obstruction encountered at 0.9m depth which prevented further excavation. At TH170, gravel sized brick and glass was encountered throughout the Made Ground from 0.1m to 1.07m depth, with brick cobbles at depths below 0.6m and possible tarmac at 1m depth. The excavation eventually encountered refusal on a concrete obstruction at 1.07m depth. At one location (TH104), natural material (stiff brown to orangish brown clay with decomposed wood fragments) was encountered at 0.7mbgl. The topsoil was generally noted to be approximately 0.2m thick. There were varying amounts of anthropogenic material noted within the topsoil and Made Ground across the investigation area, details of which are included on the sample logs in **Appendix D**.

At Avondale Park Gardens, the ground conditions encountered were topsoil (generally comprising dark brown clayey silt with varying amounts of sand / gravel) to 0.2mbgl, overlying Made Ground (generally comprising gravelly clayey sand) to the base of the deepest hand excavated pits at 1mbgl. Natural material was not encountered within any of the locations at Avondale Park Gardens. The cover on the topsoil was either turf or open soil beds, although the majority of the soil beds were heavily vegetated with shrubs. The turf at Avondale Park Gardens was good quality and provided a barrier to the underlying topsoil. The surface cover at each sampling location in Avondale Park Gardens is listed in **Table C2** in **Appendix C**

Similarly to Treadgold House, there were varying amounts of anthropogenic material noted in the topsoil and Made Ground across the Avondale Park Gardens investigation area, details of which are included on the sample logs in **Appendix D**.

Table 6 presents a summary of the visual or olfactory observations of potential sources of COPC (such as ash, coal, and pieces of metal) identified during the field works. A large proportion of the samples included inert anthropogenic fragments of brick and concrete, and many included plastic fragments and ceramic / tile. These items have been excluded from the below table, but details can be found in the sample logs in **Appendix D**.

Table 6. Visual and Olfactory Observations of Potential Sources of COPC

Sample Location Area	Figure Ref.	Sample location	Depth (m)	Observed Potential Sources of COPC
Treadgold House	A2	TH105	0.1 - 0.2	Occasional ash (up to 1cm)
		TH106	0.1 - 0.2	Possible ash.
		TH107	0.0 - 0.2	Possible ash, a rounded coal gravel.
		TH114	0.3 - 0.4	Ash.
		TH118	0.1 – 0.2	Piece of ash (approximately 1.5cm).
		TH119	0.4	Ash fragment (~2cm).
		TH127	0.05 - 0.2	Possible ash fragment (2 pieces, <1cm).
		TH187	0 - 0.05	One small piece of charcoal.
Avondale Park Gardens	A3	APG106	0 – 0.2	Onion odour noted – assumed related to bulbs/rootlets present.
Gardens		APG107	0.1 – 0.2	Coal fragments.
		APG110	0.1 – 0.2	1cm piece of ash.

Sample Location Area	Figure Ref.	Sample location	Depth (m)	Observed Potential Sources of COPC	
		APG111	0 – 0.2	Rare coal.	
		APG112	0.1 - 0.2	Approximately 0.5cm piece of ash.	

For the samples for which coal or ash were noted at Treadgold House, the lead concentrations range from 192-2412mg/kg, with an arithmetic mean of 1447mg/kg. When compared to the lead dataset summaries presented in Table 21 and Table 22, this does not indicate that the presence of observed ash / coal results in higher concentrations of lead. At Treadgold House, there is no PAH data for these samples.

For the samples for which coal or ash were noted at Avondale Park Gardens, the lead concentrations range from 506-1027mg/kg, with an arithmetic mean of 735mg/kg. When compared to the lead dataset summaries presented in Table 24, this does not indicate that the presence of observed ash / coal results in higher concentrations of the lead. At Avondale Park Gardens there is only PAH concentration for a sample which contained ash (APG110 at 0.1-0.2m) which has PAH concentrations within the same range compared to other samples from Avondale Park Gardens. This does not indicate that the presence of observed ash / coal results in higher concentrations of the PAHs.

4.7 Laboratory Analysis Results

The laboratory results are presented in the analytical test certificates included in **Appendix E and Appendix F** (for Treadgold House and Avondale Park Gardens respectively). Test methods and the accreditation status of each analysis were as per the Site Investigation Design document (AECOM, 2021b) and are also included within the laboratory analytical certificates. The analytical laboratory used for all testing was Element Materials Technology (Element), Unit 3 Deeside Point, Zone 3 Deeside Industrial Park, Deeside, CH5 2UA, UKAS Accreditation No. 4225.

4.7.1 QA/QC

A Data Validation Summary Report (DVSR) has been completed in accordance with the AECOM standard procedures. The completed DVSR is included in **Appendix J** and concludes that the analytical data received for the exploratory samples is suitable for interpretation, with the following minor comments:

 One dilution error made by the laboratory was identified after AECOM queried an unusually high lead concentration and requested a re-analysis of the sample from 0.1-0.2m depth at TH165. This result is discussed in more detail in **Section 4.7.3**.

The analysis of metals is usually completed by first drying and crushing the sample before extraction for analysis. However, when asbestos is identified in the 'as received' sample, the laboratory does not dry and crush the sample as part of the preparation method to avoid the potential for exposure the laboratory analysts to asbestos fibres. This means that the sample is not prepared in the manner consistent with the laboratory accredited method; however, the analytical method is the same as that used for the accredited analysis and undergoes the same internal laboratory QA/QC checks including process blanks, calibration checks and detection limit checks. The data are therefore considered suitable for interpretation.

4.7.2 Relative Percent Difference (RPD) Calculation

The evaluation of the data quality results is determined using duplicate samples submitted to the lab. The results from duplicate samples are used to calculate the Relative Percent Difference (RPD), which is defined as:

$$RPD = 200 \frac{(x_1 - x_2)}{(x_1 + x_2)}$$

where x_1 and x_2 are the values of the concentration obtained for an analyte x in duplicate samples, and $(x_1 - x_2)$ is the absolute difference of x_1 and x_2 .

All 11 of the duplicate samples taken were analysed by the laboratory. The laboratory was not informed of the location from which the duplicate samples were taken. The RPD 'limits' adopted in this intrusive investigation were:

1. If the value is <10x the laboratory method reporting limit, then the RPD should be <80%.

2. If the concentration is between 10 and 20x the laboratory method reporting limit, then the RPD should be <50%.

3. If the concentration is >20x the laboratory method reporting limit, then the RPD should be <30%.

Based on this, the RPDs for the analysed duplicate samples were considered. The duplicate sample assessment is presented in **Table C2 and C3** in **Appendix C**. For the main COPC the RPDs were identified as acceptable, except in the circumstances listed in **Table 7**:

Table 7. RPD results

Location	Depth	Duplicate sample	COPC	RPD	RPD threshold	Acceptable	Comment
TH101	0- 0.05m	DUP01	Lead	30	<30	Υ	The RPD of 30 is on the threshold for being acceptable
TH104	0.6-	DUP02	Lead	76	<30		-
	0.7m		Mercury	188	<30		-
			Zinc	57	<30		-
TH120	0.3- 0.4m	DUP04	Lead	89	<30		-
TH149	0- 0.05m	DUP07	Asbestos PCOM	100	<80	N	The original sample result for TH149 is below the detection limit (<0.001%) and the duplicate result is within a factor of three of the quantification limit. This indicates that the RPD is not a reliable indicator.
TH161	0.3- 0.4m	DUP08	Lead	32	<30	N	It is noted that the RPD was 32 for this sample, therefore slightly above the threshold of 30 for being acceptable
TH168	0.3- 0.4m	DUP09	Lead	50	<30		-
APG103	0.1-	DUP10	Phenanthrene	80	<30		-
	0.2m		Anthracene	55	<30		-
			Fluoranthene	42	<30		-
			Pyrene	39	<30		-
			Benz(a)anthracene	39	<30		-
			Chrysene	37	<30		-
			Benzo(a)pyrene	41	<30		-
			Indeno(1,2,3-c,d)pyrene	41	<30		-
			Dibenz(a,h)anthracene	62	<30		-
			Benzo(g,h,i)perylene	45	<30		-
			Benzo(b)fluoranthene	39	<30		-
			Benzo(k)fluoranthene	39	<30		-
			Benzo(b)&(k)fluoranthene	39	<30		-
			Barium	36	<30		-
			Lead	57	<30		-

In total there were 7 of the 11 duplicate samples for which the RPD for individual chemicals was considered 'high'. This is anticipated to be normal for soil samples, due to the expected heterogeneity in the soil - the variation in the results provide an indication of the degree of heterogeneity in the soil. One of the results with a 'high' RPD (asbestos in TH149/DUP07) was for reported concentrations below and within a factor of three of the quantification limit. For reported concentrations this close to the detection limit, the RPD is not a reliable indicator for QA purposes.

The RPD values which are considered 'high' for lead were collected from the following depth intervals:

- 1 out of 3 samples taken between 0 0.05m
- 1 out of 4 samples taken between 0.1 0.2m
- 3 out of 3 samples taken between 0.3 0.4m
- 1 out of 1 sample taken between 0.6 0.7m

For lead, RPD exceedances were identified for six of the 11 duplicate samples, although two of these (RPDs of 30% and 32%) were at or extremely close to the threshold of 30%. It is noted that the majority of the samples with 'high' RPDs for lead were collected from deeper than 0.2m bgl. The material deeper than 0.2m bgl was generally described as Made Ground, and included highly heterogeneous material such as cobbles of concrete, slate, brick and flint. The only exception to this is DUP04 where the log does not indicate any obvious heterogeneity in the soil sample. This suggests that the high RPDs noted from the deeper samples reflect the heterogeneity of the Made Ground. Since the deeper Made Ground samples generally reported lower concentrations of the main COPC than the shallower soil samples from 0-0.05m and 0.1-0.2m depth, the greater variability of results in the deeper samples is not considered to have an adverse effect on the data interpretation.

For the shallowest samples (0-0.05m and 0.1-0.2m depth), only two out of seven of the duplicates noted high RPDs for lead. As this is the main dataset of concern for the human health assessment in this report, the analytical data is deemed to be suitable for use for interpretation. It is noted that where average concentrations are calculated for comparison against risk-based screening criteria, the inherent variability of reported soil concentrations means that averages based on fewer samples will have a higher level of uncertainty than those based on a large number of samples.

4.7.3 Lead Analysis – TH165 and TH108

When analysed for lead, the sample at TH165 from 0.1-0.2m depth returned a result of 384,900mg/kg. This appeared to be anomalous when compared to the rest of the data, therefore AECOM asked the laboratory to reanalyse the same sample both 'as received' and 'crushed and dried'. The results of the re-analysis were 4,740mg/kg (as received) and 8,536mg/kg (crushed and dried). Given the large difference between the originally reported result and the results from the re-analysis, AECOM asked the laboratory to investigate a possible cause of the original high concentration. The following feedback was received from the laboratory regarding the original result:

...a dilution error appears to be the cause for the initial [very] high reported Pb result...a correction factor x10 higher than prepared has been applied...

Reported: 384,900 mg/kg Pb Actual result: 38,490 mg/kg Pb.

...All quality checks are within defined criteria for all testing...Nothing to indicate any issues with the analysis.

All other analytes measured in Soil Trace suite shows comparable data across all repeats (with exception of Sb which varies as per Pb) confirming no sample mix-up, suggesting therefore initial elevated Pb is possibly the result of a hotspot/sample heterogeneity.

The result from the re-analysis is more consistent when compared with the other samples analysed from this site, for example the next highest concentration measured at Treadgold House was TH108 at a depth of 0.3-0.4m with a result of 20,630mg/kg and the next highest concentration reported from the same plot (plot 1) as TH165 was TH167 at a concentration of 2,229mg/kg. For the purposes of the data interpretation, the concentration of 38,490mg/kg has been used as a precautionary approach, however consideration is given to the re-test result of 8,536mg/kg, which indicates a high degree of heterogeneity at this particular location. A copy of the email correspondence with the laboratory has been included in **Appendix E**.

AECOM also queried the results of TH108 at 0.1-0.2m depth (18,960mg/kg) and TH108 at 0.3-0.4m depth (20,630 mg/kg), as these appeared to be potential outliers, with no potential evidence from the soil sample descriptions to justify the high concentrations. The comments received were as follows:

Both samples were prepared...on 30/11/21 and were analysed the same day...

Both samples required dilutions for their Pb conc. fall within instrument calibration range and were diluted and analysed...on 01/12/21.

Excellent agreement is seen between neat and dilution data confirming no dilution errors.

All quality control checks are within acceptable limits for the testing - AQC/Ind Cal/Low Cal checks within defined criteria, Process Blank <LOD, Cal R2 > 0.999, peaks on wavelength with no observed inter-element spectral interference.

Nothing to indicate any issues with the testing.

Happy with reported data for these two samples.

Therefore, as the laboratory could not identify any specific analytical problems or concerns with the reported concentrations, both samples have been included in the data interpretation. A copy of the email correspondence with the laboratory has been included in **Appendix E**.

4.7.4 Outliers / Statistical Analysis

4.7.4.1 'Targeted' sampling – Treadgold House

A number of 'targeted' samples collected during the work – these were samples collected surrounding four of the original Stage 2 samples collected at Treadgold House in 2020 (GTCS2-S274, GTCS2-S275, GTCS2-S279 and GTCS2-S280). Three samples were collected associated with each of the original locations – see **Table 8** for more details. The purpose for these samples were to look for spatial variation of the lead concentrations at these locations. RPDs were calculated comparing the targeted samples taken during November 2021 to the corresponding original sample taken during the Stage 2 sampling to give a measure of variability. Of 36 comparative cluster samples taken only four gave RPDs which would be considered 'high' based of the criteria stated in **Section 4.7.2** (summarised in **Table 9**). Therefore, it was deemed that there is a limited degree of variability. As these samples were located close to the original Stage 2 samples, the initial approach has been to exclude them for the purpose of averaging, and any statistical discussions, and therefore are not discussed further in the report. However, the risk assessment section does include averages with the clustered samples also included to determine whether the variability observed is likely to have any significant impact on the interpretation and conclusions of the report.

Table 8. Results summary of 'Targeted' Samples excluded from averaging

Original Stage 2 location	Cluster number	'Targeted' samples	Concentration (mg/kg)	Inside the former brickfield (yes/no)
GTCS2-S274	1	TH105 0-0.05m	1,326	No
(0-0.02m = 1,168mg/kg)		TH105 0.1-0.2m	2,412	
		TH106 0-0.05m	1,381	
		TH106 0.1-0.2m	1,488	
		TH107 0-0.05m	1,307	
		TH107 0.1-0.2m	1,122	
GTCS2-S275	2	TH1110-0.05m	1,027	No
(0-0.02m = 992mg/kg)		TH111 0.1-0.2m	1,273	
		TH112 0-0.05m	1,009	
		TH112 0.1-0.2m	935	
		TH113 0-0.05m	1,270	
		TH113 0.1-0.2m	3,930	
GTCS2-S279	3	TH131 0-0.05m	1,893	Yes
(0-0.02m = 1,385 mg/kg)		TH131 0.1-0.2m	1,831	
		TH132 0-0.05m	1,692	
		TH132 0.1-0.2m	4,638	
		TH136 0-0.05m	1,615	
		TH136 0.1-0.2m	3,644	

Original Stage 2 location	Cluster number	'Targeted' samples	Concentration (mg/kg)	Inside the former brickfield (yes/no)
GTCS2-S280	4	TH148 0-0.05m	1,678	Yes
(0-0.05m = 2,216 mg/kg)		TH148 0.1-0.2m	2,031	
		TH149 0-0.05m	1,327	
		TH149 0.1-0.2m	1,920	
		TH150 0-0.05m	1,921	
		TH150 0.1-0.2m	2,434	

Table 9. RPD results for 'Targeted' Samples

Cluster number	Maximum lead concentration (mg/kg)	Mean lead concentration (mg/kg)	Number of 'high' RPDs (total number of samples)
1	2,412	1,458	1 (6)
2	3,930	1,491	2 (6)
3	4,638	2,385	1 (6)
4	2,434	1,932	1 (6)

4.7.4.2 'Targeted' sampling – Avondale Park Gardens

At Avondale Park Gardens, three targeted samples were planned around the original Stage 1 sampling location GTCS1-23. These locations, APG109, APG111 and APG113, are shown on **Figure A3** in **Appendix A** and the lead concentrations from each location are summarised in **Table 10** below.

Table 10 Clustered samples at Avondale Park Gardens

Original Stage 1 location	'Targeted' samples	Concentration (mg/kg)	Ave (mg	rage concentration /kg)
GTCS1-23	APG109 0-0.05m	192	3	Mean = 1,328
(0-0.05m = 2,009mg/kg)	APG109 0.1-0.2m	222	3	
	APG111 0-0.05m	84	9	Median = 901
	APG111 0.1-0.2m	90	1	
	APG113 0-0.05m	78	2	
	APG113 0.1-0.2m	61	1	

The reported concentrations from GTCS1-23 and APG109 appear very similar, whereas the concentrations from APG111 and APG113 are markedly lower and more similar to the other concentrations at Avondale Park Gardens. A spatial review of the final sample locations indicates that APG109 was noticeably closer to GTCS1-23 and is also located on the same bare soil within the flower bed, whereas APG111 and APG113 were further away and from beneath turf.

Given these differences it was concluded that the sample results for APG109 would not be included in data averaging for comparison against assessment criteria as this location is represented by the original GTCS1-23 sample. However, it is considered to be appropriate to include data from APG111 and APG113 within data averaging for the risk assessment as they are not representative of the same soil where the higher concentrations were initially encountered at GTCS1-23. As this is not consistent with the originally planned assessment approach, the assessment has also been done with these locations excluded from the site-wide averaging to determine whether there would be any difference in the findings.

The higher concentration at APG109 does confirm the higher lead concentration at GTCS1-23, as the concentration of APG109 was a similar order of magnitude, and therefore could represent a localised 'hotspot' of higher lead concentrations in soil.

4.7.4.3 Outliers – Treadgold House

During the statistical analysis, the recent CL:AIRE 2020 statistical guidance (Marriott, 2020) was considered. Further details of the applicability of this guidance to the data collected at Treadgold House are provided in Section 5.2. Using this guidance for Treadgold House, when the shallow soil sample dataset was considered (0-

0.02m, 0-0.05m and 0.1-0.2m), the statistical testing using Rosner's and Dixon's outlier tests suggested the possible presence of outliers within the dataset. The seven outliers identified by the analysis are detailed in **Table 11** below.

Table 11. Outliers in Treadgold House Shallow Soil Dataset

Location	Depth (mbgl)	Concentration (mg/kg)
TH108	0.1-0.2	18,960
TH165	0.1-0.2	38,490 (retest = 8,536)
TH109	0.1-0.2	8,259
TH162	0.1-0.2	6,245
TH125	0-0.05	6,230
TH156	0-0.05	6,029
TH138	0.1-0.2	5,942

Although identified as possible outliers, these samples have been included in the data-set for the purposes of the assessment in subsequent sections given that:

- there were no field observations to suggest that these samples contained different soil types or different materials within the soil compared to the other samples at the site; and
- The soils are present within the exposure area and therefore represent real concentrations that residents could be exposed to.

4.7.4.4 Outliers – Avondale Park Gardens

Using the same guidance for Avondale Park Gardens, when the shallow soil sample dataset was considered (0-0.05m and 0.1-0.2m), the outlier tests suggested the possible presence of only one outlier within the dataset. This was the sample from Stage 1 (GTCS1-23, 0-0.05m depth) at a concentration of 2,099mg/kg. As for Treadgold House, there were no field observations to suggest this sample contained different soil material, and this concentration is within the exposure area and could represent a real concentration that residents could be exposed to, and therefore this 'outlier' sample has been included for the purposes of the assessment.

5. Generic Quantitative Risk Assessment

5.1 Introduction

Assessment of the data obtained from Treadgold House and Avondale Park Gardens is required to fulfil the requirements of Part 2A of the EPA 1990 and the associated statutory guidance. The objective of this section will be to determine whether either area can be ruled out of meeting the definition of Contaminated Land and potentially fall into Category 4. The risk assessment has been carried out in accordance with the same broad methodology as that adopted for the Stage 2 Investigation for consistency.

The purpose of GQRA as defined in the Part 2A Statutory Guidance is to use generic assessment criteria (GAC) to help decide when land can be excluded from the need for further inspection and assessment, or when further work may be warranted. For Part 2A, one of the primary objectives of the GQRA is to determine whether land can be immediately placed into Category 4. For land where a contaminant linkage (CL) has been identified, the Statutory guidance states that this land should be placed into Category 4 where:

- 1. The land has only normal levels of contaminants in soils;
- 2. Contaminant levels do not exceed relevant GAC; or
- 3. Land where the estimated intake from soil represents only a small proportion of that from other sources (such as diet).

In UK guidance, the term GAC has typically come to be used to refer to assessment criteria derived in accordance with UK guidance and based on tolerable or minimal risk levels. Therefore for this QRA the term generic screening criteria (GSC) has been used to refer to a broader range of criteria including those derived by national organisations outside the UK as well as UK derived criteria that are based on low levels of toxicological concern (LLTCs), namely the Category 4 Screening Levels (C4SLs) published by Defra (Department for Environment, Food and Rural Affairs (Defra), 2012a).

Initially the risk assessment has adopted the existing generic screening criteria (GSC) and the site-specific assessment criteria (SSAC) derived for the Stage 2 report (SSACs are available for lead and BaP) to screen the data collected from both investigation areas as part of this investigation, as well as the data collected during the Stage 1 and Stage 2 Environmental Checks.

To address normal levels of contaminants in soils, the GQRA uses the background data information (particularly the NBCs) presented in **Section 2.5** to screen out – to the extent appropriate – concentrations of contaminants that do not exceed normal levels. In accordance with Paragraph 3.22 of the Part 2A Statutory Guidance "Normal levels of contaminants in soil should not be considered to cause land to qualify as contaminated land, unless there is a particular reason to consider otherwise. Therefore, if it is established that land is at or close to normal levels of particular contaminants, it should usually not be considered further in relation to the Part 2A regime...". The NBCs derived by Defra were explicitly intended to meet the definition of "normal levels" as described by the Part 2A Statutory Guidance, and it includes both the natural and diffuse anthropogenic contribution to the concentration of a contaminant in soil.

SSAC from the Stage 2 investigation and NBCs are considered to be relevant to the GQRA because in the context of Part 2A they can be used to decide when land can be excluded from the need for further assessment, or when further work may be warranted. They are considered generic for the purposes of this report because they have not been further modified as part of the current investigation (in the case of the Stage 2 SSAC) or are taken direct from published sources without modification (in the case of the NBCs).

5.1.1 Conceptual Exposure Scenarios

It is necessary for the adopted GSC and the previously derived SSAC to be appropriate and suitable for the conceptual exposure model identified for each site. GSC for use in the UK are typically available for six land use types based on the Contaminated Land Exposure Assessment (CLEA) (Environment Agency, 2009) and Category 4 Screening Level (C4SL) (DEFRA, 2012) guidance. The two scenarios that were considered most appropriate for the two sites during the Stage 2 investigation, and which have been initially adopted for this report are:

 Residential without private gardens where no homegrown produce is assumed (hereafter referred to as "Resi-HP").

Public open spaces in close proximity to residential property (hereafter referred to as "POSresi").

The applicability of these standard land-use scenarios to Treadgold House and Avondale Park Gardens is discussed in **Table 12** below.

Table 12. Sampling Area Land-use Scenario Selection

Area Name Discussion

Treadgold House The communal gardens to the south and west of the building are only accessible to residents of Treadgold House, with a mixture of grass and landscaping comprising vegetated soil borders and beds. A number of mature trees and hedges surround the edges of the garden (as shown indicatively on Figure A2) and the shading that this vegetation causes has resulted in the grass cover in some areas (particularly the garden area to the west of the building) becoming thin and patchy such that the soil is not covered by a protective turf

The communal gardens to the south and west of the building contain some small raised planters for growing produce, however the soil quality in the raised planters was assessed as part of the Stage 2 investigation and was found to be acceptable and suitable for continued use. There was no evidence of crop cultivation in ground level soil borders around the perimeter of the communal garden during the site walkover. The raised beds and consumption of homegrown produce pathway have not been considered further for this assessment.

The communal area to the south of the residential building has some doors to individual residential flats that open directly onto the communal garden. There is some evidence from the site walkover that this area is used by these residents in a similar manner to a residential garden as garden chairs / benches were observed during the walkover on the small areas of paving outside the doors. This area to the south of the residential building is continuous with the communal garden to the west of the building and therefore the ground level samples collected in these area have been compared against both the Resi-HP land use GSC and the POSresi land use GSC.

RBKC Housing has confirmed that the two external access gates to the garden remain locked and residents within the block do not have keys to these gates. This means that only the ground floor properties (Flats 1 to 6) have formal direct access to the garden. These properties are studio flats, and only suitable for single adult occupation, so would not house families. It was also noted that there are some ground floor flats (Flats 7-10) which could house families, however these do not have formal direct access out into the garden (although evidence observed suggests that some residents from Flats 7-10, potentially including children, may use the area, but the exact frequency and duration of any use is unknown). Potential access to the garden from Flats 7 to 10 would be by climbing over the waist-high ground floor balcony wall, apart from at Flat 9, where part of the concrete barrier of the balcony has been removed by past / current resident(s) to provide direct access to the garden. Discussion with RBKC has indicated that the balcony wall at Flat 9 is to be re-instated and it can be assumed that future occupation of Flats 7-10 will not permit removal of the wall. Regardless of the age of the full time residents, it is acknowledged that children could potentially visit all of Flats 1-10, and therefore be visitors to the southern and western communal gardens.

Occupants of individual flats, particularly adults, will tend to spend the majority of their time outdoors in the parts of the garden closest to the access point where personal items (chairs, tables, potted plants etc) are located. However, there would still be expected to be some exposure around the wider garden, for example to access the raised beds for growing fruit or vegetables.

For children there may still be a preponderance of outdoor exposure in closer proximity to their access point, which could be driven by a nervousness to not intrude on areas of the garden immediately outside neighbours windows or doors. However the uncertainty associated with this is relatively high given that children may also be likely to identify a particular location(s) in the wider garden for preferential play based on considerations such as denser tree cover for hiding (e.g. in the northernmost part of the garden) or searching out more secluded areas away from parental gaze such as the area where TH169 is located which is not visible from any of the flats.

Overall, the residents of Flats 1 to 6 are most appropriately assessed at a generic stage of assessment using the Resi-HP land-use scenario because of their direct and authorised access onto the garden. For residents of Flats 7-10, and child visitors of Flats 1-6, the POSresi land-use is considered to be most appropriate for generic assessment due to the reduced exposure frequency compared to the full residential land-use scenario. For visitors to Flats 1 to 6, one visit a week would be comfortably lower than the assumed exposure frequency for the POSresi scenario. For residents of Flats 7-10, the much more difficult garden access than a standard residential or POSresi scenario is also considered to reduce exposure frequency to below what is assumed for the POSresi scenario, making the assessment suitably conservative.

Avondale Park Gardens

This area is a fenced communal garden in the middle of a residential square. It comprises a grassed area with soil borders planted with trees and shrubs. Generally the area fits the POSresi land-use scenario although the railings around the entire area with a single gate, and the fact that the residential square is not a through route for anyone, means that the exposure frequency and duration assumptions of the POSresi scenario are likely to be conservative for Avondale Park Gardens.

Nonetheless sample results have initially been compared against the POSresi GSC whilst acknowledging the likely overly conservative nature of these criteria.

5.1.2 Selection of GSC

The land-use scenarios described in **Section 5.1.1** are applicable to GSC derived in accordance with the UK CLEA (Environment Agency, 2009) and Category 4 Screening Level (C4SL) methodologies (DEFRA, 2012) and may not be applicable for GSC published by other bodies such as the Dutch RIVM (see bullet list below). Where non-UK criteria are used, the assumptions are checked on a case by case basis to confirm that the criteria are sufficiently protective of the land use being investigated (the Dutch IVs do not take into account exposure at allotments, for example).

Health-based GSC are published by a number of authoritative organisations, including in the UK Defra and the Environment Agency, and internationally, the US Environmental Protection Agency (EPA) and the Dutch public health bodies (VROM and RIVM). The derivation of these criteria by these organisations is different – the organisations have each developed technical guidance and methodologies that are slightly different (aligned to their own regulatory frameworks and scientific judgements). The purpose of the criteria however is the same – to define concentrations in soil that do not warrant further action.

The screening criteria used in this assessment (in order of preference are):

- 1. Category 4 screening levels (C4SLs) (DEFRA, 2012).
- 2. Suitable for use levels (S4ULs) (Nathanail, McCaffrey, Gillett, & Ogden, 2015).
- 3. Generic assessment criteria (CL:AIRE/AGS/EIC, 2010).
- 4. Site-specific assessment criteria (SSAC) derived for the Stage 2 assessment (AECOM, 2021a).
- 5. Dutch Intervention Values (DIV) (Dutch Ministry of Infrastructure and the Environment, 2013).

The definitions and relevance of these screening criteria to UK guidance and Part 2A are summarised in **Table 13** below. More detailed definitions can be found in the reference documents for these criteria. Where non-UK criteria have been used to screen COPC, further discussion of the suitability in the context of UK guidance is provided in **Section 5.1.4**.

Table 13. Basis and applicability of chosen screening criteria

Screening Criteria	Basis	Applicability to Part 2A
C4SLs	Levels in soil that pose a low risk to human health. Values are derived using the Environment Agency's CLEA model with updated generic land use exposure assumptions and toxicological criteria termed "Low Levels of Toxicological Concern (LLTC).	Intended as "relevant technical tools" to help decide when land falls within Category 4 (no to low risk) for human health. Not intended to define Significant possibility of Significant Harm (SPOSH). The lead LLTC is stated to have been chosen to be above what was considered a value too close to minimal risk.
S4ULs	Levels in soil that pose minimal or no appreciable risk to human health. Values are derived using the Environment Agency's CLEA model with updated generic land use exposure assumptions defined by SP1010. The S4ULs do not use the 'Top 2' homegrown produce assumption that was introduced by the C4SL project. Toxicological criteria remain as health criteria values (HCV) (i.e. TDI or Index Doses as defined for SGVs) as recommended by Environment Agency SR2 guidance.	Signify concentrations that fall within Category 4 and represent no appreciable or minimal risk to health. Do not define SPOSH.
EIC GAC	Intended to compliment SGVs and derived using the CLEA methodology and CLEA model. The EIC GAC were derived using the more precautionary exposure assumptions used for deriving the SGV (compared to the more recent updated exposure assumptions used for C4SL derivation). Toxicological criteria remain as health criteria values (HCV) (i.e. TDI or Index Doses as defined for SGVs) as recommended by Environment Agency SR2 guidance.	As per S4ULs above. Widely considered to be superseded by the S4ULs and C4SLs. Still appropriate and used for COPC for which S4ULs or C4SLs have not been derived.
Stage 2 SSAC (separate criteria generated for Treadgold House and	Based on the C4SL standard land-uses, but with site specific adjustments made to bioaccessibility (site specific data), soil to plant uptake factors (site specific data), and soil ingestion rates (based on an update to the USEPA guidance on which the original CLEA and S4UL soil ingestions rates were based).	The Step 1 SSAC derived in the Stage 2 report were designed to provide an indication of the boundary between Category 3 and Category 4 land. The Step 2 SSAC were designed to provide an indication of where SPOSH might exist (i.e. the boundary

Applicability to Part 2A Screening Criteria Basis Avondale Park The Step 2 SSAC also adopted a higher between Category 3 and Category 1 or Gardens) toxicological threshold for lead and a further Category 2 land). reduction in soil ingestion rate. **Dutch Intervention** Designed to support the Dutch Soil Protection Act The exposure assumptions for the multi-use 2005 and Soil Quality Decree 2007. DIVs define Values (DIV) land-use are slightly different to those used in cases of "severe contamination" if the average the UK, but the intent is the same - protection concentration of at least one substance exceeds the of human health from adverse health effects. DIV in at least 25m3 of soil. DIVs are derived using The values define concentrations in soil that the CSOIL methodology and are defined for the do not pose a risk to humans where intervention would be required and are multi-purpose use of soil (human and ecological). Human health risk requiring intervention is defined designed to be used as the first screening as a situation where acute or chronic adverse health stage in a risk assessment process. They are effects may occur, or the contamination presents a therefore compatible with the use of similar demonstrable nuisance. The toxicological criteria GSC in identifying land that meets the for threshold substances (those that are not definition of Category 4 (particularly for genotoxic carcinogens) are set on the same general threshold substances). basis as the TDI for SGV etc. A different approach is taken for genotoxic carcinogens whereby linear For this report, Dutch criteria have been extrapolation methods are used to define soil adopted for the assessment of asbestos. concentrations that might be associated with an Further details of the assessment approach excess lifetime cancer risk (ELCR) of 1 in 10,000 for are included in Section 5.1.4. the exposed population. This ELCR is 10x higher than that typically adopted by the World Health Organisation (WHO) in the derivation of drinking water guidelines, and 100x higher than that used by the US EPA (see below). For asbestos, an ELCR of 1 in 1,000,000 is adopted, 10 times lower than the ELCR typically adopted by the WHO. Extrapolation is not endorsed by the UK Department of Health or the UK Committee on Carcinogenicity but it is a widely adopted approach internationally and has not been shown to underestimate risk relative to the Index Dose approach adopted in the UK.

Where screening criteria are presented for a range of different soil organic matter (SOM) contents, the use of values associated with the closest reported SOM have been used. The range of SOM values reported for all of the Stage 1 and Stage 2 soil samples (including for Treadgold House and Avondale Park Gardens) is 2.1% to 45% with a geometric mean of 8.6% and an arithmetic mean of 9.7%. Within that dataset, one sample came from Avondale Park Gardens (10.6% SOM) and four came from Treadgold House (5.9% to 12.9% with arithmetic mean of 10.1%). Samples from this phase of work were not scheduled for SOM analysis as the GSC for the main COPC (lead, asbestos, PAHs (exc. naphthalene) are not sensitive to SOM content. However, screening criteria have been chosen based on a SOM of 6% for UK criteria which are typically reported for either 1%, 2.5% or 6% SOM. Therefore the GSC derived using SOM of 6% are considered to be suitable for use in this report.

5.1.3 Additional Considerations for Specific Contaminant Groups

5.1.3.1 PAHs

The C4SL for benzo(a)pyrene was derived using toxicological studies based on coal tar toxicity from a study by Culp et al., and it is intended to act as a GSC for the additive toxic effects of carcinogenic PAHs. Public Health England (PHE) (Public Health England, 2017) has endorsed this surrogate marker approach for assessing PAH toxicity on the assumption that the PAHs ratios in the samples being assessed are similar to those in the coal tars used for the toxicological studies. The PHE report defines 'similar' as where the ratios of each PAH relative to BaP are within an order of magnitude of the ratios from the test material (in this case the coal tar from Culp et al toxicological study used to derive the C4SL).

The PAH ratios for all samples collected as part of the Stage 1 and Stage 2 Grenfell Tower investigation have been plotted in accordance with the PHE approach. This is shown on the four separate plots³ of **Figure 1** and **Figure 2** below (for Treadgold House and Avondale Park Gardens respectively). **Figure 1** and **Figure 2** also show in green the order of magnitude ranges used to decide where the PAH ratios are 'similar' to the ratio for the Culp et al toxicological study. For the analysis, the concentration of PAH samples below detection limit were assigned the value of the detection limit.

³ Data limits on the spreadsheet mean not all data can fit on to one graph.

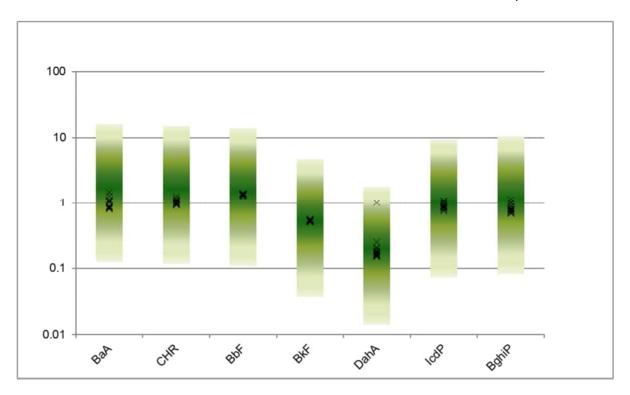


Figure 1. PAH ratio plot for Treadgold House soil sample PAH compositions against Culp et al ratios

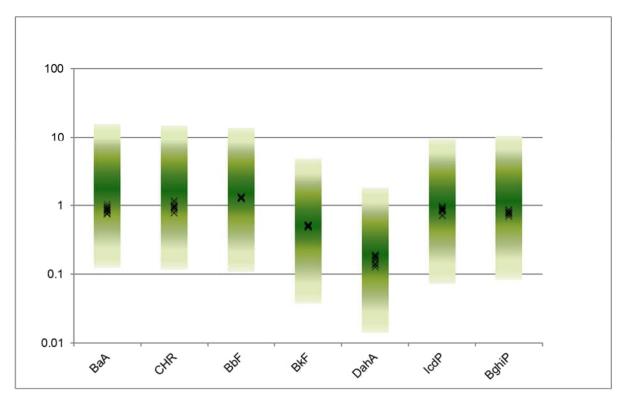


Figure 2. PAH ratio plot for Avondale Park Gardens soil sample PAH compositions against Culp et al ratios

As seen in **Figure 1** and **Figure 2**, there are no samples from Treadgold House or Avondale Park Gardens outside the order of magnitude range for any of the ratios. This indicates that for all of the samples, the BaP surrogate marker approach is considered to be appropriate for evaluation of additive risk from carcinogenic PAHs.

5.1.4 Asbestos

There is no UK regulatory guidance on the assessment of asbestos in soil. Dutch authorities developed a risk assessment methodology that has been adopted/amended for use in other countries and is considered relevant for use here in the absence of UK regulatory guidance. The CIRIA C733 report 'Asbestos in Made Ground' guidance (Nathanail, Jones, Ogden, & Robertson, 2014) identifies six factors to consider in the use of non-UK guidelines for asbestos. These six factors are considered in **Table 14** below.

Table 14. Consideration of applicability of Dutch asbestos methodology for Part 2A

Factor identified in CIRIA C733	Comment
Differences in national policy, guidance and assumptions to soil risk assessment.	No different to UK in so much that the intent is to identify land that poses a level of risk to human health that triggers regulatory intervention.
Differences in asbestos risk modelling and toxicological approaches.	The UK does not have a risk modelling approach for asbestos in soil. The UK toxicological approach to asbestos is set out by the HSE and the preferred risk model is that developed by Hodgson & Darnton (described in CIRIA C733 guidance (Nathanail, Jones, Ogden, & Robertson, 2014). This model continues to be refined by the authors, as does the risk model used by the Dutch. The most recent review of the toxicology by the Health Council of the Netherlands has not been adopted as policy and illustrates the variability in the interpretation of the epidemiological data that has to be accepted in the risk assessment process.
Differences in potency of the different asbestos types.	The Dutch methodology assumes that amphiboles are 10x more potent than chrysotile. The HSE does not differentiate between asbestos type in setting the control limit for occupational exposure. The Hodgson & Darnton model assumes a potency ratio of 1:100:500 for chrysotile, amosite and crocidolite. Of note, the Dutch methodology is based on airborne fibre concentrations not exceeding 100f/m³ for amphiboles (amosite and crocidolite), and 1000f/m³ for chrysotile. This is consistent with the WHO air quality guideline value for all asbestos of 1000f/m³ (all values as measured by transmission electron microscopy).
Differences in climate.	The climate of the Netherlands and the UK is similar.
Whether the approach is likely to overestimate or underestimate risk in a UK context	Taking into account the information within this table the Dutch approach is considered likely to be consistent with risk in a UK context given the similar climatic conditions, and the objective to evaluate asbestos in soil concentrations that give risk to minimal risk.
Appropriateness and applicability of thresholds or toxicological benchmarks.	See above for the air guideline values adopted by the Dutch methodology. Unlike the DIV for other substances, the DIV for asbestos is based on an asbestos fibre concentration in air associated with a 1 in 1,000,000 excess lifetime cancer risk, not the higher 1 in 10,000 risk normally used. Defra concluded in the development of the C4SLs that an ELCR of 1 in 100,000 should constitute minimal risk and an ELCR of 1 in 50,000 could be specified as "low risk" and be used as a generic level for all human genotoxic carcinogens.

A summary of criteria published by the Dutch Ministry of Housing, Spatial Planning and the Environment (VROM) is presented in **Table 15** below. The relevant criterion is 0.01%wt/wt for friable asbestos (relevant to the chrysotile and amosite fibre bundles detected in the samples from Treadgold House where asbestos was identified: TH130 (0.6-0.7m), TH141 (0-0.05m), TH145 (0-0.05m), TH149 (0-0.05m), TH162 (0-0.05m), TH170 (0-0.05m), and GTCS2-S280 from Stage 2). No samples from Avondale Park Gardens identified asbestos. The additional requirement of the Dutch guidance is that the DIV is applied to the average soil concentration in an area up to 1000m^2 .

Table 15. Dutch Asbestos in Soil Criteria

Criterion	Assessment Stage	Applicability
0.01% by weight	Tier 1	To be compared to the total concentration of serpentine asbestos (chrysotile) + 10 x concentration of amphibole asbestos (amosite and crocidolite) as an average concentration across an area up to 1000m². Designed to be protective of human health under all normal land-uses.
0.1%	Tier 2	To be compared to the concentration of serpentine asbestos (chrysotile) + 10 x concentration of amphibole asbestos (amosite and crocidolite) for non-friable asbestos e.g. fragments of asbestos cement

Criterion	Assessment Stage	Applicability
0.01% by weight	Tier 2	As above but for friable asbestos e.g. asbestos insulation materials, fibre bundles.
0.001% by weight	Tier 3	To be compared to counted respirable asbestos fibres only, and to be compared to the concentration of serpentine asbestos (chrysotile) + 10 x concentration of amphibole asbestos (amosite and crocidolite)

Source: VROM Soil Remediation Circular, 2013

5.1.5 GSC and SSAC for lead from Stage 2

The approach for this report will firstly be to screen the new data against the GSC and previously derived SSACs from Stage 2 (SSAC are available for lead and BaP). These cover the two land use scenarios defined in **Section 5.1.1**. The SSAC that were derived at Stage 2 are considered to be suitable as initial screening criteria as part of the GQRA for the additional data from Treadgold House and Avondale Park Gardens. Stage 2 SSAC were derived separately for Treadgold House and Avondale Park Gardens, although the SSAC derived based on the POSresi land-use scenario were the same for both investigation areas. In the context of this report they are considered to be generic as they have not been modified from the values derived previously, although interpretation of exceedances of the SSAC has been adjusted based on the aims of their derivation. The approach at Stage 2 was to calculate site-specific assessment criteria (SSAC) using the same methods used to derive the C4SLs, but making adjustments to exposure assumptions and parameters based on site specific information, as well as adjusting exposure assumptions based on evolving evidence that has been published since the CLEA guidance and C4SL reports. The Stage 2 DQRA was completed in two steps:

Step 1

- Step 1 comprised the calculation of SSAC where site specific information was used to refine the exposure assessment whilst retaining a low level of risk consistent with Category 4 land (i.e. the precautionary nature of the exposure and toxicological assumptions remained largely unchanged). Step 1 also involved adjustment of the soil ingestion rate based on guidance published by the US EPA in 2017 (US EPA, 2017). This constituted a refinement based on the update of the original documentation reviewed when the Environment Agency and CL:AIRE/Defra selected an appropriate soil ingestion rate for the original CLEA guidance and C4SL derivation.
- In the context of the Stage 2 report, the Step 1 SSAC defined a level of risk that is closer to the Category 4 /
 Category 3 boundary such that soil concentrations equal to or below the Step 1 SSAC would fall into
 Category 4, but soil concentrations exceeding the Step 1 SSAC would be less likely to fall into Category 4.

Step 2

- Where soil concentrations exceeded the Step 1 SSAC, these sampling areas were taken forwards to Step 2 which involved the calculation of SSAC that were associated with a higher (i.e. not low) level of risk. This step involved the adoption of alternative exposure assumptions and alternative toxicological values.
- In the context of the Stage 2 report, the Step 2 SSAC defined a level of risk approaching that that could be considered to pose a significant possibility of significant harm. They were intended to provide an indication of where the threshold between Category 2 and Category 3 could be, although this decision must also be weighed against the strength of the evidence, remaining uncertainty and other considerations to be made by the local authority, as described in Paragraphs 4.24 to 4.29 of the Part 2A Statutory Guidance. As such they represent screening values and are not red line values for making final decisions on Part 2A land categories.

The Stage 2 Step 1 SSAC have been used for this GQRA as screening criteria to help place linkages into Category 4 where average concentrations representative of receptor exposure are below these values.

The Stage 2 Step 2 SSAC have not been used to 'screen out' any linkages but have been used to assist with the discussion of the likely significance of the reported concentrations where they exceed the Step 1 SSAC.

A summary of the GSC and SSAC to be used are listed in **Table 16** below. Reference should be made to the Stage 2 report for full details of the parameters used for the derived SSAC.

Table 16. Assessment Criteria for Lead from Grenfell Stage 2 Report

Assessment Criteria for Resi-HP & POSresi from Grenfell Stage 2 Report	TH 310 TH 357 TH 535 TH 737 TH & APG 630 TH & APG 710 TH & APG 1070			
GSC Resi-HP	TH	310		
SSAC Resi-HP Step 1	TH	357		
SSAC Resi-HP Step 2	TH	535		
SSAC Resi-HP Step 2 (reduced SIR)	TH	737		
GSC POSresi	TH & APG	630		
SSAC POSresi Step 1	TH & APG	710		
SSAC POSresi Step 2	TH & APG	1070		
SSAC POSresi Step 2 (reduced SIR)	TH & APG	1420		

Notes:

SIR = soil ingestion rate

5.2 Data Comparison with GSC and NBC

To compare data against each assessment criterion, AECOM has considered the use of the recent CL:AIRE 2020 statistical guidance (Marriott, 2020) as this is the most recent UK-based guidance designed for comparing soil concentrations with critical concentrations. This guidance requires the soil dataset being investigated to satisfy a number of conditions for the use of this statistical assessment to be strictly valid. This includes four main areas: development of a CSM (with particular attention paid to whether the entire area, or receptor based averaging areas are being assessed statistically); simple random, stratified random or stratified systematic sampling adopted; no composite sampling; and data QA including how to deal with non-detects.

These conditions for using the guidance have been met given that the Site Investigation Design (included in Appendix B) used a CSM (summarised in Section 3 of this report) to develop a stratified systematic sampling strategy, with no composite sampling, that would be suitable for statistical assessment of different receptor averaging areas. Data QA demonstrating suitability of the results for interpretation is included in Section 4.7.1 and there are no non-detect results within the datasets assessed statistically in this report.

Whilst the full data-set is not suitable for statistical interpretation due to the presence of some clustered samples and samples collected from varying depths that may not be the same material, sub-sets of the complete data-set have been created as described in the bullet points below to make the average concentrations discussed applicable to average exposure. The main adjustments that have been made include:

- Samples clustered around previous Stage 2 samples have been excluded from the statistical analysis, with
 only the original Stage 2 sample concentration used. This is discussed further in Section 4.7.4. In order to
 assess the potential significance of the exclusion of these samples on the data interpretation, datasets
 including these values have also been presented (on the basis that the clustered samples were all higher
 than the Stage 2 samples).
- The datasets have been broken down into depth horizons which are generally representative of similar soil types based on field observations. In both sampling areas, the samples from the 0-0.05m depth interval (including Stage 2 samples from 0-0.02m depth) and the 0.1-0.2m depth interval were generally recorded as being a similar soil type and therefore these samples have been grouped together into a single data-set. However, this dataset has been further sub-divided into the 0-0.05m interval and the 0.1-0.2m depth interval to evaluate potential differences with depth that are not apparent based on visual observations.
- The discussion within this section provides information related to outliers in the evaluated datasets: these have been identified using Rosner's or Dixon's outlier tests. Normality testing has indicated that all evaluated datasets (with the exception of barium as described below) were unlikely to be normally distributed, (with a less than 5% probability that the underlying population is normally distributed). Without a detailed interrogation of each of the higher concentrations that could be potential outliers (or could be part of the same data population), a commonly adopted method to easily compare right-skewed datasets is to compare the median (50th percentile) rather than the arithmetic mean; the median is less affected by the most extreme high concentrations in the right-skewed dataset. Datasets with a large difference between the mean and median are likely to be more right-skewed than those with similar values for the mean and median. This approach is adopted in the data assessment below and is discussed for each dataset where

appropriate. For the barium datasets with normal distributions, the arithmetic mean concentrations have been used as the appropriate average concentration. In addition to using the median as recommended by the statistical guidance (Marriott, 2020), geometric mean concentrations have also been considered and are included in the discussion below.

Decisions within Part 2A are typically made 'on the balance of probabilities' and therefore the comparison of soil concentrations with GSC uses average concentrations including median, arithmetic mean and geometric mean rather than upper or lower confidence limits or confidence intervals.

In the discussions below, datasets of varying sizes are evaluated depending on the averaging area. For physically smaller averaging areas there are typically fewer samples and therefore uncertainty associated with the average concentration is likely to be higher. For example at Treadgold House the uncertainty associated with average concentrations in the separate Plot 1 to 10 averaging areas is likely to be higher than the uncertainty in average concentrations for the full Treadgold House investigation area. Similarly for deeper soil horizons fewer samples were collected than in the shallowest horizon of 0-0.05m and therefore the uncertainty associated with average concentrations for the deeper soils is also likely to be higher.

5.2.1 Treadgold House

As discussed in **Sections 3.2.2 and 5.1.1**, the gardens at Treadgold House are accessed predominantly by a limited number of adult residents on a regular basis, with possible use by children, that is likely to be infrequent.

Therefore the chosen criteria are generally deemed appropriate for initial screening, because the criteria assume frequent child exposure which is precautionary compared to frequent adult exposure and/or infrequent child exposure.

This section summarises the data comparison for Treadgold House to GSC and Stage 2 SSAC applicable to the specific land-use. The discussion includes screening of the new data as well as the relevant samples from the Stage 2 dataset (GTCS2-S274, GTCS2-S275, GTCS2-S279 and GTCS2-S280). A summary of the exceedances is presented in **Table 17** (excluding lead – covered in **Section 5.2.1.3**), and the full dataset is presented alongside the applicable GSC (which indicates the GSC source) in the GSC screening tables presented in **Appendix G** as **Table G1**.

Table 17. GSC Exceedances for Treadgold House (excluding lead)

Analytical Suite	Summary of Exceedances	GSC (Resi-HP, sandy loam >3.48% TOC)	Maximum concentration
Asbestos	Detected in 7 samples out of 79 screened	0.01%	<0.001%*
	Arsenic (17 exceedances out of 36)	40 mg/kg	109.8 mg/kg
Metals (excluding lead)	Barium (4 exceedances out of 23)	1300 mg/kg	2009 mg/kg
	Beryllium (23 exceedances out of 23)	1.7 mg/kg	9.8 mg/kg

Notes:

5.2.1.1 Asbestos

For asbestos, although detected in seven samples, all reported concentrations were below the quantification limit of 0.001%, except for the duplicate of sample TH149 at 0-0.05m bgl (0.003% of chrysotile fibre bundles). The health risk from exposure to asbestos in soil at concentrations below the GSC is minimal. Detection of asbestos fibres is expected in urban background, and the assessment of health risk from the asbestos that has been detected has been classified as low (as below the Dutch Tier 2 value of 0.01%), therefore it is considered that human health CLs associated with asbestos from samples taken at Treadgold House would meet the definition of Category 4 land.

5.2.1.2 Metals (excluding lead)

For arsenic, the concentration in 17 samples exceeds the GSC. **Table 18** below summarises the arsenic data in more detail, and shows the concentration ranges by depth. Arsenic in soil concentrations at Treadgold House are shown graphically on **Figures A11** and A**12** in **Appendix A. Figure A11** shows the concentrations in soil in the 0-0.05m depth interval, **Figure A12** shows the concentrations in soil in the 0.1-0.2m depth interval.

^{*} Duplicate of sample TH149 (DUP07) at 0-0.05m bgl detected a concentration of 0.003% asbestos.

Table 18. Arsenic Exceedances for Treadgold House per depth

	Number of results	GSC (sandy loam >3.48% TOC)	Minimum (mg/kg)	Median (mg/kg)	Geometric Mean (mg/kg)	Arithmetic Mean (mg/kg)	Maximum (mg/kg)	Number of exceedances
All samples	36		14.2	40	38.9	44	109.8	17
0-0.05m	22	- Resi-HP =	16.3	44	41.5	45	89.8	14
0.1-0.2m	5	40mg/kg - POSresi =	29	64	57.4	65	109.8	3
0.3-0.4m	4		30.7	34	34.5	35	39.9	0
0.6-0.7m	4	79mg/kg	14.2	26	23.0	24	31.3	0
1.1-1.2m	1	_	16.9	-	-	-	16.9	0

The reported mean, geometric mean and median arsenic concentrations for the shallowest sample depths (0-0.05m, 0.1-0.2m) all exceed the Resi-HP GSC but are all lower than the POSresi GSC. All samples in the depth horizons below 0.1-0.2m have concentrations below the Resi-HP and POSresi GSC. The statistical outlier test did not identify any outliers within the 0-0.05m depth dataset, the 0.1-.2m depth dataset, or the combined 0-0.05m and 0.1-0.2m datasets.

Review of **Figure A11** and **Figure A12** indicates that the three highest arsenic concentrations of 81.3mg/kg, 89.8mg/kg and 109.8mg/kg are located in the grassed area of Plot 4, Plot 5 and Plot 6. This area is discussed further in Section 5.2.1.4. Although lower concentrations were reported in the flower beds at the southern end of these plots (the lower concentrations in soil beds could be due to long-term addition of compost or mulch in these areas, although this is uncertain), it is possible that residents of these properties may be exposed to slightly higher average soil concentrations than the site-wide calculated averages. The data collected for arsenic give an overall indication of the concentrations in soils at Treadgold House, however more localised patterns cannot be identified in the same way as may be possible for lead given the reduced density of analytical results.

On this basis it is reasonable to use the average concentrations presented in Table 18 above for risk evaluation purposes, with a sensitivity check carried out to assess the significance of the potentially slightly higher concentrations in the grassed area outside Plots 4, 5 and 6. Further discussion of the significance of the arsenic GSC exceedances is included in **Section 5.2.1.4**.

For barium, the concentration in four samples exceeds the GSC. **Table 19** below summarises the barium data in more detail, and shows the concentration ranges by depth. Barium in soil concentrations at Treadgold House are shown graphically on **Figures A13** and A**14** in **Appendix A. Figure A13** shows the concentrations in soil in the 0-0.05m depth interval, **Figure A14** shows the concentrations in soil in the 0.1-0.2m depth interval.

Table 19. Barium Exceedances for Treadgold House per depth

	Number of results	GSC (Resi- HP, sandy loam >3.48% TOC)	Minimum (mg/kg)	Median (mg/kg)	Geometric Mean (mg/kg)	Arithmetic Mean (mg/kg)	Maximum detection (mg/kg)	Number of exceedances
All samples	23		119	676	625	781	2009	4
0-0.05m	9	_	389	803	790	879	1654	1
0.1-0.2m	5	 1300 mg/kg	676	1361	1,220	1304	2009	3
0.3-0.4m	4	_	411	487	508	517	681	0
0.6-0.7m	4	_	125	381	299	335	452	0
1.1-1.2m	1	_	119	=	-	-	119	0

The reported mean, geometric mean and median barium concentrations for the different sample depths do not exceed the GSC apart from the mean and median for the 0.1-0.2m bgl depth dataset. However, exposure will be primarily to the shallowest soils, with potentially a small contribution from the 0.1-0.2m depth horizon. When the 0-0.05m and 0.1-0.2m bgl depth samples are combined in a single dataset the mean, geometric mean and

median concentrations (1,031mg/kg 643mg/kg and 990mg/kg respectively) are below the Resi-HP GSC. The statistical outlier test did not identify any outliers within the 0-0.05m depth dataset, the 0.1-0.2m depth dataset, or the combined 0-0.05m and 0.1-0.2m datasets. A dataset normality test indicated that the 0-0.05m dataset, 0.1-0.2m dataset and the dataset combining these depths together, all follow a normal distribution (at 5% significance). Hence the mean concentration is likely to be most suitable for assessing average exposure. On this basis it is reasonable to use the average concentrations presented in Table 19 above for risk evaluation purposes.

Review of **Figure A13** and **Figure A14** indicates that three of the four highest barium concentrations which exceed the GSC are located in the grassed area of Plot 3, Plot 4 and Plot 5. Although lower concentrations were reported in the flower beds at the southern end of these plots, it is possible that residents of these properties may be exposed to slightly higher average soil concentrations than the site-wide calculated averages. Since this pattern is also similar to that described above for arsenic, this cluster of samples has been considered further and is discussed in Section 5.2.1.4. The data collected for barium give an overall indication of the concentrations in soils at Treadgold House, however more localised patterns cannot be identified in the same way as may be possible for lead given the reduced density of analytical results.

Further discussion of the significance of the barium GSC exceedances, including a sensitivity check to assess the significance of the potentially slightly higher concentrations in the grassed area outside Plots 3, 4 and 5, is included in **Section 5.2.1.4**.

For beryllium, the concentration in all samples exceeded the GSC. **Table 20** below summarises the beryllium data in more detail, and shows the concentration ranges by depth. Beryllium in soil concentrations at Treadgold House are shown graphically on **Figures A15** and A**16** in **Appendix A. Figure A15** shows the concentrations in soil in the 0-0.05m depth interval, **Figure A16** shows the concentrations in soil in the 0.1-0.2m depth interval.

	Number of results	GSC (sandy loam >3.48% TOC)	Minimum (mg/kg)	Median (mg/kg)	Geometric Mean (mg/kg)	Arithmetic Mean (mg/kg)	Maximum detection (mg/kg)	Number of exceedances
All samples	23		2.0	2.9	3.5	3.9	9.8	23
0-0.05m	9	_	2.0	3.5	3.6	4.0	8.2	9
0.1-0.2m	5	 Resi-HP GSC = 1.7	2.3	4.9	4.9	5.6	9.8	5
0-0.05m and 0.1- 0.2m	14	mg/kg POSresi GSC = 2.2	2.0	3.8	4.0	4.6	9.8	14
0.3-0.4m	4	mg/kg	2.3	2.5	2.7	2.8	3.7	4
0.6-0.7m	4	_	2.3	2.6	2.9	3.1	4.8	4
1.1-1.2m	1		2.5	-	-	-	2.5	1

The reported mean, geometric mean and median concentrations for the different sample depths all exceed the GSC. The higher soil concentrations appear to be in the shallower samples and when the 0-0.05m and 0.1-0.2m depth samples are combined into a single dataset the mean, geometric mean and median concentrations (4.6mg/kg, 4.0mg/kg and 3.8mg/kg respectively) exceed the Resi-HP GSC by between two and three times (the POSresi GSC was exceeded by approximately two times). The statistical outlier test did not identify any outliers within the combined 0-0.05m and 0.1-0.2m datasets at a 1% significance level and this dataset was indicated to be non-normally distributed, indicating that the median or geometric mean may be more appropriate averages to use for the assessment than the arithmetic mean. On this basis it is reasonable to use the average concentrations presented in Table 20 above for risk evaluation purposes.

Review of **Figure A15** and **Figure A16** indicates that the three highest beryllium concentrations (7.4mg/kg, 8.2mg/kg and 9.8mg/kg) are located in the grassed area of Plot 3, Plot 4 and Plot 5; this pattern is similar to that observed for arsenic and barium. Although lower concentrations were reported in the flower beds at the southern end of these plots, it is possible that residents of these properties may be exposed to slightly higher average soil concentrations than the site-wide calculated averages. This cluster of samples has been considered further in Section 5.2.1.4 to assess the significance of the potentially slightly higher concentrations. The data collected for

beryllium give an overall indication of the concentrations in soils at Treadgold House, however more localised patterns cannot be identified in the same way as may be possible for lead given the reduced density of analytical results.

A box and whisker plot showing the beryllium concentrations at Treadgold House is included in **Figure 3** below. The box and whisker plot shows individual sample concentrations (filled circles), the minimum value (lower whisker – excludes outliers⁴), the maximum value (upper whisker – excludes outliers), 25th and 75th percentiles (lower and upper boundaries of the box), median (horizontal line through box), and arithmetic mean (cross). These plots provide a simple way to visually compare different datasets to help identify differences in the different datasets and demonstrate the right skewed nature of the datasets.

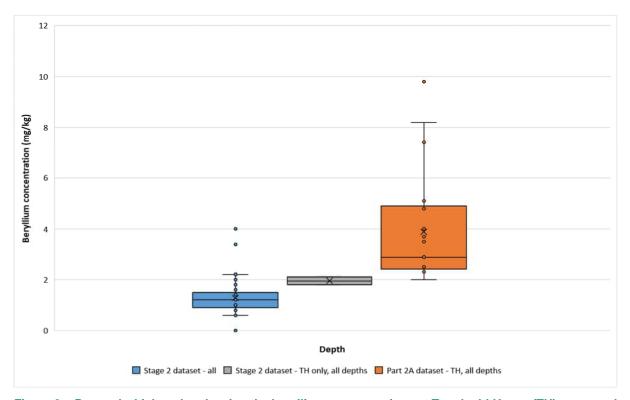


Figure 3 – Box and whisker plot showing the beryllium concentrations at Treadgold House (TH) compared to the Stage 2 Environmental Checks dataset (data from the 2021 Part 2A investigation sampling shown in orange)

The concentrations in soil at Treadgold House appear to be noticeably higher than the concentrations in soil that were reported during the Stage 2 Environmental Checks sampling. This may indicate that beryllium concentrations in the investigation area are above what might be considered normal background levels.

Further discussion of the significance of the beryllium GSC exceedances is included in Section 5.2.1.4.

5.2.1.3 Lead

Table 21 summarises the exceedances for lead when compared to the GSC and the Step 1 and Step 2 SSAC from the Grenfell Stage 2 investigation for both Resi-HP and POSresi land uses, for comparison. As described in Section 5.1.5, the Stage 2 Step 1 SSAC have been used as screening criteria to decide whether land could fall into Category 4. However, the Stage 2 Step 2 SSAC have been used only to provide an indication of the potential significance of the exceedances of the Stage 2 Step 1 SSAC, they have not been used as a screening tool to exclude data from the DQRA described in Section 6.

⁴ The **Excel** box and whisker plot function considers any data value to be an "**outlier**" if it is 1.5 times the inter-quartile range (IQR) larger than the third quartile or 1.5 times the IQR smaller than the first quartile.

Lead in soil concentrations at Treadgold House are shown graphically on **Figures A4**, **A5**, **A6** and **A7** in **Appendix A. Figure A4** shows the concentrations in soil in the 0-0.05m depth interval, **Figure A5** shows the concentrations in soil in the 0.1-0.2m depth interval, **Figure A6** shows the concentrations in soil in the 0.3-0.4m depth interval, and **Figure A7** shows the concentrations in soils for the 0.6-0.7m depth interval.

Part 2A Investigation

Project number: 60632092

Table 21. Lead Exceedances for Treadgold House per depth

	Number of results	Minimum (mg/kg)	Median (mg/kg)	Geometric Mean (mg/kg)	Arithmetic Mean (mg/kg)	Maximum (mg/kg)	Number of exceedances GSC Resi-HP 310 mg/kg	Number of exceedances Stage 2 Step 1 SSAC Resi-HP 357 mg/kg	Number of exceedances Stage 2 Step 2 SSAC Resi-HP 737 mg/kg	Number of exceedances GSC POSresi 630 mg/kg	Number of exceedances Stage 2 Step 1 SSAC POSresi 710 mg/kg	Number of exceedances Stage 2 Step 2 SSAC POSresi 1420 mg/kg
All samples	201	148	1381	1334	1810	38490	195	193	160	174	162	95
0-0.02m & 0-0.05m	94	233	1396	1320	1515	6230	93	91	82	87	83	45
0.1-0.2m	66	148	1745	1825	2934	38490	64	64	58	61	58	44
0.3-0.4m	27	309	1090	1059	1829	20630	26	26	17	21	17	6
0.6-0.7m	13	150	541	508	596	1233	11	11	3	5	4	0
1.1-1.2m	1	507	N/A	N/A	N/A	507	1	1	0	0	0	0

For lead, the data were screened against the GSC and the Stage 2 Step 1 SSAC, as well as the least conservative Step 2 SSAC derived in the Stage 2 investigation report. Initially, the samples were grouped by depth, and then averages for each depth were calculated. When compared to the GSC, the average lead concentrations (mean, geometric mean and median) for each sample depth down to 0.4mbgl all exceed the criteria for both the Resi-HP and POSresi land uses. For samples below 0.4mbgl, the average lead concentrations (mean and median) for these datasets do not exceed for the GSC for the POSresi land use, however do exceed the GSC for the Resi-HP criteria. The same outcome occurs when the average lead concentrations are compared to the Stage 2 Step 1 SSAC (i.e. the three averages all exceed the POSresi and Resi-HP criteria down to depths of 0.4mbgl, but the averages only exceed the Resi-HP criterion at the 0.6-0.7m depth). These exceedances are discussed in more detail in **Section 5.2.1.3.1**.

Review of **Figure A4** suggests that there could be a higher frequency of the higher lead concentrations in soil at 0-0.05m depth in the soils within Plots 3, 4, 5 and 6: this observation is strengthened by similar patterns for arsenic, barium and beryllium. The pattern is less obvious on **Figure A5** at the 0.1-0.2m depth horizon, with the highest concentrations (red and dark orange highlighted locations) appearing more widely distributed throughout the entire investigation area. The potential significance of an averaging zone with higher lead concentrations in the vicinity of Plots 3, 4, 5 and 6 is considered alongside the plot-specific breakdowns in the discussion below.

A box and whisker plot showing the lead concentrations at Treadgold House is included in **Figure 4** below. The box and whisker plot shows individual sample concentrations (filled circles), the minimum value (lower whisker – excludes outliers⁵), the maximum value (upper whisker – excludes outliers⁵), 25th and 75th percentiles (lower and upper boundaries of the box), median (horizontal line through box), and arithmetic mean (cross). These plots provide a simple way to visually compare different datasets to help identify differences in the different datasets and demonstrate the right skewed nature of the datasets. A statistical evaluation of all the Treadgold House datasets shown in **Figure 4** indicate that there is strong evidence that the data distributions are not normal i.e. there is less than a 5% chance that the datasets follow a normal distribution.

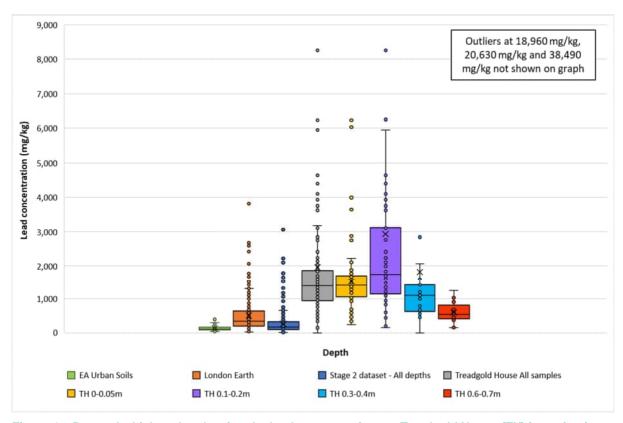


Figure 4 – Box and whisker plot showing the lead concentrations at Treadgold House (TH) investigation area compared to EA Urban Soils and London Earth background datasets and the Stage 2 Environmental Checks dataset

⁵ The **Excel** box and whisker plot function considers any data value to be an "**outlier**" if it is 1.5 times the inter-quartile range (IQR) larger than the third quartile or 1.5 times the IQR smaller than the first quartile.

The box and whisker plot for Treadgold House shows that lead concentrations are generally higher (particularly for the shallower datasets) than the London Earth (British Geological Survey, 2010) and EA Urban Soils (Agency, 2007) datasets. The concentrations are also higher than the Stage 2 results. Soil concentrations at Treadgold House are also generally above the NBC of 820mg/kg, which was defined as the 95% upper confidence limit of the 95th percentile of background data within the urban domain, and as such is regarded as an upper threshold value for the urban domain. The data comparison with the various background sources shown in Figure A4 and summarised above suggests that lead in soil at Treadgold House is present at concentrations considerably higher than the typical urban background, both locally and nationally. This indicates that the land cannot be placed immediately into Category 4, but that further risk-based assessment is required to decide what Category the land falls into. One aim of the intrusive investigation was to determine whether the deeper fill / Made Ground at the site related to infilling of the old brickfield footprint could represent a source for the elevated lead concentrations. However, based on the samples collected, the average (mean and median) lead concentrations for the sample depths below 0.4mbgl are all lower than the averages for the shallower sample depths. The sample depth dataset with the highest concentrations is 0.1-0.2mbgl, which supports the conclusions from the Stage 2 report that the contamination at the site is not linked to the Grenfell Tower fire (samples at 0-0.05m might be expected to be highest if it were), and also suggests that the contamination is not related to the deeper Made Ground encountered between 0.4m and 1.2m bgl. Although the Made Ground at 0.4 – 1.2m bgl might not be representative of the fill from deeper historic brickworks excavations; the fact that this horizon exists with concentrations apparently lower than the overlying topsoil suggests that the topsoil has been placed more recently as part of landscaping. This shallow topsoil could not have been impacted with high lead concentrations by mixing from deeper fill given the presence of this intervening layer of Made Ground.

The soil to which the residents and users of the gardens would have greatest exposure to would be at the shallowest depths, and therefore the greatest risk is considered to be from the soils located within the top 0.2mbgl. It is noted that for these depths, the averages (mean and median) all exceed the Resi-HP assessment criteria (including the least conservative Step 2 SSAC derived at Stage 2, of 737 mg/kg) and both averages exceed the least conservative POSresi Step 2 SSAC derived at Stage 2, of 1420 mg/kg. In addition to this, comparison of the data to the NBC background value for lead of 820mg/kg (for urban soils – as detailed in **Section 2.5**) indicates that the mean and median lead concentrations calculated here (for datasets shallower than 0.4mbgl) exceed that which might be expected for an urban environment. Since the NBC is defined as an upper threshold value for the urban environment (England-wide), its exceedance by mean and median concentrations suggests that the concentrations at Treadgold House are unusually elevated. Further detailed assessment is therefore required to assess the risk to residents from lead in soils at Treadgold House.

Soils / Made Ground at depths of 0.3m and deeper appear to have lower concentrations than the soils in the upper 0.2m, although there is more uncertainty associated with average concentrations in the deeper horizons as fewer samples were collected. However the Made Ground deeper than 0.2m was often more compacted and dense, and difficult to excavate using hand tools, and therefore it would be less likely that residents or maintenance workers would have exposure to this material. This reduced accessibility and likelihood of exposure offsets the uncertainty associated with a smaller number of samples.

5.2.1.3.1 Treadgold House Averaging Areas

The data for Treadgold House were split into plots corresponding to the individual ground floor flats which have direct access to the gated communal garden. It is considered that the greatest risk to residents is from the shallowest soil represented by samples from depths of 0-0.02m, 0-0.05m and 0.1-0.2m depth. The data is summarised in **Table 22**, and the plot areas are shown on **Figure A2** in **Appendix A**. **Table C1** (**Appendix C**) lists the samples and their corresponding 'Plot' number, for the purposes of statistical calculations.

Plots 1 to 6 correspond to ground floor studio flats which have formal direct access onto the communal garden (southern part). Plots 7 to 10 also correspond to ground floor flats, however these have closed ground level 'balconies', and do not have formal direct access onto the communal garden (western part). However, as discussed previously, there is evidence that residents from these flats use the communal garden space, and barrier between Flat 9 and the garden has been removed to allow more ready access.

- The majority of samples are included within one of the 'Plot' areas, with the following exceptions:GTCS2-S275, TH111, TH112 and TH113 these four samples have been included within both Plot 8 and 9, as the samples sit on the boundary;
- TH121 this is excluded from any of the 'plot' areas due to its location away from either a ground floor door access or 'balcony';

• TH169 – this is excluded from any of the 'plot' areas due to its location away from either a ground floor door access or 'balcony';

• TH170 – although close to the boundary of Plot 6, this location is situated behind some screening and pots which have been placed by the resident, therefore is less readily accessible by someone using the access from Flat 6.

Comparison of the average concentrations presented in Table 22 with GSC and SSAC from the Stage 2 report is provided below the table. It is noted that with the data broken down in this manner the individual datasets are relatively small and there is therefore a higher degree of uncertainty associated with the average concentrations than for the larger site-wide dataset. For this reason the median, geometric mean and arithmetic mean are all presented to provide a range of possible average concentrations that could be representative for exposure.

Table 22. Lead Exceedances for Treadgold House per Plot

	Depths Ranges (m)	Number of results	Minimum detection (mg/kg)	Median (mg/kg)	Geometric Mean (mg/kg)	Arithmetic Mean (mg/kg)	Maximum detection (mg/kg)
All samples – Treadgold House	0-0.02/0-0.05m, 0.1- 0.2m, 0.3-0.4, 0.6- 0.7 & 1.1-1.2	201	148	1,381	1,334	1,959	38,490
Plot 1	0-0.05	5	233	925	778	927	1,489
	0.1-0.2	5	148	1,997	1,911	8,774	38,490
	0-0.05 and 0.1-0.2	10	148	1,158	1,334	4,850	38,490
	0.3-0.4	1	-	-	-	-	451
	0.6-0.7	1	-	-	-	-	469
	All	12	148	965	1,036	4,119	38,490
Plot 2	0-0.05	6	1,068	1,586	1,536	1,563	1,941
	0.1-0.2	5	1,329	1,738	2,388	2,836	6,245
	0-0.05 and 0.1-0.2	11	1,068	1,700	1,805	2,141	6,245
	0.3-0.4	2	1,090	1,140	1,138	1,140	1,189
	0.6-0.7	1	-	-	-	-	715
	All	14	715	1,586	1,631	1,896	6,245
Plot 3	0-0.05	7	926	1,415	1,586	1,974	6,029
	0.1-0.2	7	995	2,119	2,169	2,411	3,752
	0-0.05 and 0.1-0.2	14	926	1,589	1,665	2,193	6,029
	0.3-0.4	1	-	-	-	-	1,095
	0.6-0.7	1	=	=	-	=	903
	All	16	903	2,365	1,716	2,044	6,029
Plot 4 – with	0-0.05	11	584	1,432	1,507	1,673	3,996
cluster samples TH148, TH149	0.1-0.2	9	596	1,766	1,501	1,652	2,434
and TH150)	0-0.05 and 0.1-0.2	20	584	1,647	1,421	1,664	3,996
	0.3-0.4	2	634	1,738	1,342	1,738	2,841
	0.6-0.7	1	-	-	-	-	685
	All	23	584	1,616	1,439	1,628	3,996
Plot 4 – without	0-0.05	8	584	1,395	1,466	1,685	3,996
cluster samples TH148, TH149 and TH150)	0.1-0.2	6	596	1,684	1,264	1,414	2,107
ana 1111 <i>00)</i>	0-0.05 and 0.1-0.2	14	584	1,454	1,376	1,569	3,996
	0.3-0.4	2	634	1,738	1,342	1,738	2,841
	0.6-0.7	1	-	-	-	-	685
	All	17	584	1,432	1,316	1,537	3,996

	Depths Ranges (m)	Number of results	Minimum detection (mg/kg)	Median (mg/kg)	Geometric Mean (mg/kg)	Arithmetic Mean (mg/kg)	Maximum detection (mg/kg)
Plot 5 – with	0-0.05 & 0-0.02	11	717	1,615	1,491	1,576	2,766
cluster samples (TH131, TH132 and TH136)	0.1-0.2	10	994	2,524	2,345	2,809	5,942
	0-0.05 and 0.1-0.2	21	717	1,736	1,590	2,163	5,942
	0.3-0.4	1	-	-	-	-	1,649
	0.6-0.7	1	-	-	-	-	541
	All	23	541	1,692	1,745	2,070	5,942
Plot 5 – without cluster samples	0-0.05 & 0-0.02	8	717	1,392	1,410	1,517	2,766
(TH131, TH132 and TH136)	0.1-0.2	7	994	1,876	2,070	2,568	5,942
and TTT130)	0-0.05 and 0.1-0.2	15	717	1,398	1,687	2,007	5,942
	0.3-0.4	1	-	-	-	-	1,649
	0.6-0.7	1	-	-	-	-	541
	All	17	541	1,398	1,576	1,900	5,942
Plot 6	0-0.05	9	758	1,557	1,679	2,017	6,230
	0.1-0.2	9	661	1,508	1,538	1,755	4,405
	0-0.05 and 0.1-0.2	18	661	1,542	1,559	1,886	6,230
	0.3-0.4	3	526	638	659	673	854
	0.6-0.7	1	-	-	-	-	575
	All	22	526	1,454	1,358	1,661	6,231
Plot 3 to Plot 6	0-0.05	32	584	1,424	1,535	1,800	6,230
combined (without cluster samples)	0.1-0.2	29	596	1,722	1,724	2,039	5,942
ciustei sampies)	0-0.05 and 0.1-0.2	61	584	1,508	1,622	1,913	6,230
Plot 7	0-0.05	7	342	1,260	1,182	1,335	2,148
	0.1-0.2	4	192	2,469	1,437	2,206	3,693
	0-0.05 and 0.1-0.2	11	192	1,515	1,209	1,651	3,693
	0.3-0.4	4	550	1,229	1,145	1,269	2,069
	0.6-0.7	1	-	-		-	456
	All	16	192	1,257	1,160	1,481	3,693
Plot 8 – with	0-0.05 & 0-0.02	14	754	1,408	1,373	1,428	2,103
cluster samples (TH111, TH112	0.1-0.2	6	935	1,540	1,889	2,220	4,102
and TH113)	0-0.05 and 0.1-0.2	20	754	1,448	1,563	1,665	4,102
	0.3-0.4	3	1,240	1,446	1,412	1,420	1,612
	0.6-0.7	•	1,240	· · · · · · · · · · · · · · · · · · ·	· ·	1,420	
	All	1	754	- 4 445	- 4.405	4 047	1,233
Plot 8 – without	0-0.05 & 0-0.02	24	754	1,415	1,485	1,617	4,102
cluster samples (TH111, TH112	0.1-0.2	11	754	1,525	1,460	1,516	2,103
and TH113)	0-0.05 and 0.1-0.2	3	1,473	1,606	2,133	2,394	4,102
		14	754	1,541	1,584	1,704	4,102
	0.3-0.4	3	1,240	1,407	1,412	1,420	1,612
	0.6-0.7	1	-	-	-	-	1,233
DI 10 11	All	18	754	1,499	1,532	1,631	4,102
Plot 9 – with cluster samples	0-0.05	10	426	1,027	973	1,130	2,871
	0.1-0.2	4	935	4,839	3,182	7,478	18,960

	Depths Ranges (m)	Number of results	Minimum detection (mg/kg)	Median (mg/kg)	Geometric Mean (mg/kg)	Arithmetic Mean (mg/kg)	Maximum detection (mg/kg)
(TH111, TH112 and TH113)	0-0.05 and 0.1-0.2	14	426	1,186	1,435	2,944	18,960
-,	0.3-0.4	3	991	2,870	3,886	8,164	20,630
	0.6-0.7	1	-	-	-	-	483
	All	23	426	1,186	1,541	3,677	20,630
Plot 9 – without cluster samples	0-0.05	9	426	1,042	934	1,142	2,871
(TH111, TH112 and TH113)	0.1-0.2	3	1,418	8,259	6,055	9,546	18,960
and minio	0-0.05 and 0.1-0.2	12	426	1,259	1,490	3,243	18,960
	0.3-0.4	3	991	2,870	3,886	8,164	20,630
	0.6-0.7	1	=	-	-	-	483
	All	16	426	1,259	1,662	3,993	20,630
Plot 10 – with cluster samples	0-0.05 & 0-0.02	12	340	1,295	1,108	1,243	2,748
(TH105, TH106 and TH107)	0.1-0.2	6	441	899	949	1,125	2,412
and minor)	0-0.05 and 0.1-0.2	18	340	1,226	1,247	1,203	2,748
	0.3-0.4	4	309	506	471	488	630
	0.6-0.7	2	150	152	151	152	153
	1.1-1.2	1	-	-	-	-	507
	All	25	150	676	770	977	2,748
Plot 10 – without	0-0.05 & 0-0.02	9	340	1,168	1,041	1,211	2,748
cluster samples (TH105, TH106 and TH107)	0.1-0.2	3	441	609	566	575	676
ana 11110 <i>1)</i>	0-0.05 and 0.1-0.2	12	340	874	894	1,052	2,748
	0.3-0.4	4	309	506	471	488	630
	0.6-0.7	2	150	152	151	152	153
	1.1-1.2	1	-	-	-	-	507
	All	19	150	630	629	810	2,748

Based on splitting the data into individual 'plots' associated with flats 1 to 6 (which have direct access onto the gated communal garden area) and flats 7 to 10 (which will not have long-term direct access onto the communal garden area), the calculated median, geometric mean and arithmetic mean concentrations for both the 0-0.05m depth and 0.1-0.2m depth datasets in each plot all exceed the GSC and Stage 2 Step 1 SSAC for both the Resi-HP and POSresi land-use scenarios. As all three averages for all shallow datasets exceed these GSC and Step 1 SSAC, there is a high degree of confidence in these exceedances.

It is noted that the average concentrations of the additional averaging zone covering Plot 3 to Plot 6 (inclusive) all also exceed the GSC and Stage 2 Step 1 SSAC for both land-use scenarios, although the exceedances are not markedly different in magnitude from the exceedances for the individual Plots 1 to 6 in this southern part of the communal garden. This holds if other averaging zones with possible clusters of higher lead concentrations are considered – such as Plots 1 to 3 combined, Plots 2 & 3 combined, or Plots 5 & 6 combined.

All of these calculated averages in the shallower 0-0.05m and 0.1-0.2m datasets (except Plot 10 without cluster samples at 0.1-0.2m depth) also exceed the Stage 2 Step 2 SSAC for the Resi-HP scenario, and many also exceed the Stage 2 Step 2 SSAC for the POSresi land-use. This indicates a potentially significant degree of exceedance of the GSC and Stage 2 Step 1 SSAC and therefore further assessment is required to determine the degree of risk to residents.

5.2.1.4 Part 2A Risk Evaluation

The soil sampling data from Treadgold House indicate that this site can be classified as Category 4 for most COPC based on the site averages being below the GSC. The exceptions to this are arsenic, beryllium and lead,

which are discussed in further detail below. In addition, further discussion is provided in relation to barium for the area of potentially higher concentrations exceeding the GSC within the grassed areas of Plots 3, 4 and 5.

<u>Arsenic</u>

Average arsenic concentrations in soil very slightly exceeded the Resi-HP GSC but are approximately half of the POSresi GSC. For Plots 1 to 6 where adults are the residents of concern within a land-use scenario similar to Resi-HP, the marginal exceedances of the Resi-HP GSC (mean and median concentrations for 0-0.05m + 0.1-0.2m depth samples in Plots 1 to 6 combined are a factor of 1.2 above the GSC) are not considered to represent a risk beyond Category 4 given the lower sensitivity adults compared to the child receptors on which the GSC are based. The 1.2 factor exceedance is not considered to be significant in the context of the reduced sensitivity of the adult residents.

For children that may be residents in Flats 7 to 10 the land-use scenario is closer to POSresi than Resi-HP. This is supported by the Step 1 SSAC calculated for lead in Section 6.1, which describes a lower risk exposure scenario than the standard POSresi scenario (i.e. reduced exposure frequency); hence the POSresi land-use is precautionary in the context of child receptors at Treadgold House. Mean and median soil concentrations in the area covering Plots 7 to 10 combined are all lower than the POSresi GSC and therefore any linkages associated with arsenic and child residents are considered to be within Category 4.

Rosner's outlier test indicates that there are no outliers within the arsenic shallow soil dataset (0-0.05m + 0.1-0.2m depth samples) and therefore the average concentrations are reasonable to use for average exposure assessment. The non-normal nature of the dataset indicates that the median might be the most appropriate average, although because the mean and median are quite similar, there is no difference in the outcome or conclusions of assessment whether the mean or median is adopted.

Although no outliers were identified, an area of potentially slightly higher concentrations was observed in the area outside Plots 4, 5 and 6. As this area is outside the properties only occupied by adults, the resi-HP and POSresi GSC are overly precautionary for the GQRA. Setting up the CLEA model with the residential (lifetime exposure C4SL) land use and using the female residential C4SL receptor and adult C4SL HCVs (i.e. LLTCs for the adult receptor), a GSC of 360mg/kg was generated. This is approximately three times higher than the maximum arsenic concentration reported on site and therefore the risk to adult receptors in Plots 4, 5 and 6 is considered to meet the definition of Category 4 land, even considering the slightly higher concentrations reported in this area.

Beryllium

For beryllium, the risk driving pathway is the inhalation of dust indoors and a mean daily intake (for inhalation) of 0.0015µg/day has been applied to the derivation of the GSC (1.7mg/kg for Resi-HP land-use, 2.2mg/kg for POSresi land-use). If the MDI is removed from the calculation, a soil-only POSresi GSC of 4.4mg/kg is calculated. For the Resi-HP scenario, the soil-only GSC is 3.45mg/kg. This is the soil concentration at which intake (via inhalation) from soil sources is equal to the HCV of 5.7E-5µg/kg-bw/day. Taking the inhalation MDI of 1.5E-03µg/day published in the S4UL report (Nathanail, McCaffrey, Gillett, & Ogden, 2015) and adjusting for a child bodyweight of 20kg, the exposure from soil at soil concentrations around 4mg/kg is approximately 75% of the exposure from background air. In the context of Part 2A, the soil-only GSC are particularly relevant as Paragraph 4.21(d) of the Statutory Guidance states that land should be placed into Category 4 if the "estimated levels of exposure to contaminants in soil are likely to form only a small proportion of what a receptor might be exposed to anyway through other sources of environmental exposure". In this case the exposure from soil is smaller than the proportion from background: soil exposure is expected to be approximately 40-45% of the total exposure, with background exposure accounting for 55-60% of the exposure. Taking the principle of the Statutory Guidance, this suggests that the GSC including background exposure is overly precautionary and a more appropriate criterion could be the soil-only GSC, or at least some value between the two.

The mean and median soil concentrations presented in Table 20 demonstrate that average soil beryllium concentrations in the upper 20cm of soil are very similar to the soil-only GSC, indicating that inhalation exposure from soil could be lower than exposure from background inhalation. The statistical testing indicated that the combined 0-0.05m and 0.1-0.2m dataset was not normally distributed, and the calculated geometric mean for this dataset was 4mg/kg, with the median being 3.8mg/kg. These values are higher than the Resi-HP soil-only GSC, but lower than the POSresi soil-only GSC. For the 0-0.05m depth data-set only, which are the soils most likely to cause dust generation (dust inhalation is the risk-driving pathway for beryllium), the geometric mean of 3.6mg/kg and the median of 3.5mg/kg are only marginally higher than the Resi-HP GSC of 3.45mg/kg.

The beryllium GSC is based on an inhalation health criteria value (HCV) selected as the Air Quality Guideline of 0.2ng/m^3 , which was derived using a NOAEL of $0.02 \mu \text{g/m}^3$ for sensitisation and chronic beryllium disease (CBD). An uncertainty factor (UF) of 100 was applied to account for the greater exposure time of the general public (x10) and the potential presence of susceptible individuals (x10). The S4UL toxicological review identifies other published inhalation reference concentrations of $0.02 \mu \text{g/m}^3$ based on no appreciable health risk for non-cancer effects. The S4UL report identifies a value of $0.0042 \mu \text{g/m}^3$ for an excess lifetime lung cancer risk of 1 in 100,000. The air quality guideline basis for the S4UL is therefore the most precautionary choice of the available toxicological thresholds that were reviewed for the HCV selection process. The other potential non-threshold inhalation HCV based on reference concentration of $0.02 \mu \text{g/m}^3$ published by two organisations would result in a GSC of 17mg/kg, whilst remaining protective of a 1 in 100,000 ELCR for lung cancer.

Furthermore, if the CLEA model is set up for the Resi-HP scenario, a soil concentration of approximately 8mg/kg is required to achieve the indoor air concentration equal to the air quality guideline. For the POSresi scenario, a soil concentration of 6.9mg/kg is required. This discrepancy occurs because of the way that the GSC calculation uses a precautionary inhalation HCV based on an air quality guideline of 0.2ng/m³ and assuming an adult weighing 70kg with an inhalation rate of 20m³/day. Both of these concentrations are approximately double the average concentrations reported in soil at Treadgold House, further supporting the precautionary nature of the GSC derivation.

Another precautionary factor within the derivation of the beryllium GSC is the assumption of 100% bioavailability. Research published in July 2021 (Islam, 2021) reported a beryllium bioaccessibility of 18% for the inhalation route using the simulated epithelial lung fluid (SELF) test method. The beryllium inhalation HCV is based on occupational exposure studies and therefore a proportion of this reduced bioaccessibility is likely to be 'built in' to the HCV. However, occupational workers typically work with beryllium fumes or beryllium dust rather than soil dust with sorbed beryllium and those substances are likely to be more bioaccessible and bioavailable than beryllium sorbed to soil dust. Therefore the relatively low bioaccessibility of beryllium in soil dust is likely to translate to a relative bioavailability somewhat below the precautionary 100% value adopted for the GSC derivation.

The Part 2A Statutory guidance states that Generic Assessment Criteria (GAC) describe levels of contamination from which risks should be considered to be comfortably within Category 4. The Statutory guidance indicates that the smallest exceedances of GAC which could reach the upper boundary of Category 4 are 'a few times', but could be orders of magnitude depending on the specific contaminant and exposure scenario. This guidance must be considered on a contaminant specific basis but where GAC are based on the precautionary tolerable intake/minimal risk principles of SR2 (EA, 2009), as well as the precautionary exposure assessment approach of SR3 (Environment Agency, 2009), then it is reasonable to use the 'few times to orders of magnitude' guidance as a line of evidence for where linkages remain in Category 4. Since the beryllium GSC is based on these precautionary approaches then this guidance is considered appropriate in this case. The GSC exceedances for mean beryllium concentrations – taking the combined 0-0.05m and 0.1-0.2m depth dataset – is a factor of 2.7 above the Resi-HP GSC and a factor of 2.2 above the POSresi GSC. If the median (3.8mg/kg) or geometric mean (4.0mg/kg) of this dataset, or the mean (4mg/kg), geometric mean (3.6mg/kg) or median (3.5mg/kg) of the 0-0.05m depth dataset, is used then the exceedances are of a smaller magnitude.

The discussion above of 'soil-only' GSC; the precautionary nature of the HCV; the modelled soil concentrations required to achieve the AQG in indoor air; the precautionary assumption of 100% bioavailability; and the Statutory Guidance indication of where Category 4 lies in relation to GAC, support the conclusion that these minor exceedances of the GSC should not cause linkages associated with beryllium in soil to be outside the Category 4 classification as there is a high degree of conservatism incorporated into the GSC.

Although no outliers were identified, an area of potentially slightly higher concentrations was observed in the area outside Plots 3, 4 and 5. As this area is outside the properties only occupied by adults, the resi-HP and POSresi GSC are overly precautionary for the GQRA. Setting up the CLEA model with the residential (lifetime exposure C4SL) land use and using the adult female residential C4SL receptor and HCVs from the LQM/CIEH S4UL report, a GSC of 9.6mg/kg was generated. This is very similar to the maximum beryllium concentration reported on site of 9.8mg/kg, and is higher than the median, geometric mean and mean concentrations of 8.2mg/kg, 8.4mg/kg and 8.5mg/kg for this cluster based on three samples. Therefore the risk to adult receptors in Plots 3, 4 and 5 is considered to meet the definition of Category 4 land, even considering the slightly higher concentrations reported in this area, given our evaluation that the critical receptor is an adult not a child.

Barium

Although the site-wide average concentrations are lower than the GSC, an area of possibly higher concentrations was identified in the grassed area in Plot 3, Plot 4 and Plot 5. The confidence associated with this is relatively low since there are only three samples; however, these are the three highest reported barium concentrations of 1,500mg/kg, 1,654mg/kg and 2,009mg/kg.

This area is outside the properties only occupied by adults, and therefore the GSC (an EIC/CL:AIRE/AGS GAC) is overly precautionary as it is based on a child receptor. Setting up the CLEA model with the residential (lifetime exposure C4SL) land use, using the female adult residential C4SL receptor and adopting the barium HCVs and physchem parameters used for the EIC/CL:AIRE/AGS GAC, an adult GSC of 14,000mg/kg was generated. This is approximately seven times higher than the maximum barium concentration reported on site and therefore the risk to adult receptors in Plots 3, 4 and 5 is considered to meet the definition of Category 4 land, even considering the slightly higher concentrations reported in this area.

A single exceedance of the barium GSC was reported at sample location TH119 at a depth of 0.1-0.2m bgl, with the reported concentration of 1,361mg/kg marginally exceeding the GSC of 1,300mg/kg. A shallower sample at 0-0.05m depth was not analysed for barium at this location. Given the relatively low number of samples analysed for barium, it is not possible to conclude with a high level of confidence that other soils in the western part of the garden might not have barium concentrations exceeding the GSC. However on the balance of the evidence it is considered to be reasonable to conclude that average barium concentrations in soil are not likely to exceed the GSC. The lines of evidence include:

- site-wide average concentrations have been reported below the GSC;
- all other samples collected to the west of the building have reported barium concentrations less than the GSC; and
- evidence from multiple heavy metals indicates that the area where the concentrations seem to be highest is in the part of the garden to the south of the building, where the nearby sensitive receptor is adult residents of Flats 1 to 6.

Lead

Lead concentrations reported in **Table 21** and **Table 22** generally exceed the Resi-HP GSC by factors of five to six, with the POSresi GSC also exceeded by factors of between two and four. The Stage 2 Step 1 SSAC for both the Resi-HP and POSresi scenarios were also generally exceeded by similar factors as the GSC exceedances. Table 21 and Table 22 also show that many of the calculated average concentrations also exceed the Step 2 SSAC derived during the Stage 2 investigation, which were intended to help define concentrations that could be towards the upper end of Category 3 where it approaches Category 2. Given the average soil concentrations encountered, the assessment of lead in soil at Treadgold House has been taken forwards to a more detailed stage of risk assessment presented in **Section 6**.

5.2.2 Avondale Park Gardens

As previously described at Stage 2, this area is a fenced communal garden in the middle of a residential square. It comprises a grassed area with soil borders planted with trees and shrubs. This scenario is unchanged from the understanding at Stage 2. Generally the area fits the POSresi land-use scenario although the railings around the entire area with a single gate, and the fact that the residential square is not a through route for anyone, means that the exposure frequency and duration assumptions of the POSresi scenario are likely to be conservative for Avondale Park Gardens.

Therefore, the sample results for Avondale Park Gardens have again been compared against the POSresi GSC, as well as the derived Stage 2 SSAC for POSresi. The data for Avondale Park Gardens have not been further subdivided into plots due to the understanding of use of the area – there are no fixed fences and no direct access from properties, therefore frequent targeted use in any given area of the gardens cannot be quantified.

The discussion includes screening of the new data as well as the relevant samples from the Stage 1 dataset (GTCS1-23 and GTCS1-24). A summary of the exceedances is presented in **Table 23**, and the full dataset is presented alongside the applicable GSC (which indicates the GSC source) in the GSC screening tables presented in **Appendix G** as **Table G2**.

Table 23. GSC Exceedances for Avondale Park Gardens

Analytical Suite	Summary of Exceedances	GSC (POSresi, sandy loam >3.48% TOC)	Maximum detection
Lead	Exceeded GSC in 26 of 40 samples	630	2,223 mg/kg

For Avondale Park Gardens, no asbestos was detected, and no COPC other than lead were found to exceed the GSC for POSresi.

Table 24 summarises the exceedances for lead when compared to the GSC and the various POSresi SSAC derived during the Stage 2 investigation. As mentioned in **Section 4.7.4**, location APG109 has been removed for calculating averages, on the basis of it being located very close to original location GTCS1-23. Data-sets both including and excluding locations APG111 and APG113 are presented in Table 24, with the reasons for this discussed in **Section 4.7.4.2**. Statistical evaluation shows that GTCS1-23 is an outlier (as is APG109 if included in the dataset), with no other outliers in the shallow soil datasets (0.05m, 0.1-0.2m and 0.05 & 0.1-0.2m in Table 23). Whether this outlying value is included or not, statistical testing indicates that the shallow soil datasets are not normally distributed and therefore the median or geometric mean concentration may be more suitable for using as an average for exposure assessment. Lead in soil concentrations at Avondale Park Gardens are shown graphically on **Figures A8**, **A9** and **A10** in **Appendix A**. **Figure A8** shows the concentrations in soil in the 0-0.05m depth interval, **Figure A9** shows the concentrations in soil in the 0.1-0.2m depth interval and **Figure A10** shows the concentrations in soil in the 0.5-0.6m depth interval.

Table 24. Lead Exceedances for Avondale Park Gardens

	Number of results	Screening criteria (POSresi)	Minimum mg/kg	Median mg/kg	Maximum mg/kg	Arithmetic Mean mg/kg	Geometric Mean mg/kg
All samples	38	_	381	686	2099	757	717
All samples (excluding APG111 & APG113)	33		381	673	2099	762	719
0.05m	17		519	765	2099	854	804
0.05m (excluding APG111 & APG113)	15		519	763	2099	860	802
0.1-0.2m	15	GSC = 630 mg/kg Step 1 SSAC = 710	509	668	1027	694	681
0.1-0.2m (excluding APG111 & APG113)	13	mg/kg Step 2 SSAC = 1070	506	668	1027	685	672
0.05 & 0.1-0.2m	32	mg/kg Step 2 SSAC (reduced	506	707	2099	779	744
0.05 & 0.1-0.2m (excluding APG111 & APG113)	28	SIR) = 1420 mg/kg	506	686	2099	778	739
0.5-0.6m	4		381	705	1038	707	646
0.5-0.6m (excluding APG113)	3		381	941	1038	787	719
0.9-1.0m	2	-	394	497	600	497	486

The samples were grouped by depth, and then averages for each sample depth were calculated. This approach enabled an assessment of whether the deeper fill / Made Ground at the site related to infilling of the old brickfield footprint could represent a source of lead. Although only two samples were collected from the deepest horizon (0.9-1.0m), the reported concentrations at this depth were lower than or similar to concentrations in shallow horizons at the same locations and therefore there is no evidence that the deeper fill is the cause of the elevated concentrations in the shallower soils. Thus it is more likely that imported soils used during the original landscaping of the area in its current layout are the source of the elevated lead concentrations at the site. The shallowest samples (0-0.05mbgl) represented the highest averages, although the averages across all depths are of similar order of magnitude.

Whether using the datasets including APG111 and APG113 or not, the median, mean and geometric mean averages for samples from 0-0.05m, 0.1-0.2 and 0.5-0.6m exceed the GSC for POSresi, but only slightly, and the averages for 0.9-1.0m depth do not exceed the GSC. All three averages for the sample group from 0-0.05m depth, and the mean and geometric mean for the combined 0-0.05m and 0.1-0.2m datasets exceeded the Stage 2 Step 1 SSAC; none of the average concentrations exceeded the Step 2 SSAC. The significance of these exceedances is discussed further in **Section 5.2.2.1** below.

Review of **Figure A9**, **Figure A9** and **Figure A10** confirms the presence of a potential hotspot in the area of locations GTCS1-23 and APG109 located in the flower bed on the central western part of the site. No other clear zoning of different concentration ranges are evident on these Figures. The potential hotspot in the western flower bed is discussed further in **Section 5.2.2.1**.

A box and whisker plot showing the lead concentrations at Avondale Park Gardens is included in **Figure 5** below. The box and whisker plot shows individual sample concentrations (filled circles), the minimum value (lower whisker), the maximum value (upper whisker), 25th and 75th percentiles (lower and upper boundaries of the box), median (horizontal line through box), and arithmetic mean (cross). This plot provides a simple way to visually compare different datasets to help identify differences in the different datasets and demonstrate the right skewed nature of the datasets.

The box and whisker plot for Avondale Park Gardens shows that compared to the London Earth dataset, the lead concentrations are within the range of this background data, although the mean, median and 25th / 75th percentiles are generally a little higher (particularly for the shallower datasets).

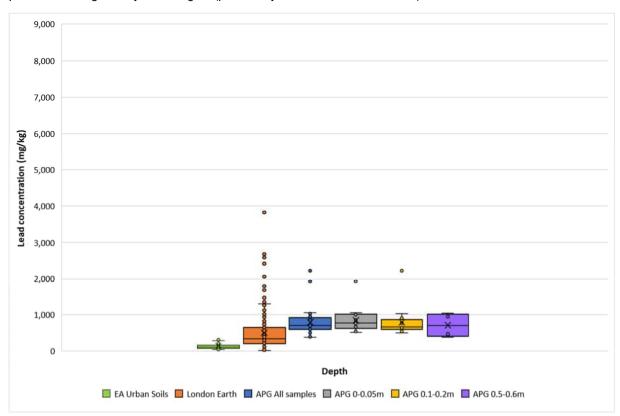


Figure 5 – Box and whisker plot showing the lead concentrations at Avondale Park Gardens compared to EA and London Earth background datasets

It is also noted that all of the average concentrations presented in Table 24, with the exception of the arithmetic mean concentration of 0-0.05m depth samples, are lower than the NBC of 820mg/kg.

The NBC is defined as the upper 95% confidence limit of the 95th percentile (of the dataset used to derive the value) and is intended as an upper threshold value for soils in an urban setting. The average concentrations at Avondale Park Gardens are generally lower than, but relatively close to, the NBC (with the exception described above) and therefore can be considered to be towards the upper end of what is considered normal within an urban environment.

5.2.2.1 Part 2A Risk Evaluation

Only the mean, geometric mean and median for the sample group from 0-0.05m depth, and the mean and geometric mean for the combined 0-0.05m and 0.1-0.2m datasets exceeded the Stage 2 Step 1 SSAC; none of the average concentrations exceeded the Step 2 SSAC. The Stage 2 Step 1 SSAC was considered to be representative of the upper end of Category 4 within a standard POSresi scenario. However, the parameters used are considered overly conservative given the actual use of the land at Avondale Park Gardens; the land is fenced off, with locked gate, and no one uses this as a regular through route. Therefore, the exposure frequency is much reduced compared to the standard scenario. Only a minor reduction in the exposure frequency (in days / year) would increase the derived Stage 2 Step 1 SSAC to be above all of the median and geometric mean soil concentrations. For example reducing the number of days outdoors per year from 170 to 122 (1 in 3 days per year outdoor exposure) would increase the Stage 2 Step 1 SSAC to 804mg/kg (based on a time-weighted average reduction in the SIR to 53mg/day from the value of 60mg/day used for the Stage 2 Step 1 SSAC). This is higher than all calculated average concentrations with the exception of the mean (854mg/kg) for 0-0.05cm depth samples. Since the maximum concentration of 2,099mg/kg is indicated to be the only outlier at a 1% significance level by the Dixon's outlier test, and the data distributions are all indicated to be non-normal with or without the outlier included, the median (765mg/kg) or geometric mean (804mg/kg) are considered to be a more reasonable measure of the average for site-wide exposure.

An alternative approach is to consider an adjusted Stage 2 Step 1 SSAC based on the reduced SIR described for lead in Section 6.1. If this approach is used (resulting in an SIR of 45mg/day input to the CLEA model) then the updated Stage 2 Step 1 SSAC is 946mg/kg.

All median and geometric mean concentrations are equal to or below the Step 1 SSAC based on slightly reduced outdoor exposure compared to the standard POSresi assumptions, and all mean, median and geometric mean concentrations are lower than the revised Stage 2 Step 1 SSAC based on a reduction in exposure frequency from 170 days per year to 122 days per year (which is considered to be reasonable based on the known use of the Avondale Park Gardens site). On this basis the additional soil sampling data from Avondale Park Gardens indicate that this site can be classified as Category 4, and therefore the risk to human health is low.

Paragraph 4.21(b) of the Statutory Guidance indicates that land should be placed in Category 4 where there are only normal levels of contaminants in soil. The average soil concentrations at Avondale Park Gardens appear to be close to the upper bound (i.e. the NBC) of the concentrations that are considered typical of urban environments, based on the majority of average concentrations shown in Table 24 being below the NBC. The provides further evidence that the land at Avondale Park Gardens can be classified as Category 4 land.

It is noted that whilst the maximum concentration is an outlier within the Avondale Park Gardens site, it is still appropriate to assess chronic risk from these soils in the outlier area using average concentrations across the entire Avondale Park Gardens area. This is because under typical usage of the land, a person may be exposed to all areas of the site and higher exposure from any time spent in the outlier area will be balanced against lower exposure in all other areas. The duration of time spent in the outlier area is not expected to be any higher than time spent in other areas – in fact it may be less as the area with the maximum concentration is a relatively inaccessible soil bed with dense shrubs.

A discussion of acute risks from lead in soil is presented in **Section 6.4** in the context of Treadgold House. However, the principles of the discussion are similar for Avondale Park Gardens such that acute health risks from lead in soil are considered to be low. In addition, **Section 6.4** considers intermediate duration exposure and overt health effects such as stomach pains. Such health effects would not be expected for soil concentrations less than approximately six times higher than a GSC based on a blood lead target level of 3.5µg/dL. The maximum lead concentration at Avondale Park Gardens (2,099mg/kg) is 3.3 times higher than the POSresi GSC of 630mg/kg and therefore it is considered that risk of intermediate exposure duration overt health effects from lead in soil at Avondale Park Gardens is low and falls within Category 4.

6. Detailed Quantitative Risk Assessment

In accordance with the tiered approach to land contamination risk management (LCRM) prescribed in UK guidance (Environment Agency, 2020), the next tier of assessment following completion of the GQRA described in **Section 5** is the detailed quantitative risk assessment (DQRA).

The objective of the DQRA is to estimate and evaluate the level of health risk in the context of Part 2A. For this report, the detailed estimation of risk is based on the adoption of site-specific exposure parameters and the review and adjustment (if appropriate) of the toxicological criteria used to define the level of health risk.

The outcome of the GQRA concluded that the reported concentrations of lead in soil at Treadgold House exceeded GSC and Stage 2 Step 1 SSAC for the Resi-HP and POSresi scenarios. This indicates that the land might exceed the level of risk associated with Category 4. In addition, the exceedance of Stage 2 Step 2 SSAC for lead based on a Resi-HP and POSresi land-use scenario for most of the calculated average concentrations indicated that the risk to human health posed by the land could exceed that defining a SPOSH, and therefore fall into Category 1 or Category 2. Critically however, this assumption is based on the garden being used by children in a manner consistent with either the Resi-HP or POSresi scenario assumptions, and assumes that the target blood lead concentration of 5µg/dL used for the Step 2 SSAC derivation is appropriate for defining significant harm.

The DQRA presented below takes into account further site-specific information gathered as part of this intrusive investigation to address the uncertainties in land-use and exposure that exist following the GQRA. The main site-specific considerations include:

- Additional lead bioaccessibility data; and
- Improved understanding of garden usage based on information provided by RBKC Housing Management, information which was corroborated by evidence observed by AECOM during the site walkover and sampling works.

The approach to this DQRA has been to update the site-specific assessment criteria (SSAC) in the same way that they were derived in the Stage 2 report – but to capture more detailed site-specific exposure assumptions and parameters. This has been done in accordance with the 'Step 1' and 'Step 2' process as follows, with more details of all adopted assumptions and parameters presented in Section 6.1 and Section 6.3:

- Step 1 comprises the calculation of SSAC for lead where site specific information is used to refine the exposure assessment (including adjusting exposure frequency assumptions for child receptors based on a POSresi starting point, and update of the lead bioaccessibility data) whilst retaining a low level of risk (i.e. using the C4SL low level of toxicological concern (LLTC)) consistent with Category 4 land (i.e. the precautionary nature of the exposure and toxicological assumptions remains largely unchanged). Step 1 also involves adjustment of the soil ingestion rate (SIR) based on guidance published by the US EPA in 2017 (US EPA, 2017), and derivation of an SSAC specific to an adult receptor. The SIR adjustment is based on an update of the original documentation reviewed when the Environment Agency and CL:AIRE/Defra selected an appropriate soil ingestion rate for the original CLEA guidance and C4SL derivation. The updated value is considered to be appropriate for derived generic criteria such as GAC and C4SLs. Further details of the SIR used are presented in Section 6.1.3.
 - In the context of this report, the Step 1 SSAC define a level of risk that is closer to the Category 4 / Category 3 boundary such that soil concentrations equal to or below the Step 1 SSAC would fall into Category 4, but soil concentrations exceeding the Step 1 SSAC would be less likely to fall into Category 4.
- Where soil concentrations exceed these Step 1 SSAC, these are taken forwards to Step 2 which involves
 the calculation of SSAC that are associated with a higher (i.e. not low) level of risk. This may involve the
 adoption of alternative exposure assumptions and/or alternative toxicological values.
 - In the context of this report, the Step 2 SSAC define a level of risk approaching that that could be considered to pose a significant possibility of significant harm. They are intended to provide an indication of where the upper boundary of Category 3 could be, although this decision must also be weighed against the strength of the evidence, remaining uncertainty and other considerations to be made by the local authority, as described in Paragraphs 4.24 to 4.29 of the Part 2A Statutory Guidance. It is considered that if average concentrations are lower than the Step 2 SSAC then it is unlikely that there is sufficient evidence for the land to meet the definition of Contaminated Land. However, if minor exceedances of the Step 2 SSAC were

identified, a more holistic review of the other considerations may be required to decide whether the land should be determined as Contaminated Land.

The inclusion of a more detailed understanding of the site-specific usage at Treadgold House and Avondale Park Gardens is likely to mean that the SSAC derived as part of the Stage 2 Environmental Checks were relatively conservative. At the time of the Stage 2 investigation, this was necessary given the higher uncertainty associated with average soil concentrations due to far fewer sample results being available compared to the current investigation.

6.1 Step 1 SSAC Derivation

For the Step 1 derived SSAC, the two following scenarios have been considered:

- 1. Child receptor occupying Flats 7 to 10;
- 2. Adult receptor occupying Flats 1 to 6.

This is based on information received from RBKC regarding the configuration and occupancy of the flats at Treadgold House with direct access to the gated shared garden area. The flats with direct access (Flats 1 to 6) are single occupancy studio flats, therefore suitable for single adults only. There are some ground floor flats (flats 7-10) which could house families, however these do not have formal direct access out into the garden (although it is understood that there may be infrequent use of the garden by children). Although AECOM did not encounter any children in the garden during the work, there was a deflated paddling pool and deflated bouncy castle discarded in the garden, indicating previous use by children. Potential access to the garden from Flats 7 to 10 would be by climbing over the waist-high ground floor balcony wall. AECOM was able to observe the balcony walls during the site works and confirm their configuration. It is noted that at Flat 9, the balcony wall has been removed to allow direct access to the garden. However, it is understood by AECOM that this will be temporary and that RBKC Housing Management intend to reinstate this barrier and maintain the integrity of the balcony walls in the long-term. Therefore, the scenario with the balcony wall removed is not considered here, as this will not be a long-term feature. A photo of the cut-away balcony wall is included as Photo 16 of the walkover survey photographic log in Appendix D.

The exposure parameter adjustments used for the calculation of SSAC in each of these scenarios are based on a combination of changes to the following parameters:

- 1. Additional site-specific soil lead bioaccessibility testing data;
- 2. Inclusion of an adult receptor as well as the previously evaluated child receptor;
- 3. Reasonable adjustments to the exposure frequency for children using the garden area given the unofficial and inconvenient access; and
- 4. Updated soil ingestion rate taken from recent USEPA guidance, which is considered to be a more up to date source of information for deriving generic criteria such as GAC and C4SLs. Further information is provided in Section 6.1.3.

A summary of the lead bioaccessibility data-sets and the selection of representative modelling input parameters for ingestion rate, receptor age, exposure durations occupancy periods and exposure periods, is presented in the following report sections below.

6.1.1 Lead Bioaccessibility Testing

The lead bioaccessibility testing provides an estimate of the proportion of the COPC present in the soil that would be available to be absorbed by the digestive system if it were ingested. Bioaccessibility results are therefore only appropriate for site-specific adjustment of the soil and dust ingestion exposure pathway. The results provided by the laboratory are presented in **Appendix E** and have been summarised in the report sections below.

6.1.1.1 Lead Bioaccessibility

A summary of the lead bioaccessibility test results available for Treadgold House, from both Stage 2 and the follow-on sampling, is presented in **Table 25** below.

Table 25. Soil Bioaccessibility Data Summary for Lead

Location	Depth	Original sample Pb concentration (mg/kg)	Total Pb in bioaccessibility test (mg/kg)	Bioaccessible fraction (BAF) gastric (%)	Bioaccessible fraction (BAF) gastric & intestinal (%)
GTCS2-S274A	0-0.02	1168	1296	62	21
GTCS2-S279A	0-0.02	1385	1626	57	20
GTCS2-S280A	0-0.05	2216	1989	61	16
TH109	0-0.05	1576	2238	80	32
TH109	0.1-0.2	8259	4321	74	27
TH120	0-0.05	1065	1118	72	26
TH155	0-0.05	1485	1676	80	21
TH155	0.1-0.2	3623	3482	60	17
TH169	0-0.05	3649	2243	68	11

The gastric phase of the test is run using an approach simulating a fasted biological state with the lowest expected stomach pH values. Lower pH results in higher extraction of lead (its solubility increases with decreasing pH).

The approach taken for this assessment is to use the gastric phase BAF reported by the laboratory. This is precautionary and likely to overestimate longer term time-weighted bioaccessibility where a proportion of lead extraction in the stomach will occur during periods of higher pH after people have eaten.

The average (mean) BAF of all samples from Treadgold House summarised in the table above is 68%, which is slightly higher than the relative bioavailability (RBA) of 60% adopted for the oral exposure pathway in the derivation of the lead C4SL (CL:AIRE, 2014), and also slightly higher than the mean calculated in the Stage 2 report (66%). It is worth noting that the average BAF for the gastric+intestinal extraction phase (higher pH) for all samples was 21%, more than three times lower than the stomach phase. If even a part of this much lower bioaccessibility at higher pH values is factored into the overall long term bioaccessibility then it would likely be reasonable to reduce the expected bioaccessibility somewhere below 60%. However, the initial precautionary site-specific approach to deriving SSAC adopts the mean value of 68% as a reasonable representative of the average BAF across the site investigation area.

Calculation of SSAC in the CLEA model requires input of the RBA, which is not necessarily the same as the BAF. The RBA is the ratio of the bioavailability of the contaminant in soil to the bioavailability of the contaminant in the critical study used to derive the health criteria (i.e. in this case the LLTC). To estimate the RBA from soil BAF data accurately, some knowledge of the BAF from the diet using the same test method would be needed. Since this information is not available, a more general approach to selecting the RBA to be used for deriving the SSAC is required. The C4SL project presented data from a study which used the UBM method (effectively the same test as the bioaccessibility test method used for this intrusive investigation) to test lead BAF in urban soils in the UK. It was noted that if the dietary RBA estimated using the UBM method was 100% then the results from the UK urban soils study would be similar to the RBA of 60% assumed in the IEUBK model and which was adopted for derivation of the C4SL. Since the C4SL Research Project considered that average soil BAFs of 68% from samples collected in London were consistent with the use of a default RBA of 60% for calculating the C4SLs, then it is considered reasonable and precautionary to use the mean value of 68% BAF from this site-specific study as the input for the RBA. The selected RBA value of 68% for lead for derivation of the Step 1 SSAC is included in Table 29. A sensitivity discussion adopting a lower RBA value for the Step 2 SSAC is included in Section 6.3.

6.1.2 Exposure Frequency, Occupancy Period and Exposure Duration

For the adult receptor scenario in Flats 1 to 6, the standard residential land-use without homegrown produce has been taken as the starting point given the direct access to the garden from Flats 1 to 6 and the presence of raised beds containing good quality soil for homegrown produce. The exposure frequencies, occupancy periods and exposure durations adopted are based on the CLEA default values used for derivation of a residential C4SL adopting a lifetime averaging approach and therefore defines exposure assumptions for adults in a residential setting (the values are taken unchanged from the CLEA methodology).

For the child receptor in Flats 7 to 10, the POSresi land-use has been adopted as the starting point as this considers a child of 4-9 years old. This seems more reasonable than the 0-6 year old child considered in the residential land-use scenario given the unofficial access over a waist-high balcony wall. The C4SL report also states that the POSresi scenario would include "the smaller areas commonly incorporated in newer developments as informal grassed areas or more formal landscaped areas with a mixture of open space and covered soil with planting." The C4SL report also states that the land is "a predominantly grassed area of up to 500 m² (0.05 ha) and a considerable proportion of this (up to 50%) may be bare soil. The site is in close proximity to residential housing and is regularly used by children for playing and may be used for informal sports activities such as a football "kickabout"." This is consistent with the investigation area at Treadgold House, which covers an area of approximately 700m², has areas of bare soil (but not more than 50%), has been used for playing (e.g. deflated paddling pool observed), and could be used for informal sports activities.

However, the POSresi scenario assumes that children have free and authorised access to the open space, which is not the case at Treadgold House as residents of Flats 7-10 do not have formally authorised access to the garden; the gate is kept locked and children would have to climb over the waist-high balcony wall. In addition, the well maintained communal garden to the north-east corner of the Treadgold House building if freely accessible to residents and therefore residents of Flats 7-10 may be more likely to spend time in this alternative garden than the more shaded garden to the west of the building that they do not have such easy access to.

Because of this greater barrier to garden access than is assumed in the POSresi land-use scenario, and the alternative garden available to the northeast of the building, it is considered reasonable to reduce the outdoor exposure frequency for soil and dust ingestion compared to the 170days/year assumed for the POSresi scenario. A reasonable reduced exposure frequency has been adopted based on children playing in the communal garden each day during school holidays, when they are likely to spend more time around the home, and only 2 days per week for the rest of the spring / summer months between April and October. Due to the reduced day light hours, poorer weather and difficult access to the garden, it is considered that children from the flats are highly unlikely to use the gated communal garden during the winter months on a regular basis. Therefore the outdoor exposure frequency for Step 1 has been reduced to 111 days/year. A summary of the justification for this number is detailed in **Table 26**. Indoor exposure frequency has not been altered and remains at 365 days/year.

Table 26. Step 2 Outdoor Exposure Frequency (day/year) for a child receptor at Treadgold House

Parameter	Weeks	Days	Justification
Number of weeks April- October	30.5	-	-
Number of weeks holiday	10	70 days	Easter, May half term, summer, October half term.
Number of weeks (non-holiday)	20.5	41 days	2 days per week that children may play in the garden
Total number of days		111 days/year	

6.1.3 Soil Ingestion Rate

The soil ingestion rates (SIRs) to be used for the two different Step 1 SSAC receptors (child in Flats 7-10, adult in Flats 1-6) will differ.

The soil ingestion rate (SIR) for children of 100mg/day that was adopted in the UK CLEA guidance was based on the recommendation from the US EPA 2006 Child-Specific Exposure Factors Handbook (USEPA, Child-Specific Exposure Factors Handbook (External Review Draft). Report EPA/600/R/06/096A, 2006). The C4SL report provided a review of the more recent US EPA Exposure Factors Handbook from 2011 (USEPA, 2011), which continued to recommend a soil ingestion rate of 100mg/day for children in a residential setting. However, the C4SL report considered reducing the SIR for the derivation of C4SLs on the basis of apparent conservatism within the SIR estimates. Ultimately however, the value of 100mg/day originally adopted by the CLEA guidance was retained to maintain a precautionary approach given the uncertainty with this parameter.

For adults, the CLEA guidance adopted a SIR of 50mg/day. This was based on recommended averages from USEPA (1997) and Otte et al (2001), although a third study (Paustenbach, 2000) was also quoted, which concluded that a value between 5mg/day and 25mg/day would be reasonable for adults. The C4SL report noted

that (USEPA, 2011) also recommended a CTE for adult SIR of 50mg/day and this value was retained for the derivation of C4SLs for adult receptors.

Subsequent to the publication of the CLEA guidance and C4SL reports (excluding the 2021 C4SLs⁶), the US EPA Exposure Factors Handbook guidance was updated in 2017 (US EPA, 2017). The USEPA 2017 guidance provided a range for the central tendency estimates (CTEs) for SIR based on a variety of studies, and differing SIRs for different age groups. These are summarised in **Table 27** below and the USEPA 2017 guidance provides a detailed review of the studies used to choose these values. It is not clear why the 2021 vintage C4SLs did not use the 2017 USEPA data.

Table 27. Soil Ingestion Rates from (US EPA, 2017)

Age Group	Soil and dust ingestion general population central tendency (mg/day) ^a
<6 months	40
6 months to <1year	70 (60 – 80)
1 to <2 years	90
2 to <6 years	60
1 to <6 years	80 (60 – 100)
6 to <12 years	60 (60 – 60) ⁱ
12 years through adult	30 (4 – 50) ^j

a. Ranges are provided in parentheses, when applicable, and represent the range of means from the various studies. Ranges are not provided for age groups for which the recommendations are based on a single study.

The derivation of Step 1 SSAC is intended to adopt a site-specific approach and also reduce any conservatism in the C4SL approach such that the value is closer to (but does not exceed) the Category 3/ Category 4 boundary than the C4SLs are intended to be. In accordance with this aim, the age-specific CTE SIR of 60mg/day published in USEPA 2017 for the 2 to <6 years age group and the 6 to <12 years age group has been adopted as the starting point for child exposure. These higher age-groups have been used because child residents at Treadgold House have to informally access the garden over a waist-high (for an adult) balcony wall and therefore children using the garden will be weighted to higher age groups that can more easily physically access the garden.

It is considered reasonable to take this approach on the basis that the USEPA 2017 guidance is an update to the earlier 2006 and 2011 versions of the same guidance, which are therefore now superseded in the U.S. A UK-based review of appropriate SIRs has not been carried out since the C4SL report in 2014 and therefore the updated USEPA guidance has not yet been considered for inclusion in UK guidance. CLEA and the C4SL report equated their child SIR to the recommendation from USEPA 2006, which was maintained in USEPA 2011, although the S4UL report described a number of likely conservatisms within the adopted value of 100mg/day. These conservatisms included the evidence that soil ingestion may be lower in winter rather than summer months; however the key studies used to derive CTEs by the USEPA were conducted during summer months when exposure to soil is likely to be higher. In addition, the C4SL report referenced a study that found little difference in SIR between children living in houses with and without gardens; the conclusion being that a proportion (possibly the majority) of soil ingestion occurs in settings away from the home. Hence soil ingestion of potentially contaminated soils in particular garden is likely to be overestimated.

As the most recent USEPA guidance has recommended a lower SIR for use in risk assessment based on reappraisals of SIR studies and new studies completed between 2011 and 2017, this lower value of 60mg/day has been adopted for the Step 1 SSAC.

This SIR of 60mg/day has been further modified, to account for the reduction of outdoor exposure frequency as discussed in **Section 6.1.2**. In accordance with the C4SL guidance, the 60 mg/day is approximately equally weighted between indoor ingestion of soil derived dust and outdoor soil ingestion. The contribution from indoor exposure remains at 100% (365 days), however the outdoor exposure has been reduced to approximately one third (111 days instead of 365 days). Hence the 60mg/day SIR only occurs on 111 days per year within the

⁶ C4SLs for trichloroethene, tetrachloroethene and vinyl chloride were published in 2021; however the methodology adopted the exposure assumptions taken directly from the 2014 C4SL SP1010 report and an updated review of exposure assumptions (e.g. SIR) was not carried out.

garden area. For the CLEA model, a single SIR value is required and so to incorporate the reduced number of days spent outdoors a time-weighted average SIR has to be calculated. The calculation for the modified SIR for the child receptor is included in **Table 28** below.

Table 28. Calculation of Modified Child Receptor SIR for Step 1 SSAC

Initial SIR (based on Table	Indoor Contribution	Outdoor Contribution	Modified Step 1 SIR
23 - 1-<6 year old)			

60 mg/day 30 mg/day (100%) 9 mg/day (30% of 30 mg/day) 30 + 9 = 39 mg/day*

For the adult receptor, a soil ingestion rate of 30 mg/day has been selected based on the data presented in **Table 27**, and a further Step 1 modification to this is not warranted as there are adult receptors which have direct access onto the communal garden area from their properties.

The value of 30mg/day, which is reduced from the adult SIR of 50mg/day adopted by CLEA and the C4SL guidance, is considered to be reasonable along the same lines of reasoning as that presented above for the child SIR.

6.1.4 Step 1 SSAC Parameters Summary

A summary of the parameters used to derive the updated Step 1 SSAC for this report are summarised in **Table 29** below.

Table 29. Summary of Step 1 SSAC Modelling Parameters

	Treadgold House – Updated Step 1 SSAC (child receptor)	Treadgold House – Updated Step 1 SSAC (adult receptor)
Soil and dust ingestion	Υ	Y
Dust inhalation - indoor and outdoor	Υ	Υ
Dermal contact - indoor and outdoor	Υ	Υ
Inhalation of vapours - indoor and outdoor	Υ	Υ
Critical receptor	3-<9 yrs female child	Female adult - 16 – 75 years
Exposure duration	6 years	59 years
Occupation period	20 - 24 hrs	16 hours / day – indoors 1 hour / day - outdoors
Exposure frequency – indoor	365 days	365 days
Exposure frequency – outdoor	111 days	365 days
Soil ingestion rate	39 mg/kg	30mg/day
RBA – Pb only	0.68	0.68

6.1.5 Toxicological Criteria

Lead was addressed as part of the C4SL Research Project (CL:AIRE, 2014), the objective of which was to develop GSC suitable for use within the Part 2A framework and would define a level of exposure risk towards the upper end of the Category 4 definition (i.e. low risk).

The toxicological concept developed for the C4SL Research Project was the Low Level of Toxicological Concern (LLTC), and the values ultimately selected for oral exposure for lead for children and adults were:

^{*} The adoption of an SIR of 39mg/day for the Step 1 SSAC is required for modelling. This does not mean that the SIR is 39mg/day on the 111 days per year that the child is assumed to use the garden; rather it is a time-weighted average across the year with this approach needed due to the input and calculation setup of the CLEA model. The base literature sourced SIR that this site-specific value is based on is 60mg/day.

1. Lead (child receptor): LLTC of 1.4 micrograms per kilogram bodyweight per day (μg/kg-bw/day).

2. Lead (adult receptor): LLTC of 0.63 micrograms per kilogram bodyweight per day (µg/kg-bw/day).

For lead, the LLTC was defined as the dietary dose that would result in a geomean blood lead concentration (BLC) of 3.5μg/dL in young children and adults. This value was chosen by Defra as it was considered to represent a low level of risk in relation to the toxicological effects of lead on neuro-behaviour (for the child receptor) and the cardiovascular system (for the adult receptor). It does not represent minimal risk: a lower potential blood lead target level of 1.6μg/dL was considered by Defra to be "too close to minimal risk to support its use in the derivation of the more pragmatic C4SLs". The UK's current public health intervention concentration for blood lead is set at 5μg/dL (UK HSA, 2021). (PHE, 2021a) states that "it is important to note that a blood lead concentration of less than 5μg/dL (0.24μmol/L) is still associated with adverse health effects". (PHE, 2021a) goes on to say that BLCs of less than 5μg/dL are associated with adverse cognitive effects (academic achievement and IQ decrements) in children. There is not considered to be a threshold for such adverse cognitive effects and these effects do not easily fit into the definition of significant harm within the Part 2A Statutory guidance (refer to Section 7.1.2) and therefore the target BLC of 3.5μg/dL is considered to be suitable for using as the toxicological criterion for the Step 1 SSAC.

In accordance with the methodology for deriving the lead C4SL (CL:AIRE, 2014), a separate inhalation LLTC is not used for lead since the oral LLTC has been derived based on a blood lead target for multiple exposure routes: the blood lead target has been converted to a daily intake using the IEUBK biokinetic model and this intake is applied to the CLEA model as the oral LLTC described above.

Initially, for the derivation of the SSAC, the LLTC used for the C4SLs have been retained so that the SSAC continue to reflect a low risk to human health. Where reported soil concentrations continue to exceed these SSAC, further consideration of alternative health risk thresholds have been considered in **Section 6.3** in relation to what would constitute an "unacceptable risk" under Part 2A.

6.1.6 Soil Contribution to Indoor Dust

The adopted SIR is based on an approximate assumption that 50% of the exposure comes from outdoor soil and 50% of the exposure comes from indoor dust. This is based on discussion presented within the C4SL report. However, it is possible that the indoor dust ingestion contribution from the investigation area will be considerably reduced based on the lower exposure frequency adopted for the child Step 1 SSAC (refer to Section 6.1.2). If the indoor dust ingestion was reduced proportionate to the exposure frequency (as was done for the outdoor soil ingestion) then an overall site-specific SIR of 18mg/day (for a child receptor) could be proposed.

This approach is not considered to be sufficiently precautionary for Step 1 SSAC in order to maintain sufficient confidence that the SSAC is representative of Category 4; however, an indicative SSAC has been derived using this lower SIR of 18mg/day as part of a sensitivity assessment for Step 1.

6.1.7 Exposure Modelling

The Environment Agency CLEA model v1.071 (EA, 2015) has been used to calculate SSAC for Treadgold House as part of the DQRA. These SSAC derived for Step 1 are presented in **Table 30** below. The CLEA model inputs and outputs are presented in **Appendix K^7**.

Table 30. Updated Step 1 Site-specific Assessment Criteria

	GSC (mg/kg)	Updated Step 1 SSAC (mg/kg)		
	Resi-HP	POSresi	Adult receptor	Child receptor	
Lead	310	630	2150	1,060	

Based on the sensitivity assessment adopting an SIR of 18mg/day for the reduced soil contribution to indoor dust (refer to Section 6.1.6), the updated Step 1 SSAC for a child receptor would be 2,280mg/kg. This is discussed in Section 6.2 below.

⁷ Note that the input SIR in the CLEA model in Appendix K appears as 0.04g/day. However this is due to rounding of the actual input value of 0.039g/day to two decimal places.

6.2 Comparison of Site Data with Updated Step 1 SSAC – Treadgold House

A summary of the datasets for COPC at Treadgold House to be compared against the Step 1 SSAC is presented in **Table 31.** The approach to statistical assessment of the data described in **Section 5.2** has also been adopted here.

Table 31. Treadgold House Updated Step 1 SSAC Data Comparison

Treadgold House Dataset	Number of samples	Minimum (mg/kg)	Maximum (mg/kg)	Mean (mg/kg)	Median (mg/kg)	Geometric Mean (mg/kg)	SSAC mg/kg
Lead (0-0.02m, 0-0.05m,	' 160 148		38.490	2.101	1.487	1,509	2150 – adult
0.1-0.2m)	160	140	36,490	2,101	1,467		1,060 – child

An alternative child SSAC of 2,280mg/kg, based on a reduced indoor dust ingestion component is also discussed in this section.

6.2.1 Child Residents

The mean lead concentrations in shallow soil (i.e. upper 20cm) at Treadgold House (Table 31) exceed the SSAC derived for the child receptor by approximately a factor of two, with the median and geometric mean concentrations exceeding the child Step 1 SSAC by a factor of approximately 1.5. It is noted that none of the calculated average concentrations exceed the less precautionary indicative SSAC of 2,280mg/kg based on reduced indoor dust ingestion. With reference to Table 22, the median, geometric mean and arithmetic mean concentrations of all data-sets for shallow soil (upper 0.2m) presented for Plots 7 and 8 exceeded the Step 1 SSAC by between a factor of one and three. For Plot 7, the median, geometric mean and arithmetic mean concentrations exceeded the Step 1 SSAC by factors of 1.2, 1.1 and 1.3 respectively in 0-0.05m depth soils; and by factors of 2.3, 1.4 and 2.1 respectively in 0.1-0.2m depth soils. For Plot 8 (without cluster samples), the median, geometric mean and arithmetic mean concentrations exceeded the Step 1 SSAC by factors of 1.4, 1.4 and 1.4 respectively in 0-0.05m depth soils; and by factors of 1.5, 2.0 and 2.3 respectively in 0.1-0.2m depth soils. Average concentrations in Plot 7 and Plot 8 did not exceed the indicative SSAC of 2,280mg/kg with the exception of the median for 0.1-0.2m depth soils in Plot 7, and the arithmetic mean for 0.1-0.2m depth samples in Plot 8 (without cluster samples). Neither of these datasets is likely to be representative for exposure, with the shallower sample (0-0.05m depths) dataset or the combined 0-0.05m and 0.1-0.2m depth dataset most suitable for risk evaluation.

For Plots 9 and 10, there was greater variability in the reported average concentrations and the datasets for Plot 9 and Plot 10 compared to the child Step 1 SSAC are summarised in **Table 32** below. Soil data are reported with and without the cluster samples – differences are discussed in the text below the table.

Table 32. Summary of Data for Plot 9 and Plot 10, Treadgold House

	Depths Ranges (m)	Number of results	Minimum detection (mg/kg)	Median (mg/kg)	Geometric Mean (mg/kg)	Arithmetic Mean (mg/kg)	Maximum detection (mg/kg)
Plot 9 – with cluster samples	0-0.05	10	426	1,027	973	1,130	2,871
(TH111, TH112 and TH113)	0.1-0.2	4	935	4,839	3,182	7,478	18,960
and TTTT10)	0-0.05 and 0.1-0.2	14	426	1,186	1,435	2,944	18,960
	0.3-0.4	3	991	2,870	3,886	8,164	20,630
	0.6-0.7	1	-	-	-	-	483
	All	23	426	1,186	1,541	3,677	20,630
Plot 9 – without cluster samples	0-0.05	9	426	1,042	934	1,142	2,871
(TH111, TH112 and TH113)	0.1-0.2	3	1,418	8,259	6,055	9,546	18,960
and initio)	0-0.05 and 0.1-0.2	12	426	1,259	1,490	3,243	18,960
	0.3-0.4	3	991	2,870	3,886	8,164	20,630
	0.6-0.7	1	=	=	-	-	483

	Depths Ranges (m)	Number of results	Minimum detection (mg/kg)	Median (mg/kg)	Geometric Mean (mg/kg)	Arithmetic Mean (mg/kg)	Maximum detection (mg/kg)
	All	16	426	1,259	1,662	3,993	20,630
Plot 10 – with cluster samples (TH105, TH106 and TH107)	0-0.05 & 0-0.02	12	340	1,295	1,108	1,243	2,748
	0.1-0.2	6	441	899	949	1,125	2,412
	0-0.05 and 0.1-0.2	18	340	1,226	1,247	1,203	2,748
	0.3-0.4	4	309	506	471	488	630
	0.6-0.7	2	150	152	151	152	153
	1.1-1.2	1	-	-	-	-	507
	All	25	150	676	770	977	2,748
Plot 10 – without cluster samples (TH105, TH106 and TH107)	0-0.05 & 0-0.02	9	340	1,168	1,041	1,211	2,748
	0.1-0.2	3	441	609	566	575	676
	0-0.05 and 0.1-0.2	12	340	874	894	1,052	2,748
	0.3-0.4	4	309	506	471	488	630
	0.6-0.7	2	150	152	151	152	153
	1.1-1.2	1	-	-	-	-	507
	All	19	150	630	629	810	2,748

For Plot 9, the arithmetic mean concentration of the 0-0.05m depth samples marginally exceeds the SSAC and the median and geometric mean are marginally lower than the SSAC, both with and without inclusion of the 'cluster' sample located in this area. As the median or geometric mean are considered to be a more appropriate average to estimate exposure due to the non-normal dataset distribution, the average concentration in Plot 9 for soils at 0-0.05m depth is likely to be lower than the Step 1 SSAC. However for the samples at 0.1-0.2m depth the average concentrations are considerably higher than the SSAC due to the small number of samples and two notably higher individual concentrations (18,960mg/kg at TH108 and 8,259mg/kg at TH109). Exposure to these soils at 0.1-0.2m is expected to be significantly less than the soils at 0-0.05m depth and so these average concentrations are not representative of the soils that residents will mostly be exposed to. If the 0-0.05m and 0.1-0.2m combined dataset is considered then the arithmetic mean, geometric mean and median concentrations (2,944mg/kg, 1,435mg/kg and 1,186mg/kg respectively) exceed the SSAC by factors of 2.8, 1.4 and 1.1 respectively. Only the arithmetic mean in the combined 0-0.05m and 0.1-0.2m depth dataset exceeds the higher indicative SSAC of 2,260mg/kg.

For Plot 10 the mean, geometric mean and median concentrations at 0-0.05m depth slightly exceed the SSAC (with the exception of geometric mean in dataset without cluster samples), but the average concentrations at 0.1-0.2m depth (without cluster samples) do not exceed the SSAC (the arithmetic mean marginally exceeds the SSAC with cluster samples included). When the 0-0.05m and 0.1-0.2m depth datasets are combined for Plot 10, the average concentrations (mean = 1,041mg/kg, geometric mean = 894mg/kg, median = 676mg/kg) do not exceed the SSAC if cluster samples are excluded. However, the mean and median slightly exceed the SSAC if cluster samples are included, though the geometric mean does not exceed the SSAC (mean = 1,203mg/kg, geometric mean = 1,052mg/kg, median = 1,226mg/kg). This indicates that the level of uncertainty due to small-scale variability associated with reported lead concentrations in shallow soil may be too high in Plot 10 to decide whether average soil concentrations are above or below the Step 1 SSAC. For Plot 10, all estimated average concentrations are comfortably lower than the higher indicative SSAC of 2,260mg/kg.

Average concentrations (particularly the geometric means and medians that are likely to be the most appropriate averages for estimating exposure given the non-normal datasets) in the datasets for the shallowest soils (0-0.05m) for the full investigation area and Plots 7 to 10 slightly exceed the child Step 1 SSAC for lead with the exception of the scenarios at Plot 9 and Plot 10 described above, where some average concentrations exceed the SSAC and some do not exceed the SSAC depending on the specific dataset considered. Given this outcome, it is considered that the investigation area poses a risk to health higher than the low level that defines the upper boundary of Category 4 land. As such, risks to child residents of Flats 7-10 for lead in soil has been taken forwards to Step 2 DQRA described in **Section 6.3** below. It is noted that all average concentrations likely

to be representative for exposure are lower than the indicative SSAC of 2,260mg/kg; this highlights the uncertainty associated with the relatively low magnitude exceedances of the Step 1 SSAC.

The Step 1 SSAC can also be used as an initial screen for child visitors to Flats 1 to 6, but is considered to be highly precautionary for the following reasons:

- If it is assumed that a child visits once a week, the exposure frequency will be 52 days per year, which is less than half the exposure frequency adopted for the Step 1 SSAC.
- The contribution to total soil and dust ingestion for a child visitor would be an extremely small proportion of their total soil and dust ingestion, which would be largely dominated by exposure at their own home and other settings away from home (e.g. nursery, school, local parks).

These two factors would be expected to more than double the SSAC as it would apply to child visitors. Given that geometric mean soil concentrations in Plots 1 to 6 (refer to Table 22) are all less than two times higher than the child Step 1 SSAC (except 0.1-0.2m depth in Plot 2), these exceedances are not considered to be significant for child visitors and linkages associated with child visitors to Flats 1 to 6 would fall into Category 4 (no to low risk).

6.2.2 Adult Residents

For the adult receptor, the average (median, geometric mean and arithmetic mean) concentrations for all samples across the full investigation area in the depth range 0-0.05m and 0.1-0.2m are lower than the adult Step 1 SSAC. With reference to Table 22, all median and geometric mean concentrations in Plots 1 to 6 do not exceed the Step 1 SSAC, with the exception of the median and geometric mean for 0.1-0.2m depth in Plot 5 (if cluster samples are excluded) and the geometric means for Plot 2 at 0.1-0.2m depth and Plot 3 at 0.1-0.2m depth. However, exposure to the soils at 0.1-0.2m will be less than those soils at 0-0.05m depth and if the combined 0-0.05m and 0.1-0.2m datasets are considered then the median (1,700mg/kg, 1,589mg/kg and 1,784mg/kg for Plots 2, 3 and 5 respectively) and geometric mean (1,877mg/kg, 1,855mg/kg and 1,877mg/kg for Plots 2, 3 and 5 respectively) concentrations do not exceed the adult Step 1 SSAC for lead. Even if the averaging zone covering Plots 3 to 6 that was discussed in Section 5.2.1.3 and Table 22 is considered, the median and geometric mean concentrations for all depths (0-0.05m, 0.1-0.2m and combined 0-0.05 and 0.1-0.2m) are lower than the adult Step 1 SSAC for lead.

For Plots 1, 2, 3 and 5, mean concentrations for datasets at 0.1-0.2m depth exceed the adult Step 1 SSAC. However, where these data are combined with the 0-0.05m datasets for a more representative estimate of typical soil lead concentrations, only the mean concentrations at Plot 1 (4,850mg/kg), Plot 3 (2,193mg/kg) and Plot 5 (2,163mg/kg with cluster samples included) exceed the SSAC. The mean concentration in the combined 0-0.05m and 0.1-0.2m depth dataset in Plot 1 is caused by a single high individual concentration in the 0.1-0.2m depth samples causing a highly right-skewed dataset. For Plot 1 this is a single result of 38,490mg/kg at TH165. The statistical assessment indicates that if this results remains in the dataset then, using a non-parametric bootstrap method, there is a 95% confidence interval (CI) on the mean of between 951mg/kg and 16,380mg/kg. This is an extremely large range indicating high uncertainty associated with this dataset. Removing the maximum result reduces the upper boundary of the 95% CI to 1,556mg/kg – lower than the Step 1 SSAC. For Plots 3 and 5, the 95% CIs are 1,635mg/kg-3,143mg/kg and 1,707mg/kg-2,841mg/kg respectively. This indicates lower uncertainty than for Plot 1, but still indicates some potential for average concentrations to exceed the Step 1 SSAC.

With these combined depth datasets, both the median and the geometric mean concentrations are lower than the SSAC in all Plots. Since all the higher average concentrations are within the 0.1-0.2m depth horizon, and a statistical assessment indicates that the datasets are not normally distributed, it is considered most appropriate to use the median or geometric mean concentration (rather than the arithmetic mean) as being the most representative average soil concentration for assessing exposure risk, as it is less weighted towards the higher individual values.

For Plots 7, 8, 9 and 10, the mean, geometric mean and median concentrations in the 0-0.05m depth datasets are all lower than the adult Step 1 SSAC. For the 0.1-0.2m depth datasets, the mean and median concentrations exceed the adult Step 1 SSAC for Plot 7; however, the geometric mean is lower than the Step 1 SSAC. For 0.1-0.2m depth samples in Plot 8 (both with and without cluster samples) the mean concentration exceeds the adults Step 1 SSAC but the median and geometric mean concentrations are lower than the SSAC. Within Plot 9 (with and without cluster samples) all three average concentrations in the 0.1-0.2m depth dataset exceeded the Step 1 SSAC and in Plot 10 (with and without cluster samples) none of the averages exceeded the SSAC for the 0.1-0.2m depth. The average concentrations in Plots 7 to 10 at 0.1-0.2m depth are based on a small number of

samples and are strongly influenced by outliers. Adults are also much less likely to be exposed to the soils at 0.1-0.2m depth compared to those at 0-0.05m depth. When the datasets for 0-0.05m and 0.1-0.2m depth are combined in these plots, all median and geometric mean concentrations are lower than the adult Step 1 SSAC. Only the arithmetic mean concentration in Plot 9 (with and without cluster samples) exceeds the SSAC, by factor of 1.5 (without cluster samples).

Taking the above into account, the fact that all calculated median and geometric mean concentrations for the 0-0.05m depth and combined 0-0.05m and 0.1-0.2m depth datasets are lower than the adult Step 1 SSAC means that the lead in soil linkage associated with exposure to adult occupants of Treadgold House falls into Category 4. For Plot 9 where the arithmetic mean concentrations of the combined 0-0.05m and 0.1-0.2m depth dataset slightly exceed the SSAC, normality testing indicates that the dataset is not normally distributed and therefore the median or geometric mean is considered to be more suitable for assessing exposure risk than the arithmetic mean. In cases where concentrations are higher than the SSAC in the deeper 0.1-0.2m depth horizon in some Plots, this is not expected to cause unacceptable exposure even if soils in soil beds are mixed to some extent, because the higher concentrations in 0.1-0.2m depth soils will be 'diluted' by the lower concentrations in shallower 0-0.05m depth soils. This is particularly true because the garden area is managed by RBKC Housing and therefore residents are much less likely to dig into the deeper soils beneath the surficial layer in order to maintain the garden in a well-kept state. If the garden area became entirely privately managed at some future time then the impact on overall exposure of the higher concentrations in the 0.1-0.2m depth horizon should be evaluated in the context of the future change to the land-use.

6.2.3 Outliers

Across the full garden area, seven potential 'high' outliers were identified in the 0-0.05m + 0.1-0.2m dataset using Rosner's outlier test (at 1% significance level), with concentrations ranging between 5,942mg/kg and 38,490mg/kg. No 'low' outliers were identified. Of the seven outliers, five were within the deeper soils at 0.1-0.2m depth and shallower samples at the same locations were not identified as outliers from the dataset. The seven outliers are distributed throughout the garden area, with one outlier in each of Plots 1, 2, 3, 5 and 6, and two of the seven outliers in Plot 9. The two outliers in the 0-0.05m depth horizon were located at TH125 (Plot 6) and TH156 (Plot 3) with concentrations of 6,230mg/kg and 6,059mg/kg respectively: of these, TH125 was situated in a turfed area where the turf will help to reduce exposure to the soil, whereas TH156 was located on bare soil at the edge of a soil border flower bed. The deeper outliers are located in Plots 1, 2, 5 and 9 (2 samples). Of the five deeper outliers (all identified in the 0.1-0.2m depth samples), three were in grassed areas (TH108, TH138 and TH165), and two were in bare soil areas (TH109 and TH162).

Of the seven outliers, five are located in the garden area to the south of the building within Plots 1 to 6. An averaging zone of potentially higher concentrations within this area - covering Plots 3 to 6 – was considered as part of the risk evaluation in Section 5.2.1.3.1. The mean, geometric mean and median concentrations in this averaging zone did not exceed the adult Step 1 SSAC. Further breakdowns of the data into alternative averaging zones focussing on the areas where outliers were found indicate a similar outcome, as follows:

- The mean, median and geometric mean concentrations of soils from 0-0.05m and 0.1-0.2m depth in combined Plots 1, 2 and 3 were 2,936mg/kg, 1,580mg/kg and 1,334mg/kg.
- The mean, median and geometric mean concentrations of soils from 0-0.05m and 0.1-0.2m depth in combined Plots 2 and 3 were 2,170mg/kg, 1,693mg/kg and 1,694mg/kg.
- The mean, median and geometric mean concentrations of soils from 0-0.05m and 0.1-0.2m depth in combined Plots 5 and 6 were 2,052mg/kg, 1,654mg/kg and 1,559mg/kg).

Although the arithmetic mean concentrations in the first two groupings above exceeded the adult Step 1 SSAC, the datasets are not normally distributed and the median and geometric mean concentrations are considered to be more appropriate for assessing average exposure, particularly as the majority of the highest concentrations are in the deeper samples and therefore exposure will be weighted towards the lower concentrations in the surface (0-0.05m depth) samples.

This suggests that the outliers do not represent spatial zones where higher concentrations are clustered to the extent that they could cause exposure to average soil concentrations significantly above the averages for the dataset as a whole. This is supported by the relatively high density of sampling, with each sampling location no more than approximately three metres from the next nearest location and at least 5 sample locations situated within each Plot averaging area. In the absence of any other lines of evidence for significant hotspots (i.e. there were no field observations of potential significant soil differences in the statistical outlier samples), then the overall dataset average concentrations calculated for different averaging areas are considered to be suitable for

comparison against the SSAC, and separate hotspot areas do not need to be considered. The conclusions drawn in Section 6.2.1 and Section 6.2.2 are therefore considered to be appropriate.

6.3 DQRA Step 2 – Potentially Unacceptable Risk Threshold for Treadgold House

Step 2 builds on the SSAC derived in Step 1, which were presented in **Table 30**. The objective of Step 2 is to identify concentrations where the level of risk approaches that which could be considered to pose a significant possibility of significant harm. This means identifying a concentration at which it can be considered that the risk is definitely not low, and that the possibility of significant harm is such that it could be considered significant by the relevant regulatory authority (subject to the tests of the overarching objectives of Part 2A).

6.3.1 Step 2 Toxicological Threshold

Since the SSAC derived in Step 1 are based on low levels of toxicological concern, one element of the approach to Step 2 is to adopt an alternative toxicological threshold that defines a higher level of risk.

For lead, a toxicological threshold associated with a 5μ g/dL blood lead level has been adopted for Step 2. This is in comparison to the blood lead level used to define the LLTC of 3.5μ g/dL, which itself is set at a level where adverse health effects have been reported (refer to Section 6.1.5). 5μ g/dL is the UKHSA concentration for triggering individual case intervention in England. Given that adverse health effects have been reported at concentrations lower than 5μ g/dL, it is considered that this threshold which indicates the point at which health authorities should intervene on the basis that there is likely to be a specific lead source and in order to reduce the harm is a reasonable threshold to define 'significant harm'. It is noted that although the blood lead concentration of 5μ g/dL is not a risk-based concentration, the value was one of a number of values considered as part of the C4SL derivation for use as the LLTC before the concentration of 3.5μ g/dL was ultimately chosen. In addition the value of 5μ g/dL is slightly lower than the highest risk-based blood lead level of 5.6μ g/dL reported as a possible choice for the child LLTC in Table 2.5 of the C4SL lead report (CL:AIRE, 2014). The HCV calculated as part of the C4SL Research Project as being equivalent to a blood lead level of 5μ g/dL was 2.1μ g/kg-bw/day (child receptor) and this value has been used as the input for deriving the Step 2 SSAC for lead.

Further adjustment to the SIR is adopted for calculation of the Step 2 SSAC for the child receptor scenario that could represent a level of risk closer to SPOSH. Based on the USEPA 2017 guidance a lower SIR of 45mg/day has been adopted as the starting point for calculating a site-specific SIR. This value of 45mg/day is based on the mid-point of the SIR for 6-<12yrs age range (60mg/day) and for the 12-adult age range (30mg/day) in USEPA 2017. This is considered to represent a lower estimate of the CTEs presented in USEPA 2017 and is justified on the basis that the communal gardens are likely to be very infrequently used by children younger than 6 years old due to the waist-high barrier restricting access from the flats. Further support for this lower SIR starting point includes the following:

- The C4SL report refers to a study by Van Wijnen et al (1990) that indicates that published soil ingestion rates are likely to over-estimate exposure during winter months;
- The Van Wijnen et al (1990) study concluded that soil ingestion is often more likely to be from areas away from the home such as parks, streets, shops, nurseries and schools;
- The C4SL report refers to a meta-analysis study by Stanek et al (2012) which indicated mean and median SIRs of 26mg/day and 33mg/day respectively. These values are notably lower than the SIRs used for the Step 1 SSAC and are also lower than the starting point SIR for the Step 2 SSAC;
- (US EPA, 2017) provides an additional summary of the data from the Stanek et al. (2012) study and presents the estimated SIR with data from a study located close to the Anaconda Superfund site removed⁸. These estimated mean and median SIRs were 43mg/day and 41mg/day, which are still lower than the Step 1 SSAC and starting point of 45mg/day being adopted for the Step 2 SSAC. (US EPA, 2017) reports that the data for the Stanek et al (2012) study were collected during summer and early autumn; data confined to this part of the year has been interpreted as likely to overestimate ingestion averaged across the year, as discussed in the C4SL report and noted above;

In addition to the lower starting point for the site-specific SIR, the contribution from the ingestion of indoor dust has been factored down to 30% of the assumed 50% contribution to the combined SIR of 45mg/day. The CLEA guidance (Environment Agency, 2009) states that it is difficult to separate out oral ingestion contributions from soil

⁸ It was considered that because the children lived close to a Superfund site there may be additional efforts taken to limit soil indestion in the area.

and indoor dust and for that reason a combined soil and dust ingestion rate is used. The C4SL report (CL:AIRE, 2014) notes that the contribution to the combined ingestion rate is likely to be split approximately equally, with half of the total ingestion coming from outdoor soil and half coming from indoor dust. The reduction in the indoor dust ingestion rate is based on the same justification as for the Step 1 SSAC, with exposure to the garden considered to occur on 111 days out of 365 days per year. The Van Wijnen study referred to in the C4SL report and noted above concluded that soil and dust ingestion is likely to be from a wide variety of sources unrelated to the immediate residential surroundings. It follows that the proportion of indoor dust in a property will be derived from many different sources and not just the garden area. This is intended to reflect the fact that the much reduced exposure in the investigation area will translate to a lower contribution of soils from the garden to the total indoor dust.

The calculation of the modified SIR for the Step 2 SSAC is presented in Table 33 below.

Table 33. Calculation of Modified Child Receptor SIR for Step 2 SSAC

23 – mid-point of 6-<12 year old and 12-adult.)		Outdoor Contribution	Modified Step 2 SIR	
45 mg/day	6.75 mg/day (30% of 22.5mg/day)	6.75 mg/day (30% of 22.5 mg/day)	6.75 + 6.75 = 13.5 mg/day*	

^{*} The adoption of an SIR of 13.5mg/day for the Step 2 SSAC is required for modelling. This does not mean that the SIR is 13.5mg/day on the 111 days per year that the child is assumed to use the garden; rather it is a time-weighted average across the year with this approach needed due to the input and calculation setup of the CLEA model. The base literature sourced SIR that this site-specific value is based on is 45mg/day.

Based on the above justification, the derived Step 2 SSAC for the child receptor is 4,530mg/kg, as detailed in **Table 34**. The CLEA input and output sheets are presented in **Appendix K**⁹

Table 34. Updated Step 2 SSAC for a child resident receptor at Treadgold House

Treadgold House (child resident receptor)

Step 2 SSAC	Lead
Step 2 SSAC* (mg/kg)	4,530

^{*5}μg/dL blood lead target. Note that if the risk-based blood lead concentration of 5.6μg/dL had been adopted then the derived SSAC would be 5,180mg/kg, assuming a dose of 2.4μg/kgbw/day to achieve 5.6μg/dL blood lead (Figure 2.4 of lead C4SL report (CL:AIRE, 2014)).

The Step 2 SSAC of 4,530mg/kg has been derived to identify a soil concentration that could be close to defining SPOSH, and would therefore be an unacceptable concentration in the context of Part 2A.

Lead bioaccessibility and bioavailability was discussed in Section 6.1.2 and a site-specific bioaccessible fraction and relative bioavailability value of 68% was adopted for derivation of the Step 1 and Step 2 SSAC. However, the discussion in Section 6.1.2 noted that the adopted value could be conservative on the basis that this value is the stomach phase results of the UBM test method that simulates conditions in a fully fasted condition at the lowest pH. The stomach + intestinal average BAF from the UBM test was calculated as 21%, considerably lower than the value adopted.

There is no interpretative guidance associated with the UBM test method and which BAF of the stomach or stomach+intestinal BAF is the most appropriate for use in risk assessment, and therefore a reduced BAF and RBA has been considered as part of the sensitivity assessment in Section 6.3.1 below. It is noted that the use of 68% RBA for the Step 1 SSAC relies on the assumption that the dietary BAF if measured using the UBM test method (stomach-only) would be 100%. It is not necessarily the case that a dietary BAF using the stomach+intestinal method would also be 100% - it may be lower given the lower extraction pH used - and therefore the BAF of 21% could not be adopted directly as the RBA. For example, the BAF of 21% would equate to an RBA of 40% if dietary BAF was 50% using the UBM stomach+intestinal test method. For the purposes of

⁹ Note that the input SIR in the CLEA model in Appendix K appears as 0.01g/day. However this is due to rounding of the actual input value of 0.0135g/day to two decimal places.

the sensitivity assessment an RBA of 45%, calculated as the mid-point between the stomach-only BAF (68%) and stomach+intestinal BAF (21%) has been adopted.

6.3.2 Sensitivity Assessment

Table 35 below shows the impact of changing the different parameters on the resulting SSAC. The POSresi GSC is used as the starting point, and the impact of varying the RBA, soil ingestion rate, outdoor exposure frequency and toxicological criteria on the resulting SSAC are detailed.

Table 35: SSAC Sensitivity Matrix

Parameter	POSresi GSC	Step 1 Child Receptor SSAC	Step 2 Child Receptor SSAC Development Progression			Indicative Step 2 SSAC if RBA also reduced to 45%
RBA	0.6	0.68	0.68	0.68	0.68	0.45
Contribution of outdoor soil to indoor dust (%)	100	100	100	30	30	30
Soil ingestion rate (mg/day)	75	39	29.25	13.5	13.5	13.5
Exposure frequency - outdoor	170	111	111	111	111	111
Toxicological Criteria (μg/kg-bw/day)	1.4	1.4	1.4	1.4	2.1	2.1
Resulting SSAC (mg/kg)	630	1,060	1,410	3,020	4,530	6,790

The sensitivity assessment demonstrates that the biggest contributing parameter change to the difference between the Step 1 and Step 2 SSAC is the change in the contribution of outdoor soil to indoor dust, which more than doubles the SSAC. It is noted that because the soil ingestion rate presented in Table 35 is a time-weighted average for modelling purposes it is linked to exposure frequency, for which there is relatively high uncertainty. The selected value of 111 days per year is considered to be a reasonable assumption for adjusting the soil ingestion rate based on site-specific conditions and in the majority of individual cases is considered likely to overestimate the days spent in the garden each year. The residual uncertainty associated with this value is therefore considered to be acceptable in the context of risk assessment under Part 2A. The changes to the toxicological criteria and the starting point for the SIR increase the SSAC by approximately 50%. The indicative SSAC shown in the final column of Table 35 shows that a reduction of the RBA to 45% would further increase the SSAC by approximately 50%. However, this has not been included in the base derivation of the SSAC given the uncertainty associated with the application of BAF from the UBM test method to RBA within CLEA discussed previously.

The alternative use of a blood lead concentration target of $5.6\mu g/dL$ referred to in the note beneath **Table 34** has only a relatively minor effect on the SSAC compared to the sensitivities assessed in **Table 35**. The SSAC of 5.180 mg/kg using the $5.6\mu g/dL$ blood lead level is much closer to the adopted SSAC of 4.530 mg/kg than the other indicative SSAC shown in **Table 35** above. In the context of the discussion below, the conclusions therefore are unaffected by the selection of $5\mu g/dL$ compared to $5.6\mu g/dL$ for deriving the Step 2 SSAC.

6.3.3 Comparison of Site Data with Step 2 SSAC

The shallow soil sampling data at Treadgold House have been compared to the Step 2 SSAC in Table 36 below.

Table 36. Treadgold House Step 2 SSAC Data Comparison

	Depths Ranges (m)	Number of results	Minimum detection (mg/kg)	Median (mg/kg)	Geometric Mean (mg/kg)	Arithmetic Mean (mg/kg)	Maximum detection (mg/kg)
	0-0.05 & 0-0.02	94	233	1,396	1,320	1,515	6,230
	0.1-0.2	66	148	1,745	1,825	2,934	38,490
Treadgold House	0-0.05 & 0-0.02+ 0.1-0.2	160	148	1,487	1,334	2,101	38,490
(full garden area to the south and	0.3-0.4	27	309	1,090	1,059	1,829	20,630
west of the residential	0.6-0.7	13	150	541	508	596	1,233
ouilding)	1.1-1.2	1	507	-	-	-	507
	0-0.02/0-0.05m, 0.1-0.2m, 0.3-0.4, 0.6-0.7 & 1.1-1.2	201	148	1,381	1,334	1,959	38,490
Plot 7	0-0.05	7	342	1,260	1,182	1,335	2,148
	0.1-0.2	4	192	2,469	1,437	2,206	3,693
	0-0.05 + 0.1-0.2	11	192	1,515	1,209	1,651	3,693
	0.3-0.4	4	550	1,229	1,145	1,269	2,069
	0.6-0.7	1	-	-	-	-	456
	All	16	192	1,257	1,160	1,481	3,693
Plot 8 – with	0-0.05 & 0-0.02	14	754	1,408	1,373	1,428	2,103
cluster samples (TH111, TH112	0.1-0.2	6	935	1,540	1,889	2,220	4,102
and TH113)	0-0.05 + 0.1-0.2	20	754	1,448	1,563	1,665	4,102
	0.3-0.4	3	1,240	1,407	1,412	1,420	1,612
	0.6-0.7	1	-	-	-	-	1,233
	All	24	754	1,415	1,485	1,617	4,102
Plot 8 – without	0-0.05 & 0-0.02	11	754	1,525	1,460	1,516	2,103
cluster samples (TH111, TH112 and TH113)	0.1-0.2	3	1,473	1,606	2,133	2,394	4,102
and mmisj	0-0.05 + 0.1-0.2	14	754	1,541	1,584	1,704	4,102
	0.3-0.4	3	1,240	1,407	1,412	1,420	1,612
	0.6-0.7	1	-	-	-	-	1,233
	All	18	754	1,499	1,532	1,631	4,102
Plot 9 – with	0-0.05	10	426	1,027	973	1,130	2,871
cluster samples TH111, TH112 and TH113)	0.1-0.2	4	935	4,839	3,182	7,478	18,960
and mmisj	0-0.05 + 0.1-0.2	14	426	1,186	1,435	2,944	18,960
	0.3-0.4	3	991	2,870	3,886	8,164	20,630
	0.6-0.7	1	-	-	-	-	483
	All	23	426	1,186	1,541	3,677	20,630
Plot 9 – without	0-0.05	9	426	1,042	934	1,142	2,871
cluster samples (TH111, TH112 and TH113)	0.1-0.2	3	1,418	8,259	6,055	9,546	18,960
	0-0.05 + 0.1-0.2	12	426	1,259	1,490	3,243	18,960
	0.3-0.4	3	991	2,870	3,886	8,164	20,630
	0.6-0.7	1	-	-	-	-	483
	All	16	426	1,259	1,662	3,993	20,630
Plot 10 – with	0-0.05 & 0-0.02	12	340	1,295	1,108	1,243	2,748
cluster samples	0.1-0.2	6	441	899	949	1,125	2,412

	Depths Ranges (m)	Number of results	Minimum detection (mg/kg)	Median (mg/kg)	Geometric Mean (mg/kg)	Arithmetic Mean (mg/kg)	Maximum detection (mg/kg)
(TH105, TH106 and TH107)	0-0.05 + 0.1-0.2	18	340	1,226	1,247	1,203	2,748
,	0.3-0.4	4	309	506	471	488	630
	0.6-0.7	2	150	152	151	152	153
	1.1-1.2	1	-	-	-	-	507
	All	25	150	676	770	977	2,748
Plot 10 – without cluster samples	0-0.05 & 0-0.02	9	340	1,168	1,041	1,211	2,748
(TH105, TH106 and TH107)	0.1-0.2	3	441	609	566	575	676
and Tittory	0-0.05 + 0.1-0.2	12	340	874	894	1,052	2,748
	0.3-0.4	4	309	506	471	488	630
	0.6-0.7	2	150	152	151	152	153
	1.1-1.2	1	-	-	-	-	507
	All	19	150	630	629	810	2,748
	0-0.05	36	340	1,316	1,151	1,311	2,871
Plots 7 to 10 – without cluster	0.1-0.2	13	192	1,606	1,769	3,567	18,960
samples	0-0.05 & 0.1-0.2	49	192	1,414	1,290	1,909	18,960

Note: Grey shading indicates concentrations exceeding the Step 2 SSAC

All arithmetic mean, geometric mean, median and maximum concentrations in Plots 7 to 10 were well below the Step 2 SSAC, with the exception of the values at Plot 9 within the 0.1-0.2m depth range, where the maximum, arithmetic mean, geometric mean and median exceeded the Step 2 SSAC by factors of 4.2, 2.1, 1.3 and 1.8 respectively. If the higher SSAC of 6,790mg/kg (using RBA of 45%) is considered, then the median concentration in Plot 9 (with cluster samples), and the geometric mean in Plot 9 (without cluster samples), do not exceed the Step 2 SSAC.

With the exception of the Plot 9 datasets, the upper bound of the 95% confidence interval for all datasets in Table 36 was also below the Step 2 SSAC, indicating a high degree of confidence that the average concentrations do not exceed the Step 2 SSAC.

Exposure to soil in Plot 9 is expected to be more heavily weighted to the shallowest horizon (0-0.05m depth) and the mean, geometric mean and median concentrations calculated for the combined 0-0.05m and 0.1-0.2m depth datasets were below the Step 2 SSAC. It is noted that calculated average concentrations within Plot 9 at 0.1-0.2m depth decrease substantially when the additional cluster sample is added, the dataset increasing from three samples to four samples. This highlights the potential for additional samples to substantially change average concentrations calculated using small datasets, especially when the highest value in the small dataset is an outlier (refer to Section 6.3.2.1 below), as in this case. For Plot 9 0-0.05m and 0.1-0.2m data (without cluster samples), the estimated upper bounds of the 80% and 95% confidence intervals were calculated as 6,257mg/kg (lower than the high-end SSAC of 6,790mg/kg) and 8,309mg/kg respectively. This indicates a degree of uncertainty associated with whether the average concentrations exceed the Step 2 SSAC. However, these upper bounds are heavily influenced by the two maximum concentrations (TH108 and TH109, both at 0.1-0.2m depth) which have previously been identified as dataset outliers. Hence the median and geometric mean concentrations are considered to be much more appropriate for assessment of exposure risk in this area and the median and geometric mean concentrations are comfortably below the Step 2 SSAC.

As there are no physical boundaries between the different plots, consideration of a slightly wider area which is equally likely to represent an averaging area for a specific child can also provide a larger dataset to improve the confidence in the calculated averages being representative for exposure. In the case of the western part of the garden, the data from 0-0.05m, 0.1-0.2m and combined 0-0.05+0.1-0.2m depths have been included in **Table 36** for Plots 7 to 10 combined. In this scenario the median and geometric mean concentrations in the 0-0.05m depth dataset are 1,316mg/kg and 1,151mg/kg respectively. When the 0.1-0.2m depth soils are added to this dataset the median and geometric mean increase slightly to 1,414mg/kg and 1,290mg/kg respectively, with the high outlier concentration in this dataset not having nearly as much effect on the averages than when the much smaller dataset exclusively within Plot 9 is considered.

All of the datasets presented in **Table 34** above are indicated to follow non-normal right-skewed distributions, with the median or geometric mean therefore likely to be a more reasonable estimate for average soil lead concentrations. The median and geometric mean concentrations for the shallowest horizon (0-0.05m) which is likely to dominate exposure, range between 934mg/kg and 1,535mg/kg. These concentrations are approximately 20% to 35% of the Step 2 SSAC, indicating that average soil concentrations are unlikely to pose a SPOSH to human health. The concentrations are much closer to the Step 1 SSAC of 1,060mg/kg and are therefore closer to the boundary between Category 3 and Category 4 than the upper boundary of Category 3.

6.3.3.1 Outliers

Dataset outliers were discussed in Section 6.3.2 as part of the data discussion for the Step 1 SSAC. Of the seven outliers identified, two were located in the western garden area occupied by Plots 7 to 10. These were 0.1-0.2m depth samples at TH108 (18,960mg/kg) and TH109 (8,659mg/kg), both within Plot 9. The shallower samples at both locations reported much lower concentrations (2,871mg/kg and 1,576mg/kg respectively) and the next nearest samples at 0.1-0.2m depth located at TH107 and TH110 reported concentrations of 1,122mg/kg and 1,418mg/kg. These two outlier concentrations therefore do not seem to represent an area that should be considered as a separate hotspot for averaging zone purposes, and the discussion of average concentrations in Section 6.3.2 above is considered to be appropriate for assessing exposure risk.

6.3.3.2 **Summary**

The average lead in soil concentrations presented in **Table 36** above do not exceed the Step 2 SSAC in all areas with the exception of Plot 9. For Plot 9, although some of the calculated averages in the standalone 0.1-0.2m depth samples exceed the Step 2 SSAC, these data are not representative for exposure assessment and the average concentrations for the 0-0.05m dataset and the combined 0-0.05m and 0.1-0.2m dataset do not exceed the Step 2 SSAC.

Given the discussion above, it is deemed that although the risk to the child receptor from lead is not low (since representative average concentrations exceed the Step 1 SSAC), there is not a strong case for SPOSH, because the Step 2 SSAC derived using the detailed understanding about the use of the communal garden at Treadgold House are not exceeded. Human health linkages associated with lead in soil at Treadgold House therefore fall into Category 3 land. All parts of the investigation area are considered to fall into Category 3 because the large majority of average concentrations calculated exceed the Step 1 SSAC, with some marginal scenarios for Plot 9 and Plot 10. This is discussed in detail in Section 6.2.1. It is considered appropriate to apply the Category 3 classification across the full investigation area because of the uncertainty associated with the calculated averages and the lack of a physical barrier between any of the defined Plot averaging areas. This means that it is not appropriate to define different land categories for Plots where the average concentrations are close to the Step 1 SSAC, compared to adjacent Plots where the average concentrations are comfortably higher than the Step 1 SSAC. For this reason, it is considered to be appropriate to apply the Category 3 classification across the full investigation area, including Plots 9 and 10 where average (median and geometric mean) concentrations are close to the Step 1 SSAC.

Further discussion is presented in **Section 7**. The full set of data screened against the Step 2 SSAC is included in tables with data grouped per plot in **Appendix H**.

6.4 Health Risk from Acute and Intermediate Duration Exposure

For lead, acute toxic effects discussed by ATSDR (ATSDR, 2020) and SoBRA (SoBRA, 2020) suggest that one-off exposure to high lead concentrations in soil is not a cause for concern, since acute toxic effects of lead are linked to high blood lead levels, which are unlikely to be affected by a single exposure event. SoBRA did not set an acute GAC for lead due to the uncertainty associated with the effect of a one-off exposure to high lead concentrations in soil on blood lead concentrations.

The Committee on Toxicity (COT) (Committee on Toxicity, 2013) stated that acute toxicity of lead salts in experimental animals is low. In humans, COT noted that colic is a characteristic early symptom of acute lead poisoning following high exposures – for example, in the workplace. High workplace exposures would typically be more consistent and continuous than one-off exposures to a very localised patch of soil with a high lead concentration. Given the lack of evidence that such one-off exposures have the potential to cause problematic acute toxicity, the risk of acute toxicity from one-off exposures to very localised high concentrations in soils is considered to be low.

For intermediate duration lead exposure which could occur over a period of weeks or months to average soil concentrations in a residential setting, the ATSDR report (ATSDR, 2020) indicates that overt health effects are generally not observed at blood lead levels less than 30µg/dL but that overt gastrointestinal and neurological

toxicity are observed as concentrations increase above $30\mu g/dL$, with severity increasing with blood lead level. The report notes that lead induced encephalopathy has been reported at blood lead concentrations < $100\mu g/dL$ but is more commonly associated with blood lead > $100\mu g/dL$. ATSDR reported that in a review of 96 cases of death due to acute lead poisoning in children, death occurred at blood lead > $100\mu g/dL$. A similar picture of overt lead toxicity being linked to blood lead levels is reported in the SoBRA acute GAC report (SoBRA, 2020). Three cases of lead poisoning in children were reported in the SoBRA GAC report where blood lead levels of $36\mu g/dl$, $22-35\mu g/dl$, and $25.6\mu g/dl$.

The available information suggests that intermediate exposure duration lead toxicity could start to be observed at blood lead levels around $30\mu g/dl$, with a precautionary range of $20-40\mu g/dL$. The Step 1 SSAC that have been derived are based on a target blood lead level of $3.5\mu g/dl$ which is 6 times lower than the $20\mu g/dL$ value identified as a lower precautionary limit for an approximate level for the onset of intermediate duration health effects. Figure 2.3 of the lead C4SL report indicates that blood lead levels do not increase proportionately with dose and for soil and dust ingestion exposure the dose would need to (for example) more than double in order for the blood lead concentration to double. Since exposure to lead in the scenarios evaluated in Step 1 of the DQRA is dominated by soil and dust ingestion, it could be expected that soil concentrations would need to be around 6 to 10 times higher than an SSAC derived based on $3.5\mu g/dL$ blood lead before health effects at intermediate duration exposures might start to appear.

Since the mechanism for the reported intermediate exposure duration health effects is the same as for chronic effects (raised blood lead level), any average soil concentrations which do not substantially exceed (i.e. by a factor of 6 to 10) an SSAC based on a blood lead of 3.5µg/dL should not be a concern for intermediate duration health effects. To be conservative, the lower end of this range can be considered (i.e. a factor of 6). This would give an intermediate duration SSAC of 6,360mg/kg (i.e. 6 x 1,060mg/kg) for Treadgold House. For Avondale Park Gardens, as an updated SSAC has not been derived in this report, the Step 1 SSAC from the Stage 2 report (710 mg/kg) has been used, which would give an intermediate duration SSAC of 4,260 mg/kg.

For Treadgold House, none of the average soil concentrations for any of Plots 1-10 (taking the higher of the mean or the median) exceed the intermediate duration SSAC noted above that could begin to indicate a potential for adverse health effects. Across the entire sampling area, only four samples have reported concentrations above 6,360mg/kg. Two of these are located at TH108 at depths of 0.1-0.2m and 0.3-0.4m. The shallowest sample (0-0.05m) at this location had a reported concentration of 2,871mg/kg, indicating that the majority of exposure in this area is likely to be to soils with concentrations lower than the intermediate duration SSAC. The two other locations with a reported concentration above the intermediate duration SSAC were TH165 at a depth of 0.1-0.2m and TH109 at a depth of 0.1-0.2m. The shallower (0-0.05m) sample at these locations had a reported concentration of 1,489mg/kg and 1,576mg/kg respectively, again indicating that the majority of exposure in these area will be to soils with concentrations below the intermediate duration SSAC. Hence adverse health effects from intermediate duration exposure to lead in soil do not need to be considered further in the context of the soil concentrations identified during the investigations at Treadgold House.

For Avondale Park Gardens, the maximum lead concentration of 2,223 mg/kg is well below the intermediate duration SSAC, therefore the adverse health effects from lead in soil do not need to be considered further in the context of the soil concentrations identified during the investigations at Avondale Park Gardens.

Given the above discussion, any human health linkages associated with acute and intermediate duration adverse health effects are considered to fall into Category 4, since one-off acute exposure risks are qualitatively considered to be low, and the indicative intermediate duration SSAC discussed above is based on chronic Step 1 SSAC (and Step 1 is intended to assist with deciding the Category 3/4 boundary below which risks are considered to be low).

7. Part 2A Risk Evaluation

This Part 2A risk evaluation is based on the COPC in soil measured during the Stage 1, Stage 2 and follow-on work intrusive investigations within the western and southern gated gardens at Treadgold House and Avondale Park Gardens. In places, a particular focus has been placed on lead since lead was the only COPC considered to be of sufficient concern for DQRA to be needed.

7.1 Introduction

In accordance with the 2012 Statutory Guidance for Part 2A of the Environmental Protection Act 1990, Local Authorities must consider a range of factors when deciding whether land should be determined as Contaminated Land.

Land which is shown to be causing Significant Harm, as defined by the Statutory Guidance, should be determined as Contaminated Land. For land where there is not any direct evidence of Significant Harm, it may still be determined as Contaminated Land if there is a Significant Possibility of Significant Harm (SPOSH).

When assessing land for SPOSH, initially, it must be shown that a possibility of significant harm (POSH) exists. Beyond that, the Statutory Guidance describes 4 categories of land (refer to **Section 7.1.3**) to be used to assist when deciding whether a POSH is significant or not.

7.1.1 Expectations for Detailed Inspection

The Statutory Guidance indicates that the detailed inspection of land should obtain sufficient information to decide whether it is contaminated land in line with the description of risk assessment in Section 3 of the guidance. Inspection should be stopped if, on the basis of the information gathered, there is no longer a reasonable possibility that a significant contaminated linkage exists on the land.

The risk assessment process for deciding whether land meets the definition of contaminated land should have regard to good practice such that robust decisions can be made in line with the Statutory Guidance. Specifically, the risk assessment should be scientifically based, authoritative, relevant to the risks arising from the presence of contaminants in soil, and appropriate to inform regulatory decisions in accordance with Part 2A and the Statutory Guidance.

7.1.2 Definitions of Significant Harm and Possibility of Significant Harm

The Part 2A statutory guidance definition of significant harm includes: death; life threatening diseases (e.g. cancers); other diseases likely to have serious impacts on health; serious injury; birth defects; and impairment of reproductive functions. The adverse health effects that can be caused by sufficiently high exposure to lead falls within this definition. High enough chronic exposure to lead can cause serious kidney (renal) damage and heart (cardiovascular) effects such as high blood pressure. In children it can adversely affect the development of the brain and nervous system. High enough short to medium term exposure to lead can cause adverse 'acute' health effects such as gastrointestinal and neurological toxicity, encephalopathy, and in extreme cases, death.

To demonstrate significant harm, Paragraph 4.4 of the Statutory Guidance states that "Conditions for determining that land is contaminated land on the basis that significant harm is being caused would exist where: (a) the local authority has carried out an appropriate, scientific and technical assessment of all the relevant and available evidence; and (b) on the basis of that assessment, the authority is satisfied on the balance of probabilities that significant harm is being caused (i.e. that it is more likely than not that such harm is being caused) by a significant contaminant(s)."

The Statutory Guidance states that the evidence required to decide whether there is a possibility of significant harm (POSH) to human health includes:

- the estimated likelihood that significant harm might occur to an identified receptor, taking account of the current use of the land in question.
- the estimated impact if the significant harm did occur i.e. the nature of the harm, the seriousness of the harm to any person who might suffer it, and (where relevant) the extent of the harm in terms of how many people might suffer it.

To estimate the likelihood that a specific form of significant harm might occur the Statutory Guidance further states that the following information should be considered:

- The estimated probability that the significant harm might occur:
 - if the land continues to be used as it is currently being used; and
 - where relevant, if the land were to be used in a different way (or ways) in the future but within what the land can reasonably be used for without significant redevelopment that would require an application through the Town and Country Planning Act.
- The strength of evidence underlying the risk estimate. It should also consider the key assumptions on which
 the estimate of likelihood is based, and the level of uncertainty underlying the estimate.
- An estimate of the timescale over which the significant harm might become manifest, to the extent that this
 is possible and practicable.

The estimated impact (seriousness of harm) is determined by the toxicological endpoint (often defined as a toxicological point of departure (such as a benchmark dose)) and the margin of exposure (how close to or in excess of that dose the exposure is predicted to be). If a POSH is established, the available information must be interpreted to decide whether that possibility is significant i.e. is a significant possibility of significant harm (SPOSH).

7.1.3 Significant Possibility of Significant Harm

The decision on whether the POSH is significant is a regulatory decision to be taken by the relevant local authority. In deciding whether the POSH is significant, the authority is deciding whether the POSH posed by contamination in, on or under the land is sufficiently high that regulatory action should be taken to reduce it, with all that that would entail.

In considering whether a SPOSH exists, the local authority should consider the number of people who might be exposed to the risk in question and/ or the number of people it estimates would be likely to suffer harm. The Statutory Guidance defines four land categories associated with risk to human health, which are intended to assist in the decision making when evaluating the POSH and if required, SPOSH, for any Part 2A assessment.

7.1.4 Four Categories of Land

The Statutory Guidance defines four Categories for land being investigated under Part 2A in the context of SPOSH. **Category 1** describes land where there is an unacceptably high probability, supported by robust science-based evidence, that significant harm would occur if no action is taken to stop it. **Category 4** describes land where there is little evidence for a POSH, there is no risk or that the level of risk posed is low. This includes land where: no contaminant linkage has been identified; only normal levels of contaminants in soil are present; soil concentrations do not exceed relevant GSC; or estimated levels of exposure from soil are likely to form only a small proportion of exposure from other sources.

Categories 2 and 3 occupy the area where a POSH is considered to exist and a decision must be made as to whether the POSH is significant (Category 2, and the Site to be determined as Contaminated Land) or is not significant (Category 3, and the Site is not to be determined as Contaminated Land). The Statutory Guidance indicates that for human health:

- "Land should be placed into Category 2 if the authority concludes, on the basis that there is a strong case for considering that the risks from the land are of sufficient concern, that the land poses a significant possibility of significant harm. Category 2 may include land where there is little or no direct evidence that similar land, situations or levels of exposure have caused harm before, but nonetheless the authority considers on the basis of the available evidence, including expert opinion, that there is a strong case for taking action under Part 2A on a precautionary basis.
- Land should be placed into Category 3 if the authority concludes that a strong case does not exist, and
 therefore the legal test for significant possibility of significant harm is not met. Category 3 may include land
 where the risks are not low, but nonetheless the authority considers that regulatory intervention under Part
 2A is not warranted. This recognises that placing land in Category 3 would not stop others, such as the
 owner or occupier of the land, from taking action to reduce risks outside of the Part 2A regime if they
 choose.

In making its decision on whether land falls into Category 2 or Category 3, the local authority should first consider its assessment of the possibility of significant harm to human health, including the estimated likelihood of such

harm, the estimated impact if it did occur, the timescale over which it might occur, and the levels of certainty attached to these estimates."

If the authority considers that it cannot make a decision in line with the factors noted in the paragraph above, it should consider other factors which it considers are relevant to achieving the overarching objectives of Part 2A. Additional factors for consideration include:

- (a) the likely direct and indirect health benefits and impacts of regulatory intervention. This would include benefits of reducing or removing the risk posed by contamination. It would also include any risks from contaminants being mobilised during remediation (which would in any case have to be considered under other relevant legislation); and any indirect impacts such as stress-related health effects that may be experienced by affected people, particularly local residents. If it is not clear to the authority that the health benefits of remediation would outweigh the health impacts, the authority should presume the land falls into Category 3 unless there is strong reason to consider otherwise.
- (b) The authority's initial estimate of what remediation would involve; how long it would take; what benefit it would be likely to bring; whether the benefits would outweigh the financial and economic costs; and any impacts on local society or the environment from taking action that the authority considers to be relevant.

The decision is a positive legal test, meaning that the starting assumption should be that land does not pose a significant possibility of significant harm unless there is reason to consider otherwise.

7.2 Part 2A Evaluation

7.2.1 Sufficiency of Detailed Inspection and Risk Assessment

The detailed inspections completed at Treadgold House and Avondale Park Gardens have obtained sufficient information, using recognised good practice techniques and risk assessment, to decide whether or not the land meets the definition of Contaminated Land with a sufficient level of confidence.

The site investigation was designed to provide sufficient soil data that average contaminant concentrations in soil could be estimated and used to estimate health risks to known human receptors. A quantitative assessment of ground gas risk was not completed following the decision during the ground investigation to not attempt deeper drilling using window sampling techniques for the potential installation of gas monitoring wells. This decision was made based on the concrete obstructions encountered during hand pitting at depths of 0.7m and the low ground gas risk identified in the preliminary CSM presented in **Table 2**.

The human health risk assessment was carried out using the tiered process outlined in the Part 2A Statutory guidance, with a preliminary risk assessment used to identify potentially significant contaminant linkages to be investigated, followed by soil concentrations being compared against suitable generic criteria, before advancing to a detailed tier of risk assessment when potentially unacceptable risks could not be ruled out at the generic tier of assessment.

Both the generic and detailed quantitative risks assessments (GQRA and DQRA) were completed in accordance with nationally and internationally recognised good practice and peer-reviewed published guidance, in particular with reference to the UK Contaminated Land Exposure Assessment (CLEA) methodology; the CL:AIRE C4SLs guidance; and the USEPA 2017 exposure factors handbook update for soil and dust ingestion rates. To assist with the requirement to place land into a specific Category with respect to the Part 2A Statutory Guidance, the DQRA involved the derivation of Step 1 SSAC designed to be representative of the Category 3/4 boundary, and Step 2 SSAC designed to give an indication of when a SPOSH might exist (i.e. the Category 1/3 or 2/3 boundary).

The risk assessment has considered uncertainties associated with the derivation of the SSAC, how the uncertainties could impact interpretation, and whether these uncertainties are within acceptable bounds for appropriate decision-making. One example of uncertainty is the exposure frequency adopted (i.e. how often does a resident access the garden). A value of 111 days was selected for child residents and whilst it is acknowledged that this exposure frequency could be exceeded in a few isolated cases, it was considered that in the majority of cases the value would be an over-estimation therefore tending to the precautionary side for the assessment and hence suitable for decision-making in the context of Part 2A of the EPA. Based on the assessment, it is considered unlikely that the exposure frequency will be exceeded to the extent that the conclusions of the report will change.

Based on the risk assessments completed, the following conclusions have been made consistent with the requirements of the Part 2A Statutory Guidance. The risk assessment and conclusions are based on the continued use of the investigation area as a managed residential garden with continued layout and access in accordance with that described in this report. Re-evaluation may be needed if these conditions change significantly, with the main changes that could potentially affect the conclusions being:

- Ease of access by child residents to the garden is increased either by providing residents with keys to the side gates, or by creating authorised access to the garden via the ground floor balconies of Flats 7 to 10;
- Crops for homegrown consumption are grown in ground level soils. This is likely to increase the exposure
 risk due to the theoretical sensitivity of the plant uptake pathway for lead. Currently, since the garden
 landscape is managed by RBKC and raised beds containing soil with much lower lead concentrations have
 been provided for homegrown produce, the CSM does not include consumption of home-grown produce;
 and
- The upper 10cm of soils are stripped for re-landscaping / re-turfing but leaving the soils at 10-20cm depth that have a lower sampling density (hence greater uncertainty) and appear to contain higher lead concentrations.

7.2.2 Significant Harm

The assessment has not identified any conditions for which there is evidence that significant harm is being caused by contaminants in soil.

7.2.3 Low or No Risk – Category 4

Land has been placed in Category 4 where it is considered to pose no more than a low risk to human health, either through screening the COPC concentrations using GSC and Step 1 SSAC, or by virtue of the COPC being present at normal levels in soil. **The land at Avondale Park Gardens has been placed in Category 4.**

This is on the basis that median lead soil concentrations in the shallowest horizons tested are lower than an indicative Step 1 SSAC of 804mg/kg discussed in **Section 5.2.2.1**. This decision is on the balance of probabilities, i.e. it is more likely than not that the average concentrations fall below this SSAC.

Average soil concentrations at Avondale Park Gardens also appear to be close to the upper bound (but still within) the concentrations that are considered typical of urban environments, based on the majority of average concentrations shown in Table 24 in Section 5.2.2.1 being below the NBC. The NBC is defined as the upper 95% confidence limit of the 95th percentile (of the dataset used to derive the value) and is intended as an upper threshold value for soils in an urban setting. The average concentrations at Avondale Park Gardens are generally lower than, but relatively close to, the NBC and therefore can be considered to be towards the upper end of what is considered normal within an urban environment.

Whilst the maximum concentration at the Avondale Park Gardens site is a statistical outlier and may represent a local area of higher concentrations, it is still appropriate to assess chronic risk from these soils in the outlier area using average concentrations across the entire Avondale Park Gardens area. This is because under typical usage of the land, a person may be exposed to all areas of the site and higher exposure from any time spent in the outlier area will be balanced against the lower exposure in all other areas. The duration of time spent in the outlier area is not expected to be any higher than time spent in other areas – in fact it may be less as the area with the maximum concentration is a relatively inaccessible soil bed with dense shrubs.

In addition, all contaminant linkages at Treadgold House other than lead in soil chronic exposure for child residents have been placed into Category 4. This is on the basis that average concentrations in soil either do not exceed GSC, GSC are demonstrated to be sufficiently precautionary that minor exceedances would not elevate risks above the Category 4 level (e.g. for beryllium), or average concentrations do not exceed the Step 1 SSAC (e.g. for lead in soil to adult receptors in all parts of the garden i.e. Plots 1 to 10). Placing these linkages into Category 4 has been done on a balance of probabilities approach i.e. average concentrations fall below the GSC or SSAC. There is a much higher level of confidence that these linkages do not meet the definition of Contaminated Land. The upper bound of 95% confidence intervals did not exceed the Step 2 SSAC (i.e. less than 2.5% chance of the true mean concentration exceeding the child Step 2 SSAC) for all datasets evaluated in Section 6.3.3. The only exception to this was for Plot 9 where a very broad confidence interval was calculated due to two high outlier concentrations in a relatively small dataset. However even in Plot 9, the upper bound of the 80% confidence internal did not exceed the highest Step 2 SSAC based on 45% RBA (i.e. less than 10% chance of the true mean concentration exceeding the child Step 2 SSAC based on 45% RBA). A very high

level of confidence exists that there are not unacceptable acute health effects caused by lead in soil, with all average concentrations being below the indicative intermediate duration SSAC and only four individual samples exceeding the value. Of these four samples, none were within the shallowest sampling horizon of 0-0.05m and the shallowest samples at these locations were reported with concentrations less than half of the indicative intermediate duration SSAC.

7.2.4 Significant Possibility of Significant Harm

For Treadgold House, the sampling area could not immediately be placed into Category 4 due to average lead soil concentrations exceeding the GSC and Step 1 SSAC for child residents. Therefore an assessment of whether a significant possibility of significant harm exists has been carried out following the Statutory Guidance approach of placing the land into one of the three remaining categories (described in **Section 7.1.4**).

This area was assessed further using DQRA, with the only COPC for the DQRA being lead. The DQRA involved a process of refinement of the generic assessment criteria initially used (GSC, NBC and Stage 2 SSAC) to make them more site specific and progressively less precautionary. The Treadgold House gated communal garden area is therefore discussed below in the context of:

- Possibility of Significant Harm Likelihood, Impact and Timescale;
- Uncertainty; and
- Objectives of the Contaminated Land Regime.

For the communal garden to the south and west of the residential building, the majority of the mean, geometric mean and median lead concentrations for shallow soils exceeded the GSC, NBC, Stage 2 SSAC¹⁰ and Step 1 SSAC derived in **Section 6** of this report. Therefore taking a balance of probabilities approach, it was concluded that this part of the land at Treadgold House could pose a risk to health that is not low and therefore falls into either Category 1, Category 2 or Category 3.

For the communal gardens to the south and west of the residential block there is a possibility of this land being used in some respects in a manner similar to a private garden since a number of back doors to private properties open directly onto the garden, which is securely fenced, not accessible to the public, and only directly accessible to a small number of residents. The presence of patio chairs and a barbecue in the area also indicates usage similar to a private garden in some respects. However, the fact that the garden is managed by the housing association and its communal use are likely to reduce exposure to soils compared to a typical private garden as exposure during gardening will be reduced. The properties with direct access onto the communal garden (Flats 1 to 6) are social housing studio flats which RBKC has confirmed are only used to house single adults. A Step 1 SSAC was derived to take into account an adult resident and the representative average soil lead concentrations in the garden area (all Plots 1 to 10, plus the garden considered as a single averaging area) were considered to be lower than this SSAC. As a result it was concluded that risks to an adult receptor would not pose a SPOSH and therefore that the communal gardens would fall into Category 4 considering an adult receptor and would pose a low risk to this receptor.

The properties which could house children (Flats 7 to 10) do not have official direct access onto the communal garden, and therefore SSAC were derived for considering the risk to a child receptor who might live in one of these flats at Treadgold House, with the key conceptual adjustments to take account of the more restricted and limited access being a reduction in exposure frequency and reduction in indoor dust proportion from the garden soil. In addition, the target blood lead level was increased to 5µg/dL for calculation of the Step 2 SSAC to be consistent with the UK Heath Security Agency's case intervention threshold, and soil ingestion rates were revised (compared to the GSC derivation) based on updated guidance published by USEPA in 2017. The average (mean, geometric mean and median) lead concentrations in soil within all averaging areas (i.e. Plots 1 to 10 plus the entire garden considered as a single averaging area) exceeded the Step 1 SSAC for the child receptor, but were lower than the Step 2 SSAC and lower than the indicative intermediate duration SSAC.

In addition, although a number of individual sample concentrations exceeded the Step 1 and Step 2 SSAC, the highest concentrations were generally in the slightly deeper soil horizon (0.1-0.2m) rather than the shallowest sampled horizon (0-0.05m). Since the gardens are managed by RBKC Housing conclusions are based on the assumption that residents will not be digging within the garden and if limited digging does occur it will be an infrequent occurrence, reducing the potential exposure to the highest soil concentrations. For any individual resident it is acknowledged that there is variability in terms of the frequency of garden use and whether they are likely to attempt any digging for their own localised landscaping. However it is considered more likely than not

¹⁰ The Stage 2 SSAC were generated as part of the Grenfell Environmental Checks programme of work.

that exposure frequency will be lower than the 111 days per year that child residents have been assumed to use the garden, and that residents will not engage in digging activities given that the gardens are managed by RBKC Housing and there are dedicated raised beds available for growing homegrown produce. These assumptions are therefore considered reasonable when deciding whether SPOSH exists.

On this basis it was considered that although the risk to the child resident from lead is not low, there is not a strong case for SPOSH. The conclusion is based on the use of average soil concentrations looking at various averaging areas and averaging zones across the investigation area. Although individual sample concentrations may exceed the Step 2 SSAC (intended to be indicative of concentrations approaching those that could pose a SPOSH), it is appropriate to assess risk using average concentrations because exposure is not focussed on isolated locations, and higher concentrations in one area are balanced out by lower concentrations in another area.

Therefore based on this assessment, this area of land falls into Category 3.

The Statutory Guidance defines Category 3 land as "...land where the risks are not low, but nonetheless the authority considers that regulatory intervention under Part 2A is not warranted. This recognises that placing land in Category3 would not stop others, such as the owner or occupier of the land, from taking action to reduce risks outside of the Part 2A regime if they choose..."

The average lead in soil concentrations – which are typically in the range 1,000mg/kg to 2,000mg/kg depending on the averaging area and the depth combinations assessed – are considerably closer to the Step 1 SSAC of 1,060mg/kg than the Step 2 SSAC of 4,530mg/kg. The 97.5% upper confidence limit of the average concentrations for all data-sets representative of average exposure were also lower than the Step 2 SSAC, indicating less than a 2.5% chance that average concentrations exceed the Step 2 SSAC. This provides a very high level of confidence that average soil concentrations do not represent SPOSH. The level of confidence that the average concentrations definitely exceed the Step 1 SSAC is lower, and it is on the balance of probabilities that the land falls into Category 3 rather than Category 4. It is also noted that none of the average concentrations considered to be reasonable for exposure assessment exceeded an alternative child Step 1 SSAC derived as a sensitivity assessment using a reduced contribution soil contribution to indoor dust. Whilst this SSAC was not considered sufficiently precautionary to definitely be within Category 4 it indicates a reasonable degree of uncertainty associated with the Category 3/4 boundary and demonstrates that the land is likely to be relatively close to Category 4.

In Section 6.3.1 an alternative Step 2 SSAC was derived using a target blood lead level of 5.6µg/dL which could have been justified on the basis that it is a risk-based toxicological threshold rather than the value of 5µg/dL which was ultimately selected based on the UKHSA's case intervention concentration. The higher blood lead target results in a higher SSAC (i.e. higher threshold for reaching SPOSH and Category 2) and therefore provides some additional confidence that the soil concentrations at the Site do not exceed the threshold between Category 2 and Category 3.

The discussion above indicates that the level of risk to child receptors caused by the lead in soil, whilst not necessarily low, is much closer to the boundary between Category 3 and Category 4 (below which the risk is considered low) than it is to the boundary between Category 2 and Category 3.

7.3 Updated CSM

Following the Part 2A risk evaluation, the CSM initially presented in **Section 3** has been updated and is presented in **Table 37** below.

Table 37. Final CSM following Follow-on Intrusive Investigation

	Sources		Pathways		Receptors	Discussion
Treadgold House (communal gardens to south and west of residential building)	Lead in soil at Treadgold House (communal gardens to south and west of residential building	>	Ingestion of soil and indoor dust Dermal contact with soil (outdoor) Dermal contact with soil derived dust (indoor) Inhalation of dust (indoor and outdoor)	•	Ground floor residents (flats 1-10) of Treadgold House and their visitors	Treadgold House has been placed into Category 3, based on the assessment of the lead concentrations encountered in shallow soils, and the understanding of the use of the communal gardens, based on exposure to child residents. Linkages associated with lead exposure to adult residents and visitors are considered to be associated with the Category 4 level of risk. The higher (i.e. above NBC) concentrations of lead in soil in this area could have arisen from soils being imported from other unknown contaminated sources during redevelopment and landscaping. It is unlikely that the source of the lead is the historical land-uses such as the brickworks which formerly occupied land now within the southern part of Treadgold House, as the samples collected from the deeper Made Ground contained lower concentrations of lead compared to the shallower soils. The statutory guidance defines Category 3 as: 'land where the risks are not low, but nonetheless the authority considers that regulatory intervention under Part 2A is not warranted. This recognises that placing land in Category3 would not stop others, such as the owner or occupier of the land, from taking action to reduce risks outside of the Part 2A regime if they choose"
Avondale Park Gardens	Lead in soil at Avondale Park Gardens	>	Ingestion of soil and indoor dust Dermal contact with soil (outdoor) Dermal contact with soil derived dust (indoor) Inhalation of dust (indoor and outdoor)	>	Residents of Avondale Park Gardens and their visitors	The land at Avondale Park Gardens has been placed into Category 4, based on the assessment of the lead concentrations encountered in shallow soils, and the understanding of the use of this area of land. As with Treadgold House, it does not appear that the higher concentrations of lead present in this area are related to the historical land uses, as the samples collected from the deeper Made Ground contained lower concentrations of lead compared to the shallow soils. No further assessment or action is required at Avondale Park Gardens.

8. Conclusions and Recommendations

The primary aim of these works was to undertake a detailed inspection of Treadgold House and Avondale Park Gardens, in response to the recommendations from the Grenfell Stage 2 investigation.

The specific objectives in relation to these sites included:

- Undertake an appropriate level of intrusive site investigation work to investigate lead within the soil, including whether the spatial distribution of lead appears to be linked to the former brick pit identified in historical mapping in the area. A number of other substances relevant to the previous site history were also to be included.
- Carry out a quantitative human health risk assessment using existing GSC and SSAC used within the Stage 2 report to establish whether there is SPOSH.
- Carry out further detailed quantitative human health risk assessments to establish whether there is a significant possibility of significant harm (SPOSH) to human health as defined by Part 2A.
- Classify each potential contaminant linkage as Category 1-4 in accordance with the Statutory Guidance and
 in doing so provide recommendations to the Local Authority on whether any land appears to meet the
 definition of contaminated land under Part 2A.

The intrusive investigation and assessment of the two sites constitutes a 'detailed inspection' as defined by Paragraph 2.2 of the Part 2A 2012 Statutory Guidance. A plan showing the locations of the Treadgold House and Avondale Park Gardens sites is included as **Figure A1** in **Appendix A**.

Conclusions for each of these objectives in turn are summarised as follows:

Undertake an appropriate level of intrusive site investigation work

Intrusive sampling was completed at Treadgold House and Avondale Park Gardens which included the collection of 197 soil samples from 90 hand pit locations at Treadgold House and a further 38 soil samples from 16 hand pit locations at Avondale Park Gardens. Samples were collected from multiple depth horizons to provide an indication of contaminant variability with depth and allow an interpretation of whether the lead previously identified at elevated concentrations in soil could be due to the former brickworks occupying the majority of the Avondale Park Gardens area and the southern part of the Treadgold House area.

Primarily, samples were analysed for lead, which was the COPC identified from the Grenfell Stage 2 investigation as remaining of concern in these two areas. In addition, a sub-set of samples were tested for asbestos, heavy metals, PAHs and asbestos. Six samples from Treadgold House were analysed for lead bioaccessibility.

The findings of the investigation indicated that the source of the lead in soil at Treadgold House (refer to **Section 5.2.1.3**) and Avondale Park Gardens (refer to **Section 5.2.2**) was most likely to have been topsoil imported to the site for landscaping, with no evidence (based on the evaluation of lateral and vertical variations in soil concentrations) that it originated from the Grenfell Tower fire or from fill in the historic brickfield.

The Part 2A conclusions summarised in further text below are based on a high sampling density, with no significant hotspots requiring separate investigation identified during the data assessment. The assessment indicates that the land does not meet the definition of contaminated land with a high degree of confidence and therefore in accordance with paragraph 2.13 of the Statutory Guidance, it is concluded "that there is no longer a reasonable possibility that a significant contaminant linkage exists on the land" and that "the authority should not carry out any further inspection in relation to that linkage".

With reference to Paragraph 3.12 of the Statutory Guidance, the understanding of the risks has been developed through the recommended staged process of risk assessment and since the findings of this assessment have concluded that the land is not contaminated land, it is considered that the process of risk assessment does not need to continue.

It is noted that there were some deep samples from the proposed Site Investigation Design document which could not be collected due to obstructions at depth during excavation, and therefore a greater uncertainty over the characterisation of the deeper soils, due to limit number of samples. However given the site use, there is limited opportunity for site users to have exposure to this material due to its depth below surface and this change to the investigation design is not considered to have significantly affected the assessment. The material that was

encountered appeared to be typical of mixed construction and demolition rubble that is observed on many former brownfield sites, Further work to sample this material is not considered to be required.

Carry out generic and detailed quantitative human health risk assessment using existing GSC and SSAC used within the Stage 2 report to establish whether there are potential unacceptable risks to human health as defined by Part 2A.

The results were assessed for risk to human health taking into account the concentrations of COPCs that could be present in soil as a result of historical land uses.

Section 5 presents the Part 2A-compliant generic quantitative risk assessment and identified only lead at Treadgold House as potentially presenting an unacceptable risk to human health (both child and adult receptors) for chronic exposure and warranting further more detailed risk assessment, described under the sub-heading below. All other linkages, including those associated with the other COPC investigated, those associated with acute health effects, and all linkages at Avondale Park Gardens, were considered to fall within the definition of Category 4 land, posing no more than a low risk to human health.

Carry out further detailed quantitative human health risk assessments to establish whether there is a significant possibility of significant harm (SPOSH) to human health as defined by Part 2A.

Section 6 presents the Part 2A-compliant detailed quantitative risk assessment and this did not identify any contaminant linkages associated with a SPOSH (i.e. Category 1 or Category 2 land) to human health. However, the risk from exposure to lead in shallows soils by children resident at Treadgold House was considered to be not low, and therefore the communal gardens to the south and west of Treadgold House are considered to fall into Category 3. The average soil concentrations were considerably closer to the Step 1 SSAC indicative of the Category 3/4 boundary (below which the risk is considered low) than they were to the Step 2 SSAC indicative of the Category 2/3 boundary.

Since none of the land was considered to meet the definition of contaminated land, and this conclusion was made with a high degree of confidence, no further detailed quantitative risk assessment is required in accordance with paragraph 3.12 of the Statutory Guidance.

Whilst the assessment considered various different averaging areas as sub-sets of the full investigation area at Treadgold House, described as Plots 1 to 10 within the report, the Category 3 land conclusion is considered to apply to the full Treadgold House investigation area, since average concentrations in all averaging areas exceeded the Step 1 SSAC, with marginal scenarios at Plot 9 and Plot 10. Although it is possible that children could focus their play on areas of the garden closest to their home and the garden access point (ground floor balcony), there is no physical restriction to their movement across the full area and it would therefore be unreasonable to exclude Plots 9 and 10, or the area of the garden to the south of the building from the Category 3 designation.

The risk assessment considered uncertainty including (but not limited to) exposure frequency, contribution of garden soil to indoor dust, and target blood lead level. For exposure frequency and indoor dust contribution, a balanced but precautionary approach was taken such that parameters were selected that were considered reasonable and more likely than not to be precautionary, whilst acknowledging the variability for any individual resident. For the Step 2 blood lead target a precautionary approach was taken by selecting the UKHSA case intervention concentration rather than an alternative slightly higher risk-based value that would have resulted in a higher (and less precautionary) SSAC. In these cases discussion was provided describing the impact of choosing differing values for the parameters.

Uncertainty associated with the definition of the Category 3/4 boundary was highlighted by the derivation of an alternative higher Step 1 SSAC – which the average soil concentrations did not exceed – as part of a sensitivity analysis. Whilst this SSAC was not considered sufficiently precautionary to definitely be within Category 4 the sensitivity analysis indicated a reasonable degree of uncertainty associated with the Category 3/4 boundary and demonstrated that the land is likely to be relatively close to Category 4. Uncertainty associated with the definition of the Category 2/3 boundary was highlighted by the derivation of an alternative higher Step 2 SSAC using the risk-based blood lead threshold of 5.6µg/dL rather than the UKHSA intervention concentration of 5µg/dL. This highlighted the potential for conservatism within the assessment demonstrating a greater level of confidence that soil concentrations would not exceed the Category 2/3 boundary.

Classify each potential contaminant linkage as Category 1-4 in accordance with the Statutory Guidance and in doing so provide recommendations on whether any land appears to meet the definition of contaminated land under Part 2A.

Avondale Park Gardens (and its associated potential significant contaminant linkages) was evaluated to fall into Category 4, which describes land posing 'no to low risk'. Category 4 land does not meet the definition of Contaminated Land under Part 2A.

For Treadgold House, the available evidence indicates that risk to health for adult residents and their (child or adult) visitors at Flats 1 to 6 from lead in soil meets the definition of Category 4 land, which describes land posing 'no to low risk'. Category 4 land does not meet the definition of Contaminated Land under Part 2A.

For Treadgold House, the available evidence indicates that the risk to health for child residents from lead in soil does not meet the definition of Categories 1 and 2 or of Category 4 and therefore falls into Category 3. It is noted that the risk assessment indicated that the risk associated with this linkages is closer to the Category 3/4 boundary (below which risks are considered low) than it is to the Category 2/3 boundary. According to the Part 2A guidance (paragraph 4.25(b)), the following is applicable for Category 3 sites with respect to human health:

'Land should be placed into Category 3 if the authority concludes that the strong case described in 4.25(a) [Category 2] does not exist, and therefore the legal test for significant possibility of significant harm is not met. Category 3 may include land where the risks are not low, but nonetheless the authority considers that regulatory intervention under Part 2A is not warranted. This recognises that placing land in Category 3 would not stop others, such as the owner or occupier of the land, from taking action to reduce risks outside of the Part 2A regime if they choose. The authority should consider making available the results of its inspection and risk assessment to the owners/occupiers of Category 3 land.'

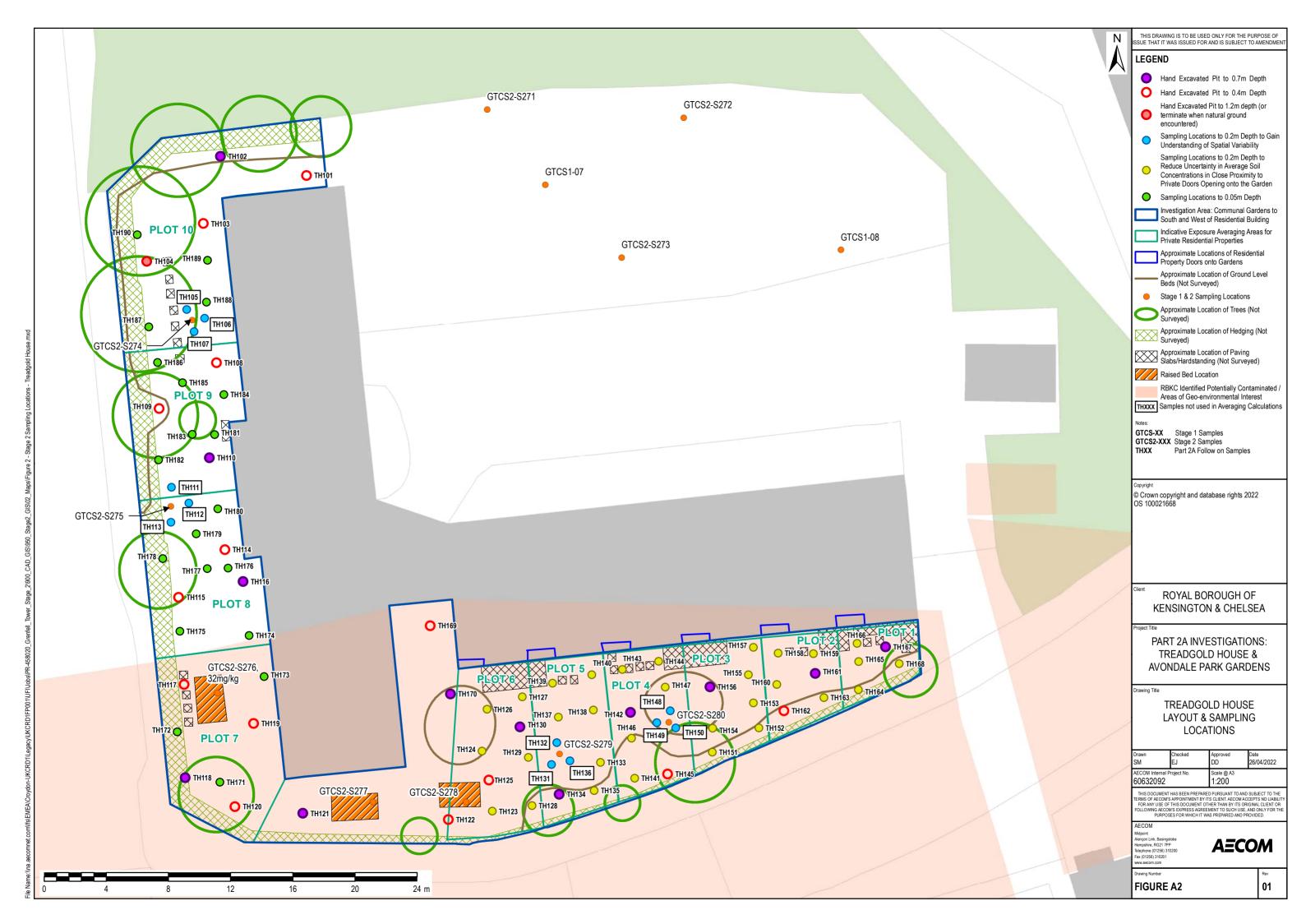
Therefore, for Treadgold House, although risks to child residents might not be low, the land does not meet the legal definition of Contaminated Land under Part 2A there is no obligation under Part 2A to take action to reduce the risks.

Recommendations

RBKC may choose to take action to reduce the risks outside the Part 2A regime. Such measures could include: introduction of clean soils; replacement of soil and turf areas with hardstanding; reducing the potential for access for children to the garden; regular checks of balcony walls at Flats 7 – 10 to confirm that they have not been removed for easier access; and general good management and maintenance of the garden area to minimise the likelihood of residents carrying out their own garden maintenance. If RBKC chooses to take action on a voluntary basis to further reduce risks then it is recommended that a separate remedial options appraisal is completed and a remediation strategy produced.

Following completion of the investigation and risk assessment, it is considered that sufficient information was collected to characterise the site and assess the risk to site users, such that robust decisions could be made with respect to the requirements of the Part 2A Statutory Guidance. Therefore no further investigation is required for RBKC to complete the decision-making required by the Statutory Guidance.

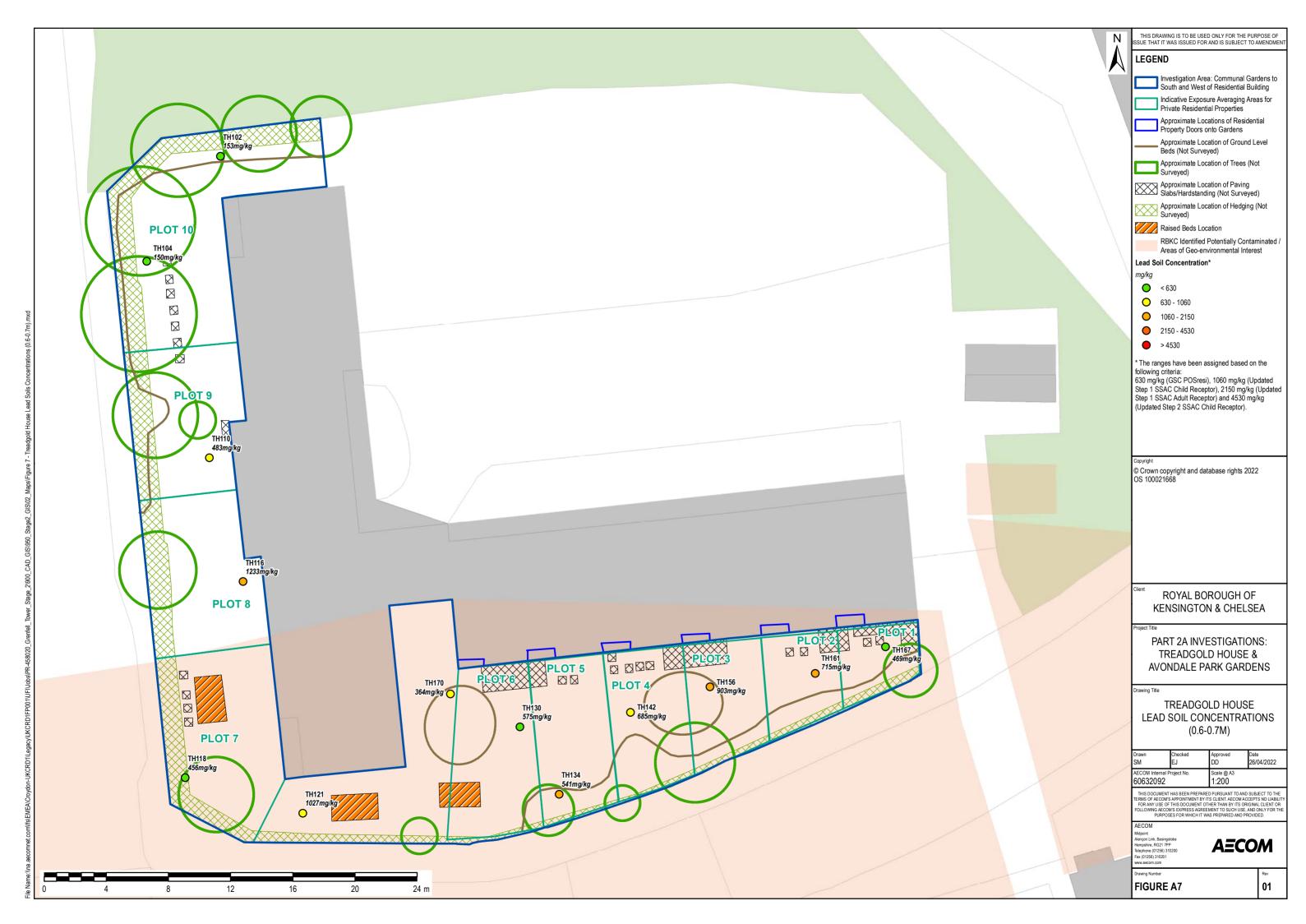
9. References

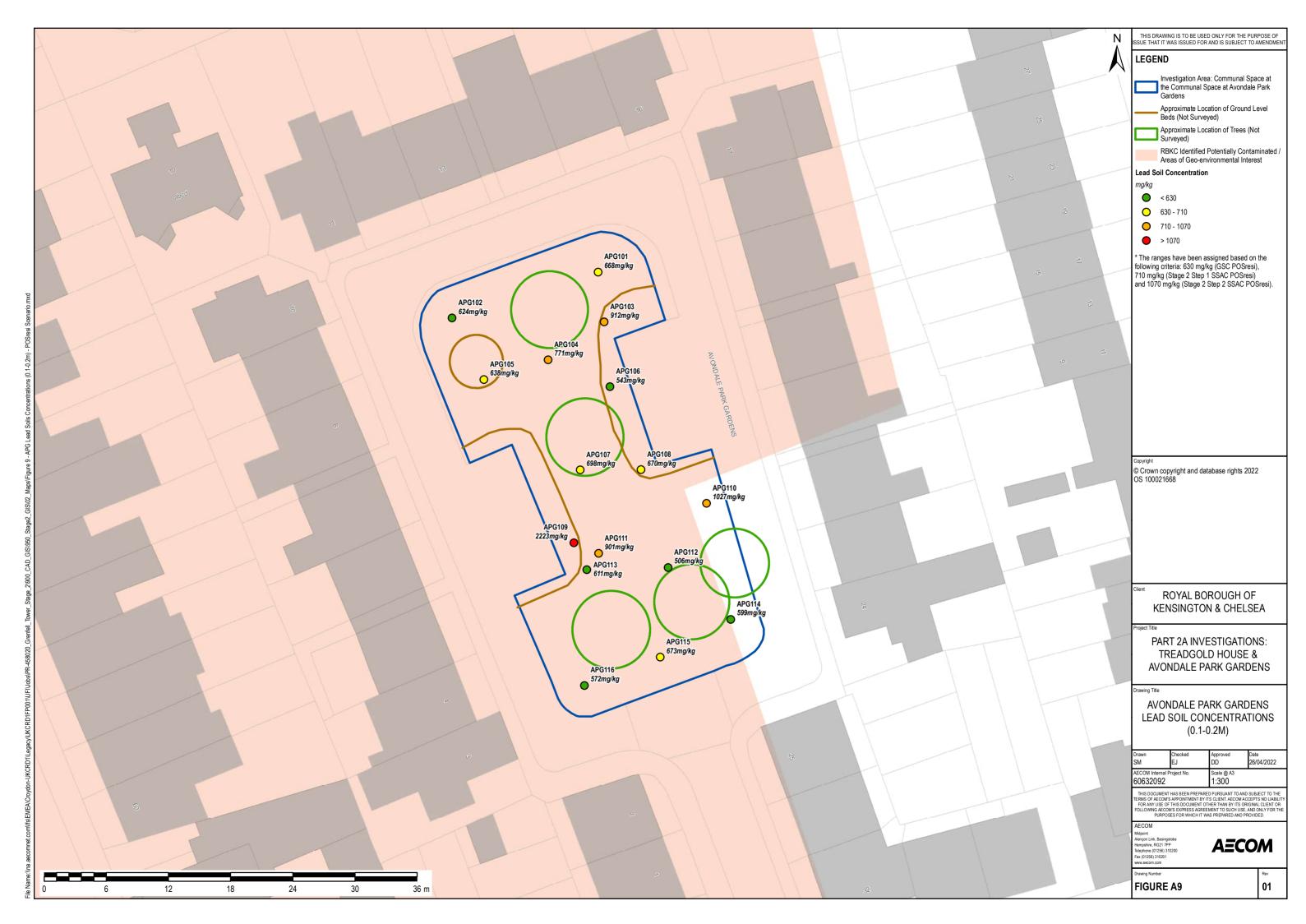

- AECOM. (2019a). Grenfell Investigation into Potential Land Contamination Impacts. Technical Note 09: Urban Background Concentrations. Croydon: AECOM Limited.
- AECOM. (2019b). Grenfell Investigation into Potential Land Contamination Impacts. Technical Note 13: Potential Source Contributions to Urban Soil Pollution. Croydon: AECOM Limited.
- AECOM. (2019d). Grenfell Investigation into Potential Land Contamination Impacts. Technical Note 17: Pilot Study Part 2A Risk Assessment. Croydon: AECOM Limited.
- AECOM. (2019e). Grenfell Investigation into Potential Land Contamination Impacts. Technical Note 8: COPC Toxicity. Croydon: AECOM Limited.
- AECOM. (2021a). Grenfell Investigation into Potential Land Contamination Impacts. Stage 2 Investigation, Tier.
- AECOM. (2021b). Site INvestigation Design Grenfell Stage 2 Follow-up Work. Croydon: AECOM Limited.
- Agency, E. (2007). UK Soil and Herbage Pollutant Survey. UKSHS Report No. 7. Environmental concentrations of heavy metals in UK soil and herbage. Bristol: Environment Agency.
- ATSDR. (2020). *Toxicological Profile for Lead*. Washington D.C.: US Department of Health and Human Services. British Geological Survey. (2010). London Earth BGS Datasets. London, UK: BGS. Retrieved from https://www.bgs.ac.uk/datasets/london-earth/
- BSI. (2018). BS ISO 17924:2018. Soil quality Assessment of human exposure from ingestion of soil and soil material Procedure for the estimation of the human bioaccessibility/bioavailability of metals in soil. London: British Standards Limited.
- BSI. (2020). BS10176:2020. Taking soil samples for determination of volatile organic compounds (VOCs) Specification. UK: BSI Standards Limited.
- Cave, M. R., Wragg, J., Harrison, I., & Vane, C. (2010). A comparison of batch mode and dynamic physiologically based bioaccessibility tests for PAHs in soil samples. *Environ Sci Technol.*, 7(44), 2654-60.
- CL:AIRE. (2014). SP1010 Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination. Appendix H Provisional C4SLs for Lead. London: Contaminated Land: Applications in Real Environments.
- CL:AIRE. (2014). SP1010 Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination. Final Project Report (Revision 2). London: Contaminated Land: Applications in Real Environments (CL:AIRE).
- CL:AIRE/AGS/EIC. (2010). Soil Generic Assessment Criteria for Human Health Risk Assessment. London: CL:AIRE.
- Committee on Toxicity. (2013). Statement on the potential risks from lead in the infant diet. London: COMMITTEE ON TOXICITY OF CHEMICALS IN FOOD, CONSUMER PRODUCTS AND THE ENVIRONMENT.
- Crown. (1990). Environmental Protection Act. London: UK Stationery Office.
- Defra. (2012). Environmental Protection Act 1990: Part 2A Contaminated Land Statutory Guidance. London: Department of Environment Food and Rural Affairs.
- DEFRA. (2012, December). SP1010: Development of Category 4 Screening Levels for assessment of land affected by contamination Policy Companion Document. London: Defra. Retrieved from http://randd.defra.gov.uk/Default.aspx?Module=More&Location=None&ProjectID=18341
- Department for Environment, Food and Rural Affairs (Defra). (2012a). Development of Category 4 Screening Levels for assessment of land affected by contamination SP1010. London: DEFRA.
- Dutch Ministry of Infrastructure and the Environment. (2013). Soil Remediation Circular. Bilthoven: RIVM.
- EA. (2009). Human health toxicological assessment of contaminants in soil. Science Report Final SC050021/SR2. Bristol: EA.
- EA. (2015). CLEA Software Version 1.071. LIT 10166. Contaminated land exposure assessment (CLEA) tool. London, England: Environment Agency. Retrieved from https://www.gov.uk/government/publications/contaminated-land-exposure-assessment-clea-tool
- Entwistle, J. A., Amaibi, P. M., Dean, J. R., Deary, M. E., Medock, D., Morton, J., . . . Bramwell, L. (2019). An apple a day? Assessing gardeners' lead exposure in urban agriculture sites to improve the derivation of soil assessment criteria. *Environment International*, 122, 130-141.
- Environment Agency. (2007b). UK Soil and Herbage Pollutant Survey, UKSHS Report No.10. Environmental concentrations of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo-furans in UK soil and herbage. Bristol: Environment Agency.
- Environment Agency. (2009). Soil Guideline Values for dioxins, furans, and dioxin-like PCBs in soil, Science Reprot SC050021/Dioxins SGV. Bristol: Environment Agency.
- Environment Agency. (2009). *Updated technical background to the CLEA model. Science Report:* SC050021/SR3. Bristol: Environment Agency.

Environment Agency. (2020, October 8). Guidance. Land contamination risk management (LCRM). How to assess and manage the risks from land contamination. Retrieved from https://www.gov.uk/government/publications/land-contamination-risk-management-lcrm

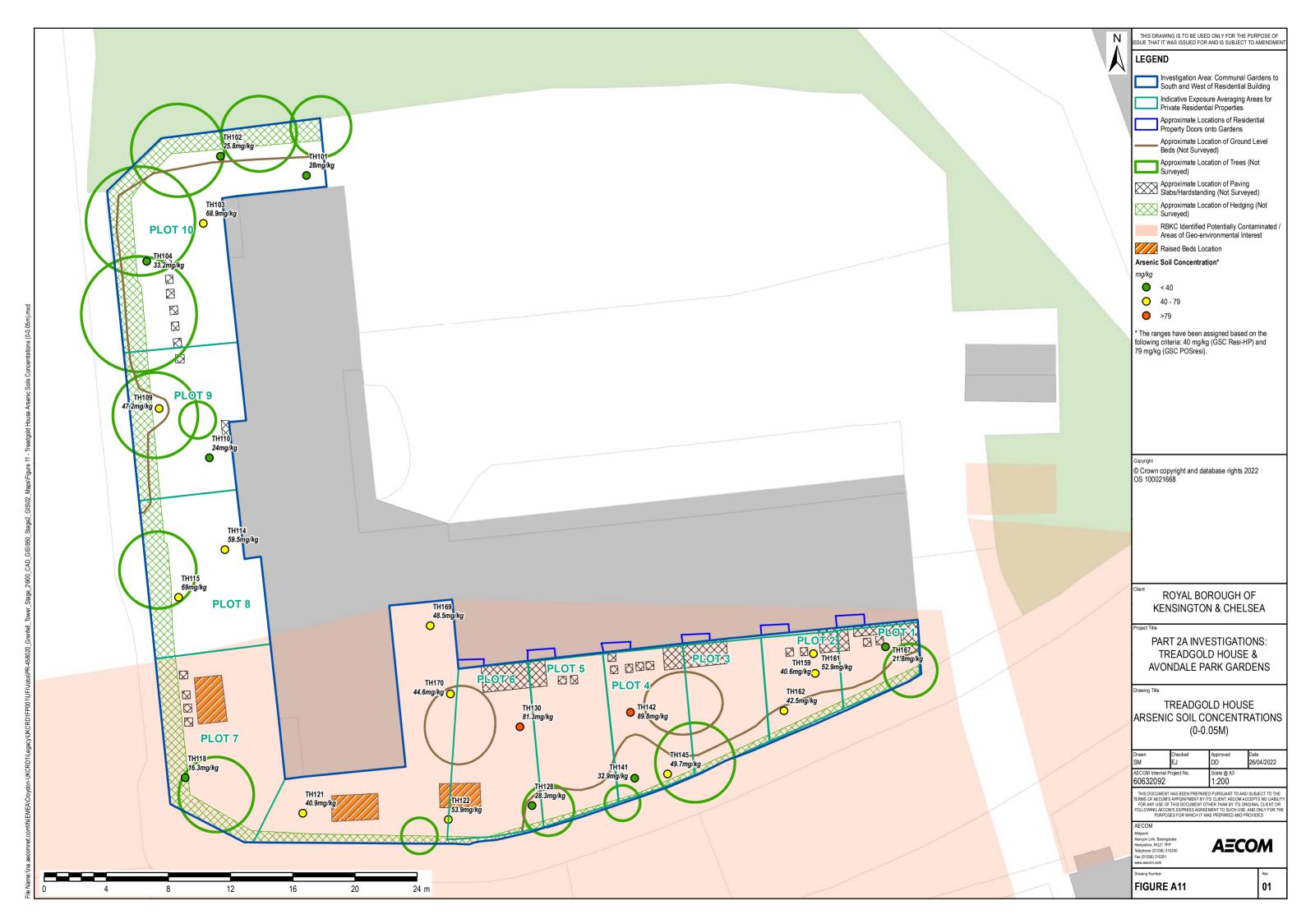
- Islam, R. &. (2021). Beryllium in contaminated soils: Implication of beryllium bioaccessibility by different exposure pathways. *Journal of Hazardous Materials*.
- Marriott, N. (2020). Professional Guidance. Comparing Soil Concentrations with a Critical Concentration. London: CL:AIRE.
- MLM. (2012a). KALC Phase 2 Geo-Environmental Assessment. Cambridge: MLM Consulting Ltd.
- MLM Environmental. (2011). Phase II Geoenvironmental Assessment Report Avondale Park, London.
- MLM Environmental. (2012). Phase I Preliminary Contamination Assessment, Avondale Park, London.
- MLM Environmental. (2012). Refurbishment and Demolition Asbestos Survey, WC/Store Block and Staff Block, Avondale Park.
- Nathanail, C., McCaffrey, C., Gillett, A., & Ogden, R. &. (2015). *The LQM/CIEH S4ULs for Human Health Risk Assessment*. Nottingham: Land Quality Press, Nottingham. Retrieved from LQM.
- Nathanail, P., Jones, A., Ogden, R., & Robertson, A. (2014). *CIRIA C733. Asbestos in soil and made ground: a guide to understanding and managing risks.* London: CIRIA.
- PHE. (2021a). Evaluation of whether to lower the public health intervention concentration for lead exposure in children. A report by the lead intervention concentration working group. London: Public Health England.
- Public Health England. (2017). Contaminated Land Information Sheet: Risk Assessment Approaches for Polycyclic Aromatic Hydrocarbons (PAHs). Didcot: PHE.
- Ramboll. (2014). Avondale Park, Notting Hill. Ground Contamination Interpretative Report. London: Ramboll.
- SoBRA. (2020). Development of Acute Generic Assessment Criteria for Assessing Risks to Human Health from Contaminants in Soil. London: SoBRA.
- SoBRA. (2020). Development of Acute Generic Assessment Criteria for Assessing Risks to Human Health from Contaminants in Soil. London: SoBRA.
- UK HSA. (2021). Lead Exposure in Children Surveillance System (LEICSS) annual report, 2021. Summary of 2020 data. Health Protection Report Volume 15 Number 17. London: UK Health Security Agency.
- US EPA. (2017). *Update for Chapter 5 of the Exposure Factors Handbook. Soil and Dust Ingestion.* Washington: US Environment Protection Agency.
- USEPA. (2006). Child-Specific Exposure Factors Handbook (External Review Draft). Report EPA/600/R/06/096A. Washington: United States Environmental Protection Agency.
- USEPA. (2011). Exposure Factors Handbook: 2011 Edition. EPA/600/R-09/052F. Washington: United States Environmental Protection Agency.
- USEPA. (2020). *Regional Screening Levels Generic Tables*. Retrieved from https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables
- Vane. (2014). Polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) in urban soils of Greater London, UK. Applied Geochemistry.

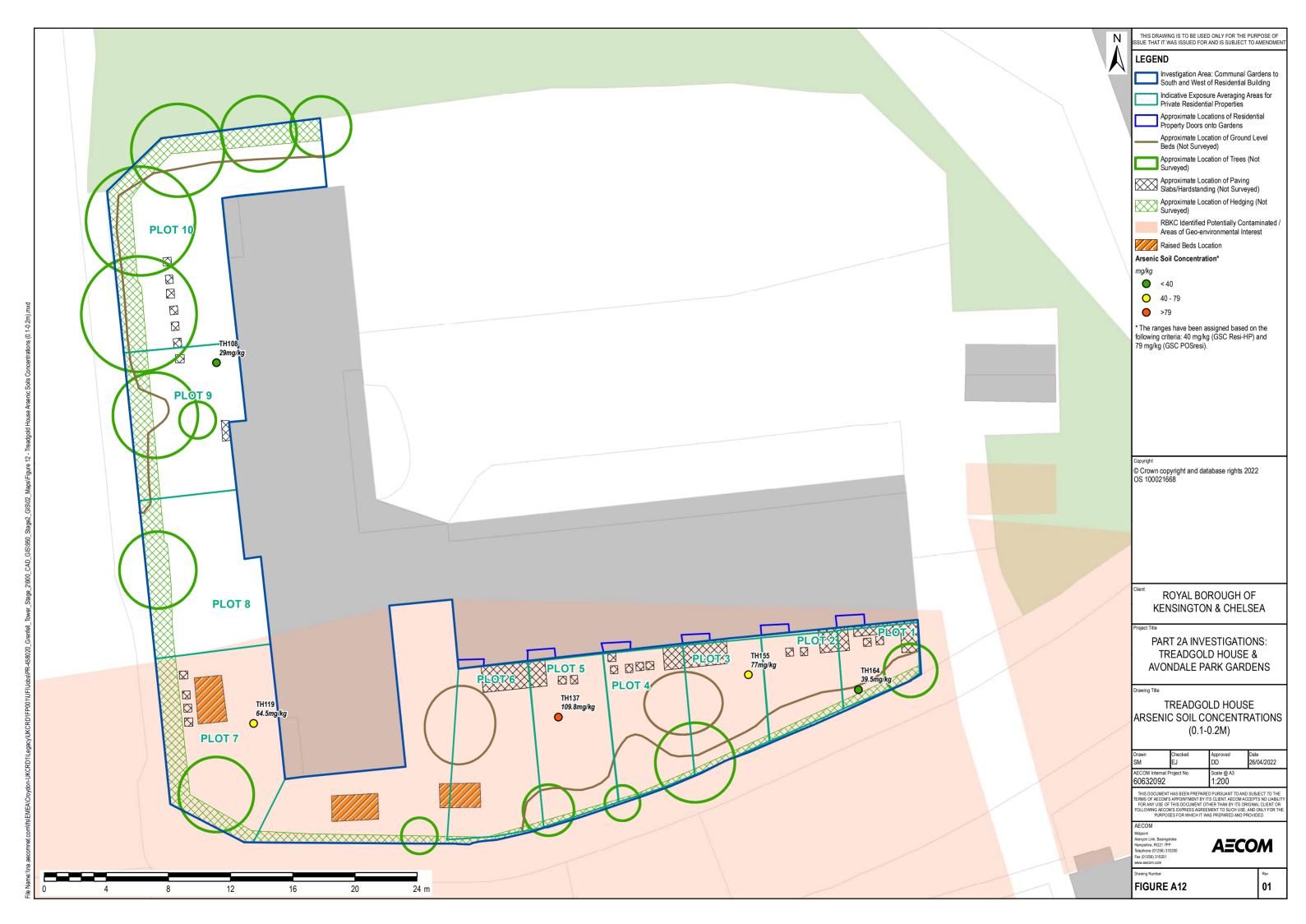
Appendix A Figures

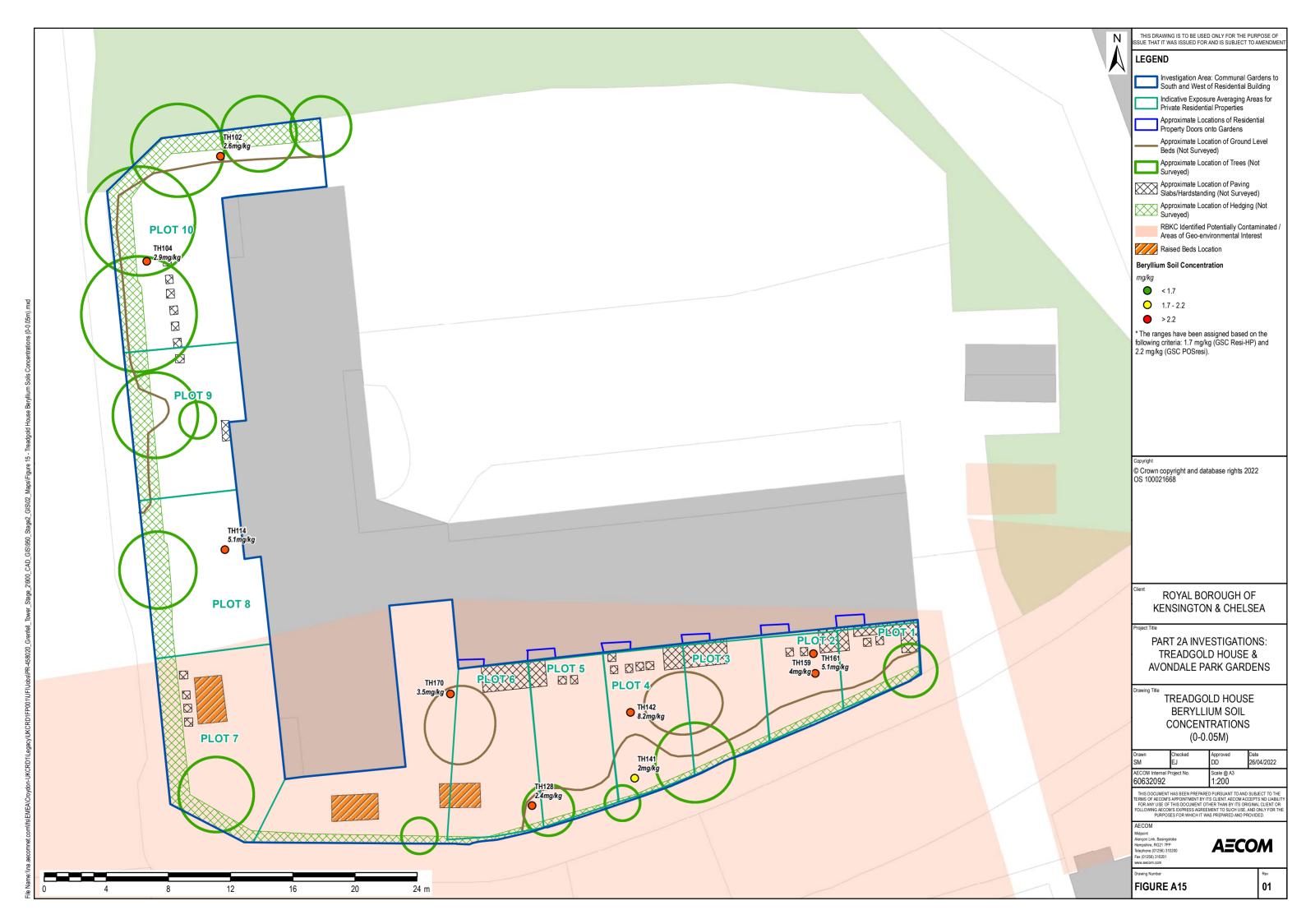


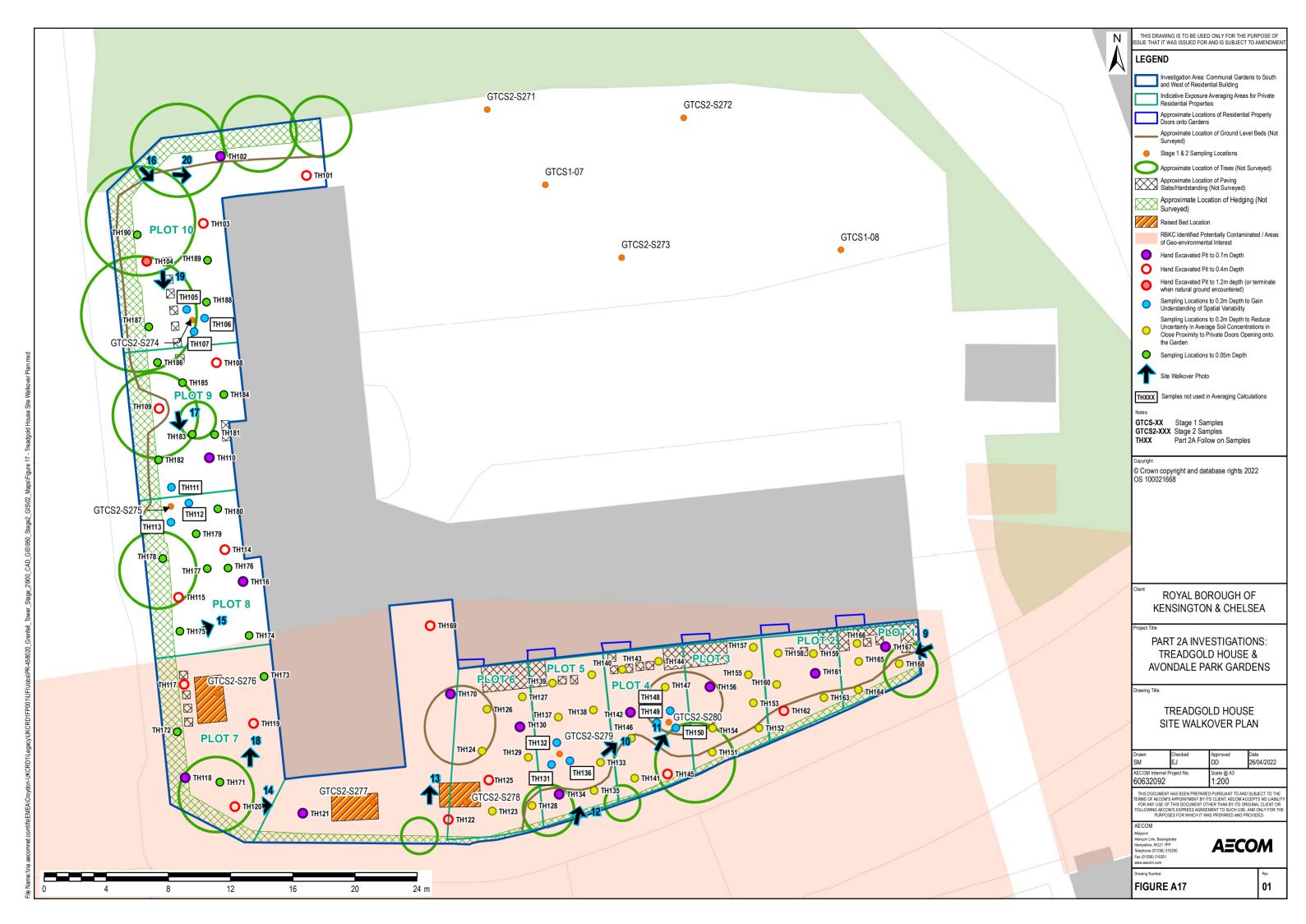












Appendix B Site Investigation Design

Site Investigation Design

Grenfell Stage 2 Follow-up Work

Royal Borough of Kensington and Chelsea

Project number: 60632092

1 October 2021

Quality information

Prepared by	Checked by	Verified by	Approved by	
David Dyson	Katie Bruce	Simon Cole	Liz Philp	

Revision History

Revision	Revision date	Details	Authorized	Name	Position
0	22 July 2021	Working draft for discussion		Liz Philp	Operations Director
1	6 August 2021	Revised draft		Liz Philp	Operations Director
2	7 September 2021	Revised draft		Liz Philp	Operations Director
3	1 October 2021	Final		Liz Philp	Operations Director

Distribution List

# Hard Copies	PDF Required	Association / Company Name
	1	RBKC

Prepared for:

Royal Borough of Kensington and Chelsea

Prepared by:

David Dyson Associate

M: +44-(0)7799 647 173 E: david.dyson@aecom.com

AECOM Limited Sunley House 4 Bedford Park, Surrey Croydon CRO 2AP United Kingdom

T: +44 20 8639 3500 aecom.com

AECOM Limited ("AECOM") has prepared this Report for the sole use of **Royal Borough of Kensington and Chelsea** ("Client") in accordance with the terms and conditions of appointment (**Project number: 60632092**). No other warranty, expressed or implied, is made as to the professional advice included in this Report or any other services provided by AECOM. This Report may not be relied upon by any other party without the prior and express written agreement of AECOM.

Where any conclusions and recommendations contained in this Report are based upon information provided by others, it has been assumed that all relevant information has been provided by those parties and that such information is accurate. Any such information obtained by AECOM has not been independently verified by AECOM, unless otherwise stated in the Report. AECOM accepts no liability for any inaccurate conclusions, assumptions or actions taken resulting from any inaccurate information supplied to AECOM from others.

The methodology adopted and the sources of information used by AECOM in providing its services are outlined in this Report. The work described in this Report was undertaken between **15 July 2021** and **1 October 2021** and is based on the conditions encountered and the information available during the said period of time. The scope of this Report and the services are accordingly factually limited by these circumstances. AECOM disclaim any undertaking or obligation to advise any person of any change in any matter affecting the Report, which may come or be brought to AECOM's attention after the date of the Report.

Copyright

© This Report is the copyright of AECOM. Any unauthorised reproduction or usage by any person other than the addressee is strictly prohibited.

Table of Contents

1.	Introd	uction	1
	1.1	Background	1
	1.2	Objectives	1
	1.2.1	Part 2A Sites	1
	1.2.2	Non-Part 2A Sites Precautionary Works	2
	1.3	Approach to Developing the Scope of Work	2
	1.3.1	Part 2A Assessments	2
	1.3.2	Non-Part 2A Precautionary Works	3
2.	Part 2	A Investigation Sites	3
	2.1	Conceptual Site Model	3
	2.2	Site Investigation Scope of Work	6
	2.2.1	Outline Scope of Work	
	2.2.2	Task 1: Site Walkover	
		Task 2: Soil sampling	
		Treadgold House	
		2Avondale Park Gardens	
		Task 3: Laboratory Analysis	
		Task 4: Risk Assessment and Reporting Requirements	
		Factual Reporting	
		Prisk Assessment	
	_	3Options Appraisal and Remediation Strategy	
		Task 5: Liaison with Residents	
		utionary Works Sites	
	3.1	Conceptual Site Model	
	3.2	Scope of Work	
		St. Anne's and Avondale Primary School	
		St Quintins CKG	
		Lancaster West Walkways	
		Portland Rd CKG and Waynflete Square	
		Laboratory Analysis	
		Reporting	
		igures	
Append	dix B S	ampling Procedure	
Tabl	06		
Iabi	C 3		
Table 1	. Con	ceptual Site Model for Part 2A Sites	
		pling Strategy	
		pling Strategy	
Table 4	l. Labo	ratory Analysis	9
		mary of RBKC Proposed Precautionary Actions	
Table 6	6. Labo	ratory Analysis	. 15

1. Introduction

The report has been prepared by AECOM Limited (AECOM) on behalf of the Royal Borough of Kensington and Chelsea (RBKC) to describe the scope of works for follow-on actions following the Stage 2 Investigation into Potential Contamination from the Grenfell Tower fire¹. This report also summarises the existing information and includes a data-gap analysis to inform and justify the design of the scope of work. The work has been completed in accordance with AECOM quote "Proposal for Site Investigation Design following on from Grenfell Stage 2" dated 27th July 2021.

1.1 Background

The Stage 2 investigation into potential land contamination impacts from the Grenfell Tower fire concluded that:

- Stage 2 sampling did not find detectable concentrations of chemicals in soil that could be linked only to the fire.
- The human health risk assessments for each individual sampling area concluded that the risk to human health from the chemicals of concern in soil did not exceed 'low' (and were classed as 'Category 4' sites under Part 2A of the Environmental Protection Act) for all sampling areas except for lead concentrations at Treadgold House (communal garden to south and west of the building) and Avondale Park Gardens.
- For Treadgold House and Avondale Park Gardens, it was concluded that it was not possible to decide whether or not lead in soil poses a significant possibility of significant harm as defined by the Statutory Guidance to Part 2A of the Environment Protection Act 1990. This was due to high uncertainty associated with average soil concentrations and with the way the land is used by residents.
- The Stage 2 Investigation has therefore recommended further assessment around Treadgold House and Avondale Park Gardens to resolve the uncertainty associated with health risk from exposure to lead in soil associated with historic contamination from before the Grenfell Tower fire.

In response to the findings of the Stage 2 report, RBKC produced a document titled: "High level summary of actions proposed in Kensington and Chelsea following completion of Stage 2." The RBKC document was prepared as part of RBKC's initial planning for procurement of services and was given agreement in principle by the multi-agency partnership (MAP) that had overseen the Stage 1 and Stage 2 investigations. The document included proposed additional sampling works at Treadgold House and Avondale Park Gardens (as recommended by the Stage 2 report) as well as proposals for precautionary works at five additional sampling areas.

1.2 Objectives

1.2.1 Part 2A Sites

The objectives of the scope of work presented in this document that relate to the two sites being inspected under Part 2A include:

- Undertake an appropriate level of intrusive site investigation work to investigate lead within the soil, including whether the spatial distribution of lead appears to be linked to the former brick pit identified in historical mapping in the area. A number of other substances will also be tested that are relevant to the previous site history.
- Carry out a generic quantitative human health risk assessment using existing GSC and SSAC used within
 the Stage 2 report to establish whether there are potential unacceptable risks to human health as defined by
 Part 2A.
- Carry out further detailed quantitative human health risk assessments to establish whether there is a significant possibility of significant harm (SPOSH) to human health as defined by Part 2A.
- Classify each potential contaminant linkage as Category 1-4 in accordance with the Statutory Guidance and
 in doing so provide recommendations on whether any land appears to meet the definition of contaminated
 land under Part 2A.

¹ AECOM Limited, 11 June 2021. Grenfell Investigation into Potential Land Contamination Impacts. Stage 2 Investigation, Tier 2 and Tier 3 Risk Assessment. Project number: 60632092/LORP0001

Identify any further actions that are needed (e.g. assessment, treatment or monitoring) to reduce or manage
identified risks from contaminants in the soil, either under Part 2A or to a higher standard where this is
required by the Council.

• Produce a remediation options appraisal and draft remediation plan if further action is required (be it remedial or risk management related).

The inspection of the two sites constitutes a 'detailed inspection' as defined by Paragraph 2.2 of the Part 2A 2012 Statutory Guidance.

1.2.2 Non-Part 2A Sites Precautionary Works

The objectives of the scope of work presented in this document related to the non-Part 2A sites identified for precautionary works include:

- Undertaking limited soil sampling for delineation purposes (where necessary and requested by the site manager)
- Overseeing the soil removal, installation of geo-membranes (if appropriate) and soil replacement, including carrying out limited confirmatory soil samples, where requested.
- Assisting with the production of site management plans, where required.
- Identify any further actions that are needed to address risks from asbestos and lead in the soil.

1.3 Approach to Developing the Scope of Work

1.3.1 Part 2A Assessments

AECOM's approach to developing the scope of works for the two areas that are continuing to be assessed in accordance with Part 2A of the EPA (i.e. Treadgold House and Avondale Park Gardens) has been to consider RBKC's high level summary of actions as a the starting point, and to develop a scope that AECOM considers appropriately fulfils the objectives described in Section 1.2 above.

The Grenfell Stage 2 investigation did not consider potential soil contaminants not directly associated with the fire that might also be present in soil as a result of historic land-use activities. Because of this, and at the request of RBKC, the scope of work includes tasks intended to further investigate the potential non-fire related sources of the lead and includes an assessment of other potential non-fire related sources and contaminants of concern.

At the request of RBKC, the scope of work has also taken into account RBKC's desire to avoid multiple phases of work so that RBKC can act quickly in the event that remedial works are required. The scope of work is designed to include sufficient detail to make final Part 2A decisions and prepare a remediation strategy (if needed).

The scope of work has also been developed through liaison with RBKC, including discussion with RBKC Environmental Health and RBKC Housing. The outcome of these discussions are included in the sub-sections below.

For the Part 2A sites – Treadgold House and Avondale Park Gardens – the principal approach to the site investigation design is to achieve a non-targeted grid based sampling dataset (in accordance with the recommendations of BS10175:2011+A2:2017) that may be suitable for the application of statistical methods in accordance with the CL:AIRE 2020 statistical guidance (Marriott, 2020). This should allow a more reliable statistical assessment of average concentrations within individual averaging areas. Some targeted sampling has also been included to assess the local variability around the Stage 1 and Stage 2 sampling locations and to investigate the potential for deeper contamination associated with the historic brickfield (mapped at the southern edge of the Treadgold House site and across the majority of the Avondale Park Gardens site). The data from targeted sampling will be considered separately when statistical averaging is adopted for the data assessment.

At Treadgold House, the site investigation design is intended to focus only on the ground level soils in the communal garden to the south and west of the residential building. This is because the highest concentrations of lead in soil were encountered in this communal garden area and a number of residential properties have direct access onto this garden. Soils sampled from raised beds had lower concentrations of lead and were identified at Stage 2 to be suitable for continued use. Direct contact human health exposure pathways are not active in areas of hard paving and the communal garden to the northeast of the residential building had lower lead concentrations in soil and does not have direct access from private properties. Only four ground level samples are available from the Stage 2 investigation in the communal garden to the south and west of the building, giving relatively low confidence to the average soil concentrations. To the west of the building, the two reported sample

concentrations both exceeded the Step 1 SSAC derived in the Grenfell Stage 2 report, and the average concentration of the two samples to the south of the building exceeded the Step 2 SSAC. An exceedance of the Step 2 SSAC indicates a possibility that the land could fall into Category 2 and therefore that remediation would be required. The investigation is therefore intended to significantly reduce the uncertainty associated with the average soil concentrations of lead in the gardens to the south and west of the building. In addition, investigation at Treadgold House is intended to assess the conceptual model in terms of other potential chemicals of concern from historic land-uses. The information from the investigation is to be used to draw conclusions in accordance with Part 2A...

At Avondale Park Gardens, the site investigation is intended to cover the entirety of the landscaped communal garden in the middle of the residential road. Only two samples were collected in this area in the Stage 1 investigation, resulting in very high uncertainty in the average soil concentrations. Neither of the reported lead concentrations exceeded the Step 2 SSAC derived in the Stage 2 report. Therefore the key aim of the investigation in this area is to reduce the uncertainty associated with the average soil concentrations; although it is intended to collect sufficient data to refine the Step 2 SSAC (if this becomes necessary).

The laboratory analytical approach for the site investigation design in both areas is to focus on the total concentrations of lead in soil to identify areas of higher concentrations and to provide a more reliable estimate of average concentrations. In addition, the approach also includes further site-specific assessment lead bioaccessibility to help with refinement of Step 2 SSAC.

1.3.2 Non-Part 2A Precautionary Works

For the precautionary works at the other five sites that are not being regulated in accordance with Part 2A, AECOM's approach is to develop a practical and pragmatic scope of work that will achieve RBKC's objectives (summarised in Section 1.2 above) based on:

- the outline summary of actions presented by RBKC (and agreed in principle by MAP); and
- additional information provided by RBKC housing and managers of the individual sites during telephone conversations on 28th and 29th July 2021.

2. Part 2A Investigation Sites

2.1 Conceptual Site Model

The conceptual site model related to Part 2A potential significant contaminant linkages to be addressed by the scope of works was presented in Section 9.3 of the Grenfell Stage 2 report and is summarised in Table 1 below. Additional data-gap analysis is included in Table 1 below that was not part of the Grenfell Stage 2 report. The data-gap analysis is included to identify issues associated with potential non fire related sources and contaminants that require further investigation within the scope of work.

Table 1. Conceptual Site Model for Part 2A Sites

Sources	Pathways	Receptors	Discussion	Data-gap Analysis
Lead in soil at Treadgold House (communal gardens to south and west of residential building)	Ingestion of soil and indoor dust Dermal contact with soil (outdoor) Dermal contact with soil derived dust (indoor) Inhalation of dust (indoor and outdoor) NOTE: ingestion of soil and dust likely to be the dominant exposure pathway for residents.		The communal garden to the south and west of Treadgold House was not placed into a Part 2A Category due to the high uncertainty associated with average lead concentrations and uncertainty with the manner that the communal garden is used by residents, and how this relates to standard land use assumptions. The higher concentrations of lead in soil in this area could have arisen from a variety of historic sources, including redevelopment works such as stripping and discarding of leaded paint and old roofing materials, soils being imported from other unknown contaminated sources during redevelopment and landscaping, and nearby historic land-uses such as the brickworks which formerly occupied land now within the southern part of Treadgold House. Although it is considered that there is not currently the evidence required by the Statutory Guidance to place this CL into Category 1 or Category 2, further assessment within this area would be of benefit in order to more reliably conclude on the Part 2A land category and decide whether the land meets the definition of Contaminated Land.	The Grenfell investigation review of the RBKC Planning portal did not identify any site investigation information on the Treadgold House site. The information from the historical and environmental review indicates that the former brickfield (now backfilled) and redevelopment of the site from the terraced residential housing to the current residential building have the potential to have caused contamination at the Site. Specific contaminants associated with infilling of the brickfield cannot be identified easily without knowledge of the fill materials. A site investigation carried out in Avondale Park, which is also located on the old infilled brickworks, was provided to AECOM by RBKC during the Grenfell Stage 2 investigation. Further review of that investigation indicates that reported concentrations of asbestos and PAHs exceeded the criteria adopted by the authors for the park area. However, some metals and petroleum hydrocarbon

flow suggests a low risk from ground gas; however, this will be reviewed further based on the evidence of the type and extent of potential fill materials from the proposed site investigation. If the evidence from the additional investigation works suggests a potentially elevated ground gas risk relative to that reported for Avondale Park then installation of

Sources	Pathways	Receptors	Discussion	Data-gap Analysis
	, allmayo	Посория		ground gas wells will be considered. Based on current evidence this is not currently considered to be necessary and hence does not form part of the initial proposed scope. Any such change to the scope would be raised and discussed with RBKC.
Lead in soil at Avondale Park Gardens	Ingestion of soil and indoor dust Dermal contact with soil (outdoor) Dermal contact with soil derived dust (indoor) Inhalation of dust (indoor and outdoor) NOTE: ingestion of soil and dust likely to be the dominant exposure pathway for residents.	Residents of Avondale Park Gardens and their visitors.	The high uncertainty associated with the assessment at Avondale Park Gardens means that a final decision has not been made for whether the land could pose SPOSH. It is considered that there is still some potential that the land could meet the definition of Contaminated Land, or fall into either of Category 3 or Category 4. The higher concentrations of lead in soil in this area could have arisen from a variety of historic sources, including soils being imported from other unknown contaminated sources during redevelopment and landscaping, and nearby historic land-uses such as the brickworks which formerly occupied the land of which now includes Avondale Park Gardens. This was identified during the site history review as part of Stage 1 of the Grenfell investigation and the former brickworks area can be seen as the shaded area on Figure 2 and identified as 'RBKC identified potentially contaminated land' and 'RBKC identified areas of Geoenvironmental Interest' in the key. Limited further assessment – comprising shallow soil sampling and analysis for lead and lead bioaccessibility – within this area would be of benefit in order to more reliably conclude on the Part 2A land category.	undergone residential development by 1896 including a school and a church. A building layout similar to the earlier 'Workhouse' remains surrounding the site until the map of 1951 although it is not labelled as such, and the residential houses surrounding the communal garden area are believed to have been built in the 1920s. The OS mapping indicates that the present day layout with the communal garden area in the centre of the residential street was in place by 1957, and has remained largely unchanged on all maps through to the most recent present day map (2020). The Grenfell investigation review of the RBKC Planning portal did not identify any site investigation information on the Avondale Park Gardens site. The information from the historical and environmental review indicates that the former brickfield (now backfilled), the workhouse and the residential development of the site between the 1920s and 1950s have the potential to have caused contamination at the Site. Specific contaminants associated with infilling of the brickfield cannot be identified easily

wells will be considered. Based on current evidence this is not currently considered to be necessary and does not form part of the initial proposed scope. Any such change to the scope would be raised and discussed with RBKC.

2.2 Site Investigation Scope of Work

2.2.1 Outline Scope of Work

The scope of work designed for the sites includes:

Task 1: Site walkover

Task 2: Soil sampling

Task 3: Laboratory analysis

Task 4: Reporting and risk assessment

Task 5: Residents liaison

2.2.2 Task 1: Site Walkover

A site walkover to be completed at Treadgold House and Avondale Park Gardens to choose precise sampling locations. The walkover will aim to identity whether there are any obstructions to the proposed soil sampling plan and where there are, to recommend alternative locations.

The walkover will be observed, at least in part, by the Suitably Qualified Person (SQP). The indicative proposed locations are discussed in Section 2.2.3 below and indicated on Figure 1 and Figure 2.

The site walkover to include a discussion with RBKC housing representatives and residents that have access to the communal gardens (where this can be arranged by RBKC). This will aim to identify:

- how the gardens are used by the residents in terms of typical activities, frequencies and durations, and spatial extent. This to include understanding whether residents tend to limit their use of the garden to specific sub-areas (e.g. at Treadgold House the area immediately outside private access doors) and if so what the minimum size of this sub-area is; and
- whether there are any known sources of the lead in soil (such as prior renovations where lead paint could have been stripped from windows or fences, or information on the source of imported soils in the communal garden).

Based on the layout of the communal garden, the most likely uses of the garden in a generic 'planned use' scenario has initially been considered when choosing sampling locations, and the proposed locations are described in Section 2.2.3. AECOM will consider whether any additions or adjustments to the site investigation work described below is necessary based on the information gathered during the site walkover task. Potential changes to the scope will be raised and discussed with RBKC.

2.2.3 Task 2: Soil sampling

The soil sampling strategy for each area is described below. In all cases, samples are to be collected in accordance with the methodology included in Appendix B. The SQP will observe the sampling activities on at least one day.

2.2.3.1 Treadgold House

The design includes the collection of soil samples from 70 locations in the communal garden at Treadgold House. With the four existing sample locations this provides 74 locations with data for lead concentrations in soil.

The sampling to be completed using a combination of hand excavated pits and – if necessary – window sampling to be employed at up to 4 locations to investigate the potential for the elevated lead concentrations to be linked to the former backfilled clay pit indicated to have historically occupied the southern part of the communal garden (shaded area on Figure 1). A hand starter pit will be excavated at all potential window sampling locations to a minimum of 1.2m depth. If natural London Clay soils are encountered within the hand pit then window sampling to greater depth will not be needed. If the hand pit remains in made ground to 1.2m depth, window sampling will be used to investigate made ground and potential fill materials to greater depth.

Of the 70 locations, 43 to be excavated to a maximum of 0.2m depth, 14 to be excavated to a maximum of 0.4m depth, 9 to be excavated to a maximum of 0.7m depth, and 4 to be excavated to a maximum of 3m depth (or until natural ground is encountered, whichever is shallower). Between 2 and 4 samples to be collected from each location for laboratory analysis. The sampling strategy is presented in Table 2 below.

Table 2. Sampling Strategy

Type of Sample Location	No. of hand pits	No of samples per pit*	Sample Depths (m)	Justification
Hand pits to 0.2m	43	2	0-0.05 0.1-0.2	The hand pits to 0.2m depth are located in the areas outside the doors of the private properties that open directly onto the communal garden. The locations have been selected so that between 5 and 10 sampling locations are situated within the estimated averaging areas for an individual property – this is shown on Figure 1. In addition, three hand pits to 0.2m depth have been included around the four existing Stage 2 ground level sampling locations to provide an indication of local variability in topsoil concentrations. The number of samples in the averaging area of each property will provide an improved degree of confidence in the average concentrations in soil compared to the Stage 2 report. The samples taken from 0-0.05m depth will provide surface soil information comparable to the data collected during the Stage 1 and Stage 2 investigations. The samples collected at 0.1-0.2m depth will help identify variability in soil conditions at different depth horizons and assist with the design of any future remedial strategy.
Hand pits to 0.4m	14	3	0-0.05 0.1-0.2 0.3-0.4	The locations of the hand pits to 0.4m, those to 0.7m, and WS to up to 3m depth have been designed in a regular grid pattern across the full communal garden area to provide a non-judgmental dataset suitable for statistical analysis across the full sampling area. The locations are relatively evenly split between the south garden area which is indicated to have been formerly occupied by a brick field and the western garden area which was not occupied by the brick field. Three of the WS locations have been placed in the area mapped to be in the former brickfield area to identify possible—deeper sources of the lead that has been identified in shallow
Hand pits to 0.7m	9	4	0-0.05 0.1-0.2 0.3-0.4 0.6-0.7	soil. One WS location has been placed in the non-brickfield area to provide a point of comparison. The samples collected from 0-0.05m depth will help characterise the surface soil similar to topsoil sampled during Stage 1 and Stage 2 investigations. The samples collected from 0.1-0.2m and 0.3-0.4m depth will be used to identify potential differences between different soil horizons and evaluate whether soils >0.3m could be left insitu in the event that shallower topsoil required removal. Samples collected from 0.6-0.7m depth will be used to assess soil quality below the maximum likely depth of future
WS to 3m	4	4	0-0.05 0.3-0.4 0.6-0.7 >1m (representative of any fill encountered)	soil replacement to evaluate potential long-term mixing effects with this deeper soil and assist with the design of any future remedial strategy. Samples collected from >1m depth will be used to evaluate the quality of fill material that could be associated with the former brickfield to conclude whether high concentrations in shallow topsoil could be linked to this. This deeper sample not needed if natural soils encountered shallower than 1m depth.

^{*} where observations of unexpected contamination are made for which characterisation and delineation requires more than the currently allotted number of samples, additional samples will be taken as a contingency at the discretion of AECOM's supervising engineer. The analytical requirements of these samples will be discussed with RBKC before scheduling for analysis.

The design locations are shown on Figure 1 and have been positioned to investigate two potential conceptual exposure scenarios:

1. Public open space in a residential setting where the full communal garden is a single averaging area: the locations to be excavated to 0.4m, 0.7m and 3m depth are evenly distributed throughout the communal garden being investigated in a grid pattern on roughly 5-6m centres. These 27 locations, plus the four from the Stage 2 investigation, will result in a significant reduction in the uncertainty associated with average soil concentrations across the full communal garden area compared to the existing 4 samples. The communal garden covers an area of approximately 700m², which is generally consistent with the 500m² area assumed in the UK's residential public open space land-use scenario. The sample locations are split

relatively evenly between the area along the southern boundary which is shown to have been formerly occupied by a brickfield (shaded area on Figure 1) and the area to the west of the building that is outside this shaded area. This is designed to provide a reasonable balance in the dataset to evaluate whether there could be a difference in lead concentrations in soil caused by this historic mapping feature. The different depth samples proposed in the table above are also designed to help to answer this question, provide more certainty with respect to the conceptual site model, and help design any future remediation where this is needed.

2. Residential land use with a private garden but no homegrown produce consumption²: The current understanding is that there are six residential properties that have doors leading directly out from the southern edge of the building onto the communal garden (doors roughly indicated as blue rectangles on Figure 1). Worst-case exposure averaging areas for residents of these six properties have been assumed to be the parts of the garden immediately backing onto the access door and wall of each property. These areas are shown indicatively with green boundaries on Figure 1. These six averaging areas cover areas of between approximately 25m² and 50m², which is smaller than the 100m² size assumed for a private garden in the CLEA residential land-use scenario. (SR3 notes that 85% of gardens are larger than 100m²). In order to provide an improved level of confidence in the average soil concentrations (compared to Stage 2) within each of these exposure averaging areas, 37 sampling locations to 0.2m depth shown as yellow circles on Figure 1 have been added to the sampling plan, resulting in between 5 and 10 sampling locations within any one averaging area. This results in sample spacing on an approximate 2-3m grid. The results from these locations are designed to provide an improved level of confidence in the average soil concentrations compared to the Stage 2 investigation, and be suitable for RBKC's requirements for making decisions under Part 2A.

In addition to the non-targeted sample locations identified in points 1 and 2 above, a further 12 targeted sampling locations to 0.2m depth are marked on Figure 1 as blue circles. These have been included to provide information associated with the degree of localised variability in soil concentrations in close proximity to the four Grenfell Stage 2 sampling locations. Deeper samples at the window sampling locations have also been included to target potential fill materials associated with the historic brickfield. The targeted nature of these samples (clusters around the Stage 2 locations as well as the deeper samples at window sample locations) will be taken into account when assigning the datasets to which statistical testing will be applied.

Assessment of the data from Treadgold House will also consider potential differences in soil concentrations between grassed areas and areas of plant beds with exposed soil to help with understanding variations across the area.

2.2.3.2 Avondale Park Gardens

The design includes the collection of soil samples from 16 locations in the public open space at Avondale Park Gardens. Three of these to be in proximity to the previous location GTCS1-23, to delineate the potential higher concentrations recorded at this location during the Grenfell Stage 1 investigation. With the two existing sample locations this will provide 18 locations with data for lead concentrations in soil.

12 of the 16 hand pits to be excavated to a maximum depth of 0.2m. Residents are not permitted to excavate soil in the public open space area themselves and are therefore unlikely to be exposed to soils any deeper than the upper 5 to 10cm. General maintenance of the public open space may result in turning over of soil in plant and shrub beds to depths in the order of 30cm, or occasionally deeper for more substantial works. Because of this, 4 of the 16 hand pits to be excavated to 1m depth to provide information as to the soil quality below the depth that could potentially require remediation (0.3m is sometimes used as a soil replacement depth in public landscaped areas) depending on the findings of the sampling. Deeper sampling is designed to also enable an assessment of whether there is any evidence of impact from the former brickfield (shaded area in Figure 2), workhouse or subsequent residential redevelopment that is mapped in the area that could be the cause of the lead concentration exceeding the GSC in the shallow soil. Two samples are to be collected for analysis at each of the 0.2m depth locations: one from a depth of 0-5cm to be comparable to those already collected during Stage 1 and one from a depth of 10-20cm to give an indication of slightly deeper soil quality. At the four locations excavated to 1.0m depth, one sample to be collected from 0-0.05m, one from 10-20cm depth and one from 50-60cm depth. Sampling depths should be adjusted slightly to avoid sampling across distinct soil horizons if these are observed during the sampling process. Multiple sampling depths are designed to allow an assessment of whether there is any change in soil condition between the topsoil and subsoil and could be used to refine remediation requirements, if there are any.

² Although raised beds are present in the communal garden, the Stage 2 report showed that the soil quality in these beds was significantly better than the ground level soils and they were suitable for use without any further assessment required.

The sampling strategy is presented in Table 3 below.

Table 3. Sampling Strategy

Type of Sample Location	No. of hand pits	No of samples per pit	Sample Depths (m)	Justification
Hand pits to 0.2m	12	2	0-0.05 0.1-0.2	The hand pits to 0.2m depth (excluding those clustered around the Stage 1 sampling location GTCS1-23) provide an unbiased grid-based sampling coverage of the exposure averaging area in the public open space. The shallower samples at 0-0.05m depth will provide a suitable dataset for identifying an average concentration most representative of the exposure to residents using the site. The deeper samples at 0.1-0.2m will give an indication of any variability in soil conditions with depth that maintenance workers or any residents tending the flower shrub beds could be exposed to.
Hand pits to 1.0m	4	3	0-0.05 0.1-0.2 0.5-0.6	The 0-0.05m depth samples and 0.1-0.2m depth samples provide the same function as the samples in the shallower hand pits described above. The sample from 0.5-0.6m depth will provide some information on whether there may be contaminants in deeper fill material associated with the historic land uses including the infilled brickfield, the workhouse and its subsequent residential development and may be useful for the design of any necessary remedial measures.

The locations are shown on Figure 2 and are evenly distributed throughout the public open space being investigated in an approximate grid pattern at roughly 8-10m intervals, with the exception of the three samples surrounding GTCS1-23. The acquisition of soil concentrations at 18 locations is designed to provide a significant reduction in the uncertainty associated with average soil concentrations compared to the existing two samples.

The area is a landscaped garden with a combination of turf, vegetated shrub borders and trees. The layout is generally as a single space with no internal partitioning that would suggest anything other than a single averaging area. However, the data assessment will consider potential differences in soil concentrations between grassed areas and areas of plant beds with exposed soil to help with understanding variations across the area. The shading on Figure 2 indicates that much of the area – with the exception of a small portion in the south-eastern corner – was formerly occupied by a brickfield. The unshaded area is considered to be too small to require delineation from the rest of the area as it is unlikely to be practical or cost-effective to delineate it to the extent that it could be demonstrated to have a significantly different lead concentration in soil to the rest of the area. The area of the communal space is approximately $800m^2$, which is closest in assumed area to the POSresi land use scenario (assumes approximately $500m^2$, compared to the $5,000m^2$ area assumed for POSpark). It is reasonable to assume that the communal garden at Avondale Park Gardens is typical of the open space in close proximity to residential properties envisaged by the C4SL Project³. The 18 sample locations are therefore considered suitable for assessing average soil concentrations within a single averaging area.

2.2.4 Task 3: Laboratory Analysis

The laboratory analysis designed for each of the sampling areas is shown in Table 4 below.

Table 4. Laboratory Analysis

Investigation Area	Sample Analysis	No of samples	QA/QC samples
Treadgold House	Lead	180 (all samples)	9 duplicates
	Asbestos	74 (1 sample at each of 70 locations, + 4 samples from >1m depth)	4 duplicates

³ Contaminated Land: Applications in Real Environments (CL:AIRE), 20th December 2013. SP1010 – Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination. Final Project Report.

Investigation Area	Sample Analysis	No of samples	QA/QC samples
	Metals* & PAH-16	26 (all samples from window sampling locations plus 10 further shallow (0-0.05 or 0.1-0.2m) samples) Plus As, Ba, Be, Cd, Cr, Cu, Hg, Ni and V in additional 13 samples (shallowest sample in selection of 0.4m and 0.7m depth hand pits)**	1 duplicate
	Contingency for TPH CWG depending on observations in deeper fill	16 (all samples from window sampling locations)	1 duplicate
	Lead bioaccessibility (only to be scheduled if required for risk assessment decision making†)	5 (from 0-0.05m depth samples distributed across the area) 3 (from any potential fill materials identified in window sample boreholes)	1 duplicate
Avondale Park Gardens	Lead	40 (2 samples at each of 12 sampling locations to 0.2m depth, 3 samples at the 4 locations to 1m depth)	2 duplicates
	Metals*, asbestos & PAH- 16	12 (1 sample from 0-0.05m or 0.1-0.2m depth at 8 locations (consistent level of shallow sampling with Stage 2) and 4 samples from 0.5- 0.6m depth)	1 duplicate
	Lead bioaccessibility (only to be scheduled if required for risk assessment decision making [†])	3 (from 0-0.05m depth samples distributed across the area)	-
Contingency for unexpected contamination to cover both Treadgold House and Avondale Park Gardens	To be confirmed based on field observations. Could include metals suite, TPH CWG, PAH-16, asbestos, VOCs+TICs, SVOCs+TICs, cyanides	20	1 duplicate

^{*} includes As, Ba, Be, B, Cd, Cr, Cu, Pb, Hg, Ni, Se, V, Zn

The contingency listed in Table 4 above is anticipated to be used in two potential scenarios:

- 1. Where field observations indicate potential contaminants that have not be analysed at all (e.g. organic odours and staining requiring VOC analysis or blue staining indicating cyanide contamination)
- Where contaminants such as PAHs, metals or TPH are encountered in deeper soils or in the small number
 of shallow samples currently planned to be scheduled for these analyses at concentrations exceeding
 residential GSC, then the contingency may be used to analyse an increased number of shallow samples for
 the same analyses.

2.2.5 Task 4: Risk Assessment and Reporting Requirements

Assessment and reporting for Treadgold House and Avondale Park Gardens is required to fulfil the obligations of Part 2A of the EPA 1990 and the associated statutory guidance.

The objective of the reporting will be to determine whether the areas under investigation meet the definition of Contaminated Land, and which Category of land they fall into. The risk assessment is to be carried out in

^{**} the additional nine metals (As, Ba, Be, Cd, Cr, Cu, Hg, Ni and V) have been added to 23 samples because beryllium was identified in Stage 1 samples at concentrations slightly exceeding GSC. Once lead and beryllium are proposed for analysis there is no additional cost to analyse up to 10 metals; hence the inclusion of this extended list.

[†] soil bioaccessibility tests will only be scheduled after the standard soil results have been initially screened against the Stage 2 SSAC and it is judged – in consultation with RBKC – that potential lower bioaccessibility could change the outcome, or additional data could help with reducing the level of uncertainty to a reasonable level.

accordance with the same broad methodology as that adopted for the Grenfell Stage 2 Investigation for consistency. The assessment and reporting requirements have been broken down as follows:

2.2.5.1 Factual Reporting

This to include:

- Details of the site walkover and sampling works, including:
 - site plans annotated with key features and photos showing an overview of all the sampling locations;
 - sample descriptions (logs) including observations of potential sources of contamination;
 - photos of sampling works;
 - records of sample chains of custody; and
 - laboratory analytical certificates and QA/QC information.

2.2.5.2 Risk Assessment

The risk assessment to include:

- Update to the conceptual site model taking into account findings of the intrusive investigation;
- Generic quantitative risk assessment using existing GSC and SSAC from the Stage 2 report. This to include statistical evaluation of data in accordance with the CLAIRE 2020 statistical guidance.
- Further detailed quantitative human health risk assessments using newly acquired lead bioaccessibility data and any adjustments to land-use exposure assumptions that are considered reasonable following the land use discussions with residents to establish whether there are unacceptable risks to human health as defined by Part 2A. The existing Step 1 and Step 2 SSAC to initially be updated using the additional lead bioaccessibility data, the proposed sampling strategy for this is summarised in Table 4. These SSAC may then be further updated depending on the outcome of potential discussions with residents during the site walkover, if any exposure assumptions can reasonably be adjusted compared to the standard Resi and POSresi scenarios. These updates to the SSAC are designed to improve the confidence in the decision-making in relation to whether the land meets the definition of Contaminated Land.
- Discussion, risk evaluation and conclusions of the findings of the soil sampling exercise, investigation and risk assessment.
- Recommendations of whether any land appears to meet the definition of contaminated land, under Part 2A.
- Classification of each site as Category 1-4 in accordance with the Statutory Guidance.
- Identification of any further actions that are needed to address risks from contaminants in the soil.

2.2.5.3 Options Appraisal and Remediation Strategy

Where an area under investigation meets the definition of Contaminated Land i.e. there is an unacceptable risk to human health, a remediation options appraisal and remediation strategy is required, taking into account the requirements of the Part 2A Statutory Guidance.

The options appraisal and remediation strategy are to be prepared in consultation with RBKC (particularly the Pollution Control, Housing and Parks teams) to incorporate specific requirements from those departments.

2.2.6 Task 5: Liaison with Residents

At the request of RBKC, the scope of works includes two residents liaison events for each of the Part 2A sites (i.e. 4 events in total). One of these to occur prior to the sampling and assessment works described in this document, and one to occur after the works were completed. Each event to consist of a half-day attendance at an informal event with the AECOM representative available to answer questions about the proposed scope and the findings of the work once completed.

3. Precautionary Works Sites

3.1 Conceptual Site Model

RBKC identified five sampling areas where potential contaminant linkages, though not considered to require further action in accordance with Part 2A of the EPA, would benefit from precautionary works. The proposals for

precautionary works were developed by RBKC as part of the 'RBKC summary of actions' document, which was reviewed and approved in principle by MAP. These are summarised in Table 5 below:

Table 5. Summary of RBKC Proposed Precautionary Actions

Area Name	Potential Linkage	Possible Actions	Sampling Requirements and Management Plans	
8. St Anne's and Avondale Primary School and	Lead concentration of 3,056mg/kg in a single sample with a planted soil bed.	Discussion with school management.	If a decision is taken to replace the soil, limited sampling should be undertaken to confirm the	
Nursery	Category 4 linkage (i.e. low to no risk)	Possible replacement of impacted soil	extent of the soil replacement.	
	lion)	Alternatively cover with turf to minimise exposure		
		Verification of any imported soils		
		Provide PHE advice to school		
15. St Quintin's Community Kitchen Garden	Asbestos detected at concentrations below the detection limit (<0.001%wt/wt) in two adjacent raised bed samples	Discussion with site management. Possible replacement of impacted soil in raised beds	If a decision is taken to replace the soil, limited sampling should be undertaken to confirm the	
	in SE of the site indicating possible localised source.	Verification of any imported soils	extent of the soil replacement.	
	Category 4 linkage (i.e. low to no risk)	Provide PHE advice to site managers		
	One sample in ground level soil contained asbestos at less than detection limit. Site user access to ground level soils minimal.	Thurlage 10		
18. Portland Road Kitchen Garden	Lead and asbestos present in ground level soils at the north end	Discussion with site management.	If a decision is taken to replace the soil, limited sampling should	
	of the site at higher concentrations than elsewhere on site and exceeding GSC.	Possible replacement of impacted soil in growing beds and exposed paths at northern end of site.	be undertaken to confirm the extent of the soil replacement.	
	Could be representative of localised higher concentrations at northern end of site.	Verification of any imported soils	Produce site management plan.	
	Category 4 linkages (i.e. low to no risk)	Provide PHE advice to site managers		
		Manage future works at site in accordance with CAR and CARsoil guidance		
21. Lancaster West Walkway	Asbestos encountered in soils in open space areas and in raised	Discussion with site management.	If a decision is taken to replace the soil, limited sampling should	
Kitchen Garden	beds in CKG area. However, concentrations either below detection limit or less than GSC for all but two samples, one of	Possible replacement of impacted soil in growing beds where asbestos has been encountered.	be undertaken to confirm the extent of the soil replacement.	
	which is in CKG area at depth of 0.5-0.6m.	Verification of any imported soils	Produce site management plan.	
	Category 4 linkage (i.e. low to no risk)	Provide PHE advice to site managers		
		Manage future works at site in accordance with CAR and CARsoil guidance		
40. Waynflete Square	Asbestos reported in 11 of 26 samples, generally at low concentrations (8 of 11 below detection limit of <0.001%wt/wt). Asbestos concentration exceeded the GSC in 3 samples.	Manage future works at site in accordance with CAR and CARsoil guidance.	Produce site management plan.	

Area Name	Potential Linkage	Possible Actions	Sampling Requirements and Management Plans
	Category 4 linkage (i.e. low to no risk)	Provide PHE advice to site managers	
		Produce asbestos management plan for the area	

AECOM held further discussions with the managers of these sites on 28th and 29th July with Rebecca Brown of RBKC also present. The outcome of these discussions included:

- St Anne's and Avondale Primary School and Nursery: It was agreed that some limited delineation around the single sample with elevated lead concentrations would be completed before any excavations took place in order to minimise any volume of soil requiring removal.
- St Quintin's Community Kitchen Garden: It was agreed that all soils in Plots 30-34 would be replaced as
 these included the two samples with asbestos detected. In addition, the RBKC kitchen garden team
 indicated that they would also replace the soils in Plots 25 to 29 as part of wider improvement works needed
 in this area to replace rotten wooden boards.
- Portland Road Kitchen Garden: This site is undergoing considerable re-design in the near future and it was agreed that no immediate sampling or soil replacement would be needed. The ground level soils in the northern part of the site will no longer be used for growing edible crops and will be planted and maintained by the RBKC team rather than plot holders. All growing for human consumption will be within soils in raised beds or planters, not at ground level. It was agreed that a brief management plan would be prepared to outline the ground conditions and appropriate mitigation measures for long-term management and maintenance of the site.
- Lancaster West Walkway Kitchen Garden: The RBKC kitchen garden team indicated that they would replace all soils in growing areas to a depth of 60cm, with a geotextile marker layer installed at the base of the replacement soils. Mature permanent trees or bushes would not be removed but best endeavours would be made to replace soils surrounding them.
- Waynflete Square: A management plan should be prepared to record ground conditions and identify appropriate mitigation measures for long-term management and maintenance of the site.

3.2 Scope of Work

The scope of work designed for the precautionary works sites includes:

3.2.1 St. Anne's and Avondale Primary School

The design includes the collection of samples from three locations in the landscaped soil beds in the vicinity of GTCS2-S072 to help delineate the area of potentially elevated soil impact that may be replaced for precautionary purposes.

Samples to be taken from depths of 0-5cm (to be comparable to the Stage 2 samples) and from a depth of 30-40cm at each location to help define the spatial extent and depth of soil replacement. It is not expected that soils would need to be replaced to a depth greater than 30cm given the use of this area.

All the samples to be analysed for lead, with one composite sample to be collected and analysed for a wider suite suitable for soil characterisation for waste disposal purposes.

Following delineation of the area to be excavated, a method statement to be produced outlining the required steps for the safe removal and replacement of soils in this area. This is to include:

- Identification of area and volume of soil to be removed;
- Requirements for supervision and record-keeping of soil removal and validation of imported soils;
- Soil waste disposal requirements (including waste classification); and
- Validation reporting requirements to provide evidence of the completed works.

Following agreement of the soil removal scope with RBKC, AECOM will undertake one visit to the site area during the removal of soil and collect evidence of the soil removal. It is understood that the soil removal and replacement works will be managed by the relevant RBKC team.

A subsequent visit to the site (if at a different time to the soil removal) will be completed during the importation of fresh soils and one validation sample will be collected for every 50m³ of imported soils (assuming all from the same source) or a minimum of three samples. AECOM has assumed that RBKC will provide AECOM with the details of soil volume to be imported and the source of those soils in advance of the visit to collect validation samples. The validation samples will be tested for a suite of metals, asbestos screen, speciated PAHs and petroleum hydrocarbons (analysed for CWG carbon banding with aliphatic/aromatic split).

3.2.2 St Quintins CKG

The design scope includes a visit to the site area during the removal of soils from Plots 25 - 34 and collect evidence of the soil removal. It is understood that the soil removal and replacement works will be managed by the RBKC Kitchen Gardens team.

A subsequent visit to the site is required during the importation of fresh soils and one validation sample will be collected for every 50m³ of imported soils (assuming all from the same source) or a minimum of three samples. AECOM has assumed that RBKC will provide AECOM with the details of soil volume to be imported and the source of those soils in advance of the visit to collect validation samples. The validation samples will be tested for a suite of metals, asbestos screen, speciated PAHs and petroleum hydrocarbons (analysed for CWG carbon banding with aliphatic/aromatic split).

Following receipt of the validation results from the laboratory, a brief validation report to be prepared describing the works completed (including photos) and with the laboratory testing results, including certificates of origin (to be provided by RKBC) for the replacement soils.

3.2.3 Lancaster West Walkways

The design scope includes a visit to the site area during the removal of soils from the growing areas and collect evidence of the soil removal. This to include photographs and measurements to demonstrate that soil has been removed to the proposed depth of 60cm. It is understood that the soil removal and replacement works will be managed by the RBKC Kitchen Gardens team.

Observation and collection of evidence of the installation of a geotextile marker layer before observing and collecting evidence of the replacement soils being imported to the required 60cm thickness.

Once the soils have been imported one validation sample will be collected for every 50m³ of imported soils (assuming all from the same source) or a minimum of three samples. AECOM has assumed that RBKC will provide AECOM with the details of soil volume to be imported and the source of those soils in advance of the visit to collect validation samples. The validation samples to be tested for a suite of metals, asbestos screen, speciated PAHs and petroleum hydrocarbons (analysed for CWG carbon banding with aliphatic/aromatic split).

Following receipt of the validation results from the laboratory, a brief validation report to be prepared describing the works completed (including photos) and with the laboratory testing results, including certificates of origin (to be provided by RKBC) for the replacement soils.

The preparation of a site maintenance management plans for this area (full Lancaster West Walkways area, not just growing sites), to include a factual description of soil conditions at the Site, and appropriate precautionary exposure mitigation measures for workers involved in maintenance of these areas. It is intended that the management plan will be a brief document (up to 2 pages of text) including a plan illustrating the key points.

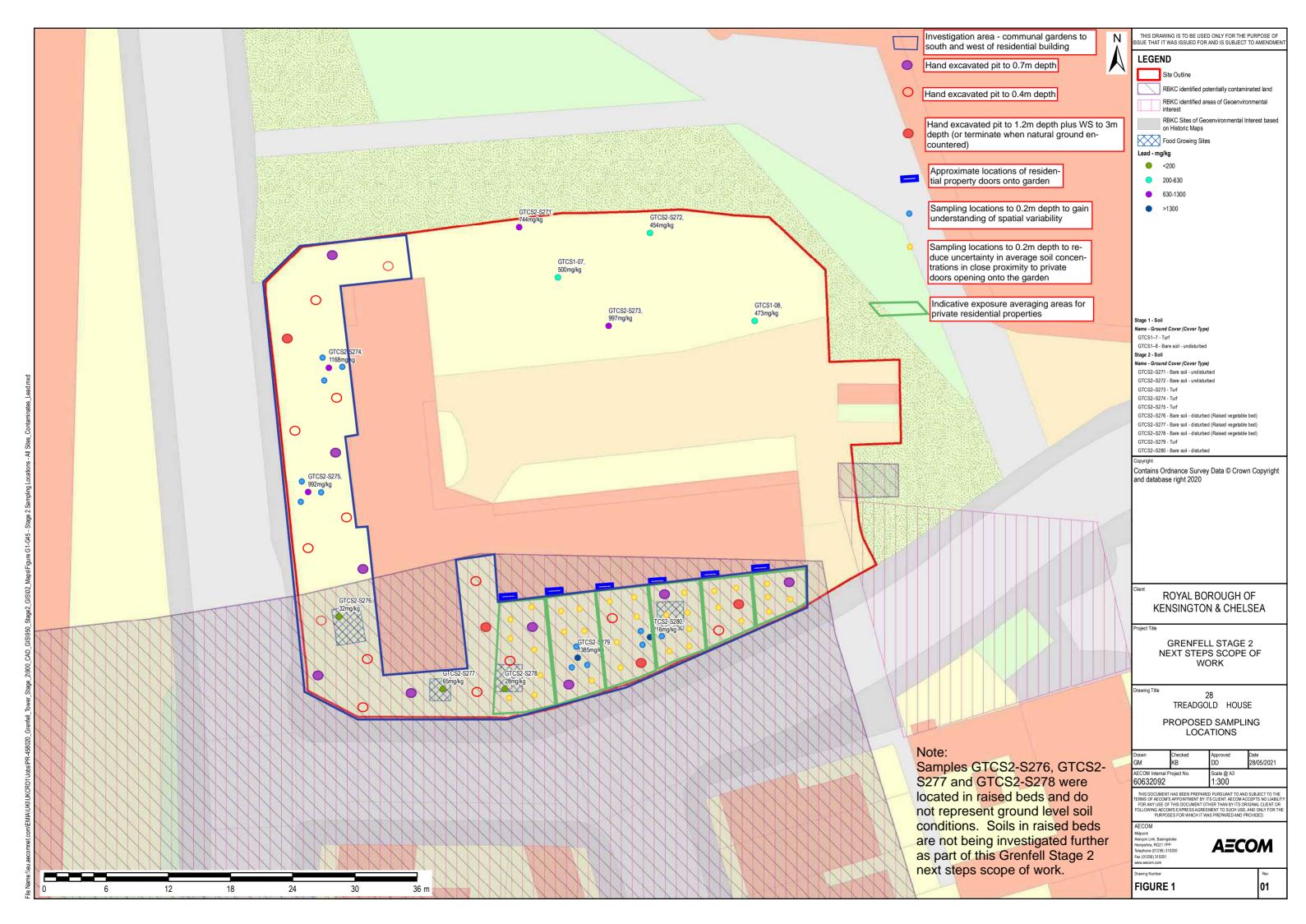
3.2.4 Portland Rd CKG and Waynflete Square

The preparation of site maintenance management plans for these areas, to include a factual description of soil conditions at the Site, and appropriate precautionary exposure mitigation measures for workers involved in maintenance of these areas. It is intended that the management plan will be a brief document (up to 2 pages of text) including a plan illustrating the key points.

3.2.5 Laboratory Analysis

The laboratory analysis for each of the sampling areas is shown in Table 5 below.

Table 6. Laboratory Analysis


Column heading	Sample Type	Sample Analysis	No of samples	QA/QC samples	
8. St Anne's and Avondale Primary School and Nursery	Existing soils for delineation purposes	Lead	6 (2 samples at each of 3 locations)	1 duplicate	
	Existing soils for waste classification	Metals suite, PAH-16, asbestos screen, petroleum hydrocarbons (CWG)	1 (for waste classification)		
	Imported soils for verification purposes	Metals suite, PAH-16, asbestos screen, petroleum	1 per 50 ³ or minimum of 3	1 duplicate	
		hydrocarbons (CWG)	Assume 3 for costing		
15. St Quintin's Community Kitchen Garden	Imported soils for verification purposes	Metals suite, PAH-16, asbestos screen, petroleum	1 per 50 ³ or minimum of 3	1 duplicate	
		hydrocarbons (CWG)	Assume 3 for costing		
21. Lancaster West Walkway Kitchen Garden	Imported soils for verification purposes	Metals suite, PAH-16, asbestos screen, petroleum	1 per 50 ³ or minimum of 3	1 duplicate	
		hydrocarbons (CWG)	Assume 5 for costing		

3.2.6 Reporting

For the precautionary works sites, the following reporting is required:

- For Avondale Primary School, a soil replacement method statement to be produced, with a brief validation letter report to be produced following the soil replacement works describing the works completed and the soil validation evidence. It is intended that this will be a brief document (1 page of text) including a plan illustrating the key points.
- For St. Quintin's CKG and Lancaster West Walkways CKG, a brief validation letter report to be produced following the soil replacement works describing the works completed and the replacement soil validation evidence.
- Management plans for Waynflete Square, Portland Road CKG and Lancaster West Walkways to provide information on the ground conditions for any construction or maintenance workers involved in below ground activities in these areas. The management plans to take into account the Health and Safety at Work Regulations and specifically related to asbestos CAR 2012, CAR-SOIL and the CL:AIRE JIWG Decision Support Tools for receptor ranking and work categories. It is intended that the management plan will be a brief document (up to 2 pages of text) including a plan illustrating the key points.

Appendix A Figures

Appendix B Sampling Procedure

Remediation Services

Grenfell Stage 2 Follow-on Scope – Soil Sampling Protocol

1. Purpose and Scope

This document describes the standard field procedure to be used by AECOM Remediation Services personnel to collect soil samples for the Grenfell Stage 2 Follow-on Scope of Work. It relates specifically to the collection of soil samples from the following types of location:

- Surface or near-surface soil (primarily 0-5cm)
- Sub-surface soil to a maximum depth of 120cm.
- Deep soils to a maximum depth of 300cm.

The soil samples are to be collected for subsequent laboratory analysis, and for the logging of the soil conditions encountered.

The objective is to collect a sample that is representative of the soil condition at the chosen sample location, including both the chemical composition and the geological consistency of the material.

Identified sample locations are indicated on Figure 1 and Figure 2 of the AECOM report 'Site Investigation Design, Grenfell Stage 2 Follow-up Work'.

The individual samples should be of ground that appears to be representative of the typical ground conditions in the area being sampled. If there is visual and/or olfactory evidence of localised potentially contaminated soil, an additional targeted sample should also be taken in a visually/olfactorily uncontaminated location.

In all cases, care needs to be taken not to change the chemistry of the sample. This means minimising the disturbance of the soil and minimising the time taken to take the sample as far as reasonably practicable. It also means storing and transporting the sample as per the guidelines below.

2. Procedure

- Decontaminate equipment. prior to first use each day and after collection of each sample, all equipment that comes into contact with samples should be decontaminated (see AECOM FP07 Decontamination of Equipment). This should involve the use of de-ionised water and plant-based detergent.
- 2. Prepare sample containers. Ensure that all necessary laboratory sample containers are available and correctly labelled. Minimum information should include project code, sample code (including depth if relevant), and time/date. Refer to laboratory chain of custody for full information requirements. If sample pre-coded barcodes are being used, check that barcodes refer to correct sample code.
- 3. Identify sample location. Sample locations are indicated in the site investigation design document. These are indicative locations and are subject to site conditions and constraints. If on the day of sampling specific locations are not accessible, alternative locations can be chosen. Consult with the Project Manager if this situation arises. Sampling locations should be consistent with the overarching aims of the sampling and consistent with the strategy set out in the site investigation design document.
- 4. Photograph sample location. Sampling locations should be photographed using a trial pit board / pre printed sheet with size and colour scales. The sample location code must be as pre-agreed with the Project Manager, and the sample location should be recorded using GPS coordinates and/or by surveying or by reference to a detailed site plan, so that the locations can be re-visited if necessary. If a GPS is used, its calibration must be checked by recording the coordinates of at least two known site features (such as corners of major buildings.
- Wear dedicated disposable gloves at each location. Use a dedicated clean pair of disposable nitrile (powder free) gloves should be worn at each location and all reasonable measures taken when conducting the work to avoid cross-contamination of samples.

- 6. **Damp down sample area.** If the ground is damp, no further damping down is required. If the ground is dry and dusty, damp down the ground before and during sampling using a hand-held water mister. This helps minimise the generation of airborne dust (and asbestos fibres if present) during sampling. Avoid excessive use of water which would make sample more difficult to handle.
- 7. **Clear sampling area**. Remove vegetation and surface debris that is not to be sampled. Sampling area should be a minimum of 30cm x 30cm square. Lay down an approximate 150cm x 50cm piece of clean unused plastic sheeting next to the sample location, on which the soil targeted for sampling will be placed.
- 8. **Confirm sampling depth requirements**. Samples need to be taken (dependent on specific location) at the following depths:
 - a. 0-5cm;
 - b. 10-20cm;
 - c. 30-40cm'
 - d. 60-70cm;
 - e. >1m
- Confirm requirement for duplicate sample at sample location. Duplicate samples are required at 5% of locations.
- 10. Excavate soils to reach target sampling depth. Using a decontaminated stainless-steel spade and/or fence-post scissor shovels a hand pit should be excavated to the depth of the next required sample at the specific location. Arisings from the hand excavation should be placed on the plastic sheeting with shallow to deep soils from left to right. If turf is present carefully remove as much soil as possible from the turf [note step 11 below for VOC samples a core should be taken through the turf for the VOC sample if possible]. The soil removed from the turf should form as much of the 0-5cm sample as possible.
- 11. **Collect soil sample.** Samples for VOC testing must be taken before the soil at the designated sampling depth is disturbed. The sample vial for VOC laboratory analysis should be filled immediately to minimise volatile losses and the sampling must be done in accordance with BS10176:2020. This requires the use of methanol containing vials and the use of dedicated miniature corers/plungers to extract the required soil plug. Where the soil is too coarse or non-cohesive for the use of the corer/plunger, soil should be sampled using the trowel. If the use of a trowel is required, ensure soil disturbance is kept to a minimum and that the soil is placed in the methanol containing vial as quickly as possible. **Refer to FP27 for further details on the specific method for VOC samples.** After the VOC sample has been taken, using a decontaminated unpainted stainless-steel hand trowel a square area 30cm x 30cm of soil should be removed from the required depth interval and placed on to the clean piece of plastic sheeting in preparation for taking the remainder of the required sample for laboratory analysis.
- 12. Mix soil sample and fill required pre-labelled laboratory sample containers. Plant roots and other debris should be removed as far as is reasonably practicable from the remainder of the sample. If the soil is sufficiently granular, the resulting soil should be thoroughly mixed on the sheet using the hand trowel before being placed in the required laboratory sample containers (see below for laboratory sample container requirements). See AECOM FP24 Soil Sample Volume Reduction and Sub-sampling by Cone and Quartering for a method for sample mixing. If the sample is cohesive and cannot be easily mixed this should be noted in the field records and the sample transferred to the sample containers without mixing.
- 13. Collect further samples at greater depth within hand excavated pit. Repeat Steps 10 to 12 until all samples have been collected from the multiple specified sampling depths at each location. Where samples are specified as >1m depth, this sample should be collected from the first encountered material that is in the judgement of the AECOM environmental engineer potentially representative of fill material within the historically backfilled brickfield. If natural London Clay is encountered at depths shallower than 1m then the sample specified at >1m is not required and the sampling location can be terminated when London Clay is encountered.
- 14. Excavate soils to 3m depth using a percussive (windowless sampling) drilling technique. At four specified locations shown on Figure 1 in the site investigation design, soils are to be excavated to a maximum depth of 3m or until natural London Clay soils are encountered, whichever is shallower. The drilling will be completed in accordance with the drillers method statements and soil 'cores' in plastic liners will be placed on the ground adjacent to the drilling location. The liner will be cut open safely by the drilling

operative in accordance with their method statement to expose the soil core for the AECOM engineer to log and sample.

- 15. Collect soil sample from drilling core liner. One sample will be collected in accordance with Steps 10 to 12 above from the first encountered material that is in the judgement of the AECOM environmental engineer potentially representative of fill material within the historically backfilled brickfield. The remainder of the core will be inspected to the full drilled depth and contingency samples will be collected where the AECOM environmental engineer judges that there is visual and/or olfactory evidence of potential contamination.
- 16. **Duplicate samples**. Where specified in the sampling plan these samples should be taken following the cone and quartering of the original sample, not by taking a further sample from the ground adjacent to the original sample.
- 17. **Record oversize fraction that could not be sampled**. Oversize fractions of sample that cannot be sampled in the required containers should be described in the field notes for each individual sample.
- 18. **Record logging description of soil**. A written record of the soil strata encountered should be made using AECOM's soil logging proforma. Soil descriptions should be in accordance with BS590:2015+A1:2020 and AGS guidance on the description of anthropogenic materials.
- 19. **Photograph sampled location and filled sample containers**. Photograph the filled sample containers alongside the sampled location. Use the same trial pit board / pre printed sheet with colour and size scale as per Step 4.
- 20. Secure samples for transportation. Samples should be securely packaged for transportation as soon as possible using the appropriate packaging containers provided by the laboratory. Samples should be stored and transported according to the analytical laboratory guidance provided, including sealing to prevent evaporative losses and maintenance of a stable temperature (generally in the range 0-4 degrees C where practicable to do so).
- 21. Reinstate sample location. Backfill sample hole using excavated soil and replace turf (if originally present). Compress soil lightly in layers by foot when backfilling to minimise future depression of soil in area of sampling (not applicable in raised beds used for growing crops). A bagged supply of certified topsoil should be available to complete reinstatement as necessary. If further reinstatement or turf replacement is required, this will be recorded in the site notes for subsequent implementation.
- 22. **Photograph reinstated location**. This photograph should aim to replicate that taken in Step 4 and should be sufficient to show that reinstatement is satisfactory.
- 23. Complete and check sample Labelling and Chain of Custody. Ensure all required information is provided on sample labels and chain of custody (see Step 2). Sample time and sample location are not entered on the Chain of Custody for duplicate samples. This information must be recorded with the site personnel's notes or on a detailed plan for future QA/QC procedures.

3. Responsibilities

It is the responsibility of the Project Manager to produce and communicate the Sampling Plan to field staff and ensure that this Sampling Protocol aligns with that Sampling Plan.

It is the responsibility of field staff to understand and comply with the Sampling Plan and this Sampling Protocol.

4. Equipment

- a. 1 x small clean stainless-steel (unpainted) trowel, spade, scissor shovels
- b. 1 x set of laboratory sample containers, including:
 - i. 1 x 950ml plastic tub.
 - ii. 1 x 270ml amber glass jar.
 - iii. 2 x 74ml amber glass jar (only where TPH CWG and VOCs required).
 - iv. 2 x 40ml glass liquid vial with methanol preservative (only where VOCs required)

- c. 1 x clean plastic sheeting
- d. 1 x chilled sample container
- e. 1 x container of de-ionised water (plus detergent if required)
- f. 1 x hand held or backpack-type water sprayer (if ground conditions are expected to be dry and dusty).
- g. 1 x disposable cleaning cloths
- h. 1 x camera
- i. 1 x digital device to record and submit field notes, soil log, and chain of custody

5. Terms and Definitions

Not required.

6. References

- AGS Guide to Environmental Sampling, Association of Geotechnical and Geoenvironmental Specialists, 2019
- b. AGS Guidance on the Description of Anthropogenic Materials A Practitioners' Guide, Association of Geotechnical and Geoenvironmental Specialists, 2018
- c. BS5930:2015+A1:2020 Code of practice for ground investigations, British Standards Institution, 2020
- d. BS 101075:2011+A2:2017 Investigation of potentially contaminated sites Code of practice, British Standards Institution, 2017
- e. BS 10176:2020 Taking soil samples for determination of volatile organic compounds (VOCs) Specification, British Standards Institution, 2020
- f. BS ISO 18400-102:2017 Soil quality Sampling. Part 102: Selection and application of sampling techniques, British Standards Institution, 2017
- g. BS ISO 18400-105:2017 Soil quality Sampling. Part 105: Packaging, transport, storage and preservation
 of samples, British Standards Institution, 2017
- h. BS ISO 18400-201:2017 Soil quality Sampling. Part 201: Physical pretreatment in the field, British Standards Institution, 2017
- i. BS ISO 18512:2007 Soil Quality Guidance on long and short-term storage of soil samples, British Standards Institution, 2007
- j. AECOM Soil Logging Guide version 2, 2019
- k. AECOM Field Procedure FP24 Soil Sample Volume Reduction and Sub-sampling by Cone and Quartering, Version 1.1, June 2019
- I. AECOM Field Procedure FP27 Soil Sampling for VOCs, Version 1.0, September 2020

7. Records

- a. Laboratory Chain of Custody
- b. Soil logging record
- c. Photographic record
- d. Daily field diary

8. Appendices

a. Attachment 1 - Soil logging forms

9. Change Log

List the change history pertaining to this document including if it was identified differently throughout its life-cycle:

Rev#	Change Date	Description of Change	Location of Change		

Attachment 1

Grenfell Stage 2 Follow-up Work - Soil Sampling Proforma

Project Reference:		Date:								
Sample Area Name:										
Sample Area No.:			Sampling Time :							
Weather Conditions:										
Field team:										
Sample Location ID							Sa	mples ta	ken (tick)	
					0 - 0.05m	0.1 - 0.2m	0.3 - 0.4m	0.5- 0.6m	0.6- 0.7m	>1m (specify precise depth interval)
	Photo	Photo	Photo	Photo	Photo			DI	notos	Photographer
	taken	taken	taken	taken	taken	Photo taken		Photos checked		name
Photo (tick in box when done)	0 - 0.05m	0.1 - 0.2m	0.3 - 0.4m	0.5- 0.6m	0.6- 0.7m	>1 (specify depth in	precise			
undisturbed sample location										
Samples excavated on plastic sheeting										
Samples in sampleware										
Sample location reinstated										
Sample log										
Observed CoPC:										
(note of any ash etc.)					ī					
Further reinstatement required (Yes or No)										
Sample location marked on map with measurements (tick)										
Tools decontaminated after sampling and reinstating (tick when decontaminated)										
Additional Notes										

Remediation Services

Soil Sampling for VOC Analysis Using Methanol Preservation

FP27

1. Purpose and Scope

The purpose of this procedure is to set out the default approach to sampling soil for VOC analysis in accordance with BS10176:2020. This procedure is only applicable to sampling for VOCs, not for other less volatile contaminants. It does include analysis for VOCs, BTEX (and potentially GRO, subject to laboratory capabilities and requirements).

The procedure is mainly applicable to fine to medium grained cohesive or moderately cohesive soils that can be sub-sampled using a miniature coring device. Exclusions are set out for coarse and non-cohesive soils.

The principal procedure adopts the use of methanol as a sample preservative. There are alternatives set out in BS10176, including the use of sodium hydrogen sulphate or water as preservatives, or the use of sealed cores.

It is imperative that the specific requirements of the chosen laboratory are known prior to the field work commencing as these requirements may vary from lab to lab.

2. Procedure

The steps below outline the procure to take when using 40ml methanol preservative sample vials. The alternative procedure for coarse soils is detailed in Section 3. Further detail on this option is provided in BS10176 Clause 6.6.

- 1. Safety. Methanol is a toxic and flammable liquid. Refer to the project-specific SHE Plan for further details. Note that these details should include the provision of appropriate PPE and access to washing and first aid facilities. Methanol containing vials should only be used in well ventilated areas. Additional care should be taken to avoid spillage/breakage of the methanol-containing vials. Surplus vials containing methanol should be returned with the samples to the originating laboratory in a safe and secure manner using the appropriate transportation packaging provided by the laboratory.
- 2. **Applicability**. Sampling using miniature corer-type device and 40ml vials should only be used if the maximum grain size is less than 3mm. For coarser materials, refer to the alternative method in section 3.
- 3. Set out sampling station. Establish a good working environment where the material to be sampled can be accessed, the sampling equipment can be laid out, the sampling equipment can be cleaned or decontaminated if necessary, the soil samples can be safely transferred to the required laboratory sample containers, the samples can be packaged for transportation, and all field notes and observations can be recorded. As a minimum this can be provided by a clean sheet of plastic laid on the ground next to the sampling location. Methanol has a high affinity for organic compounds so ensure that the sampling location and sampling station is not affected by external contamination sources such as vehicle exhaust emissions.
- 4. Check sample vials. Inspect the pre-weighed methanol-filled vials prior to use. Look for evidence of damage or obvious loss of methanol. Do not use any vials that appear damaged or appear to have lost some/all of the methanol. The vials should be pre-labelled with all the required sample identification information.
- 5. **Collect laboratory sample**. Using the required corer device supplied by the laboratory, extract the required core size/mass required by the laboratory. This could be 5-10g of soil check for lab-specific requirements. The sample should be collected immediately after accessing the soil from the windowless sample core, hand auger core or from breaking open a bulk soil sample from an excavator bucket. The pre-filled vial should be opened only when the transfer of the sample core is ready to avoid methanol losses to atmosphere. The miniature corers are typically designed to take either 5g or 10g samples and should have markings to indicate when the required sample volume/mass has been collected. Take care to avoid splashing the methanol when transferring the soil to the vial. Clean the threads on the vial top and seal the vial with the septum cap as soon as possible. Do not add any additional labels or markings to the vial.

- 6. **Duplicate sample**. Duplicate samples are required for every sample. Not all of these need to be tested (refer to the project-specific sampling plan for details on the number of duplicates requiring testing). These duplicate samples should be collected as per the original sample.
- 7. **QA/QC samples**. In addition to duplicate samples, field and trip blanks are required. Refer to the project-specific sampling plan for further details.
- 8. **Sample storage**. Immediately after the sample has been taken the vial should be placed in the required chilled storage/transportation container. The target storage temperature according to the British Standard is 4+/-2°C. It is recognised that this is impractical in most instances. The vials must remain upright during transit this is best achieved using dedicated packaging inserts.
- 9. **Collect non-preserved sample for moisture content**. Collect a separate sample for soil moisture content using the sample container specified by the laboratory. No additional VOC-specific considerations are necessary. The sample can be obtained using the conventional method (i.e. a trowel).
- 10. **Decontaminate**. Decontaminate re-usable sampling equipment using de-ionised water and a plant-based detergent or Decon90.
- 11. Field notes and chains of custody. Complete all necessary field notes and chain of custody.

3. Alternative procedure for coarse soils

3.1 Fine and medium grained non-cohesive soils

For fine and medium grained non-cohesive soils for which the corer devices provide poor recovery, use a traditional sampling device (for example a small narrow width clean stainless-steel trowel) to collect the required soil size and transfer to the methanol-containing vial. Soil disturbance when collecting the sample should be kept to a minimum and transfer to the vial should be done as quickly as possible to minimise volatile losses to atmosphere. Use an electronic balance to determine when the required sample mass has been achieved. Laboratories are typically requiring 5g soil to 10ml of methanol (a ratio of 1:2 compared to the ratio of 1:1 required by the standard and reflects the fact that a 1:1 ratio (i.e. addition of 10g of soil) does not provide adequate coverage of methanol over the soil sample).

3.2 For coarse grained materials

For material with a grain size that does not fit into a 40ml glass vial, Annex C of BS10176 permits the use of unpreserved amber glass jars. In using this alternative approach, volatile losses to atmosphere should be minimised as far as reasonably practicable by:

- Sample the material as soon as reasonably practicable after extraction from the sampling point.
- Avoid incorporation of roots or stones as far as possible.
- Fill container as tightly as possible and compact to minimise headspace within the container.
- Keep samples at low temperatures and out of direct sunlight.
- Ship samples to the laboratory as soon as possible after sampling.

4. Equipment

- a. 1 x core sampler
- b. 1 x small clean stainless-steel (non-painted) trowel
- c. 1 x electronic weighing scale
- d. 2 x pre-filled methanol vials
- e. 1 x 60g amber glass jar for the determination of moisture content
- f. 1 x square of clean plastic sheeting
- g. 1 x camera

- h. 1 x electronic device for recording digital field notes and chain of custody
- i. 1 x container of de-ionised water (and detergent if required)
- j. 1 x disposable cleaning cloths
- k. 1 x chilled sample storage container

5. Terms and Definitions

a. Soil Includes natural soils, made ground and fill material

b. VOC Volatile Organic Compound

6. References

- AGS Guide to Environmental Sampling, Association of Geotechnical and Geoenvironmental Specialists, 2019
- b. AGS Guidance on the Description of Anthropogenic Materials A Practitioners' Guide, Association of Geotechnical and Geoenvironmental Specialists, 2018
- c. BS5930:2015+A1:2020 Code of practice for ground investigations, British Standards Institution, 2020
- d. BS 101075:2011+A2:2017 Investigation of potentially contaminated sites Code of practice, British Standards Institution, 2017
- e. BS 10176:2020 Taking soil samples for determination of volatile organic compounds (VOCs) Specification, British Standards Institution, 2020
- f. BS ISO 18400-102:2017 Soil quality Sampling. Part 102: Selection and application of sampling techniques, British Standards Institution, 2017
- g. BS ISO 18400-105:2017 Soil quality Sampling. Part 105: Packaging, transport, storage and preservation of samples, British Standards Institution, 2017
- h. BS ISO 18400-201:2017 Soil quality Sampling. Part 201: Physical pretreatment in the field, British Standards Institution. 2017
- i. BS ISO 18512:2007 Soil Quality Guidance on long and short-term storage of soil samples, British Standards Institution, 2007
- j. AECOM Soil Logging Guide version 2, 2019
- k. AECOM Field Procedure FP03, Soil Sampling, Version 2.1m, December 2018
- I. AECOM Field Procedure FP24 Soil Sample Volume Reduction and Sub-sampling by Cone and Quartering, Version 1.1, June 2019

7. Records

List of the official records that are generated and support this procedure. List using 'Alpha List' option from the AECOM Procedure List dropdown on the Home tab.

- a. Laboratory Chain of Custody
- b. Soil logging record
- c. Photographic record
- d. Daily field diary

8. Appendices

a. Attachment 1 – Examples of sampling corer devices and use.

9. Change Log

List the change history pertaining to this document including if it was identified differently throughout its life-cycle:

Rev#	Change Date	Description of Change	Location of Change

Attachment 1 (courtesy of ALS)

EasyDraw® Syringe Sampling Kit for Methanol Preservation

The EasyDraw Syringe (EDS) sampling kit allows 5 g of soil to be collected and immediately extruded into a pre-weighed, pre-preserved 40 ml VOC vials containing 10 ml of methanol.

EDS sample equipment and containers

- 1 x EDS sampler
- 2 x pre-filled methanol vials
- 1 x 60g jar for the determination of moisture content

Note - the blue PowerStop Handle is not supplied by the laboratory

Collecting a soil sample

Step 1

Insert the syringe into the 5 g position. Use the heavy position for dense clay, the light position for sandy soil and the medium position for all other soil types.

Step 2

Push the EDS into freshly exposed soil. Continue pushing until the soil inside the syringe has forced the plunger to the stopping point. Wipe all debris from the outside of the EDS. The intact core of soil should be flush with the mouth of the sampler. Remove any excess soil that extends beyond the mouth of the sampler.

Step 3

Remove the syringe from the PowerStop Handle. Insert the syringe into the open end of a pre-tared, pre-filled methanol vial. Extrude the sample into the vial by pushing the syringe plunger.

Step 4
Repeat the procedure above for the second vial.

Step 5

Place the vials in the foam inserts provided for storage and transportation.

Terra Core® Sampling Kit for Methanol Preservation

The Terra Core kit is provided and allows 5 g of soil to be collected and immediately extruded into a pre-weighed, pre-preserved 40 ml VOC vials containing 10 ml of methanol.

Terra Core sample equipment and containers

- 1 x Terra Core sampler
- 2 x pre-filled methanol vials
- 1 x 60g jar for the determination of moisture content

Collecting a soil sample

Step 1

With the plunger seated in the handle, push the Terra Core sampler into exposed soil until the sample chamber is filled. A filled chamber will deliver 5 grams of soil.

Step 2
Wipe all soil from the outside of the Terra Core sampler. The soil plug should be flush with the mouth of the sampler.
Remove any excess soil that extends beyond the mouth of the sampler.

Step 3

Rotate the plunger that is seated in the handle top 90° until it is aligned with the slot in the body. Place the mouth of the sampler into the 40 ml vial and extrude the sample by pushing the plunger down again. Quickly place the cap on the 40 ml vial.

Step 4
Repeat the procedure above for the second vial.

Step 5

Place the vials in the foam inserts provided for storage and transportation.

CHAIN	I OF CL	USTO	DY																										
CLIENT:													tronic File Re		SAM	PLER:													┥
ADDRESS												please below	e select file for	rmat	MOB														element
NBBILLOC												EQUIS				IL REF	בא ה												
PROJECT	MANAGER	R (PM)·										CROS				EPOR													\neg
MOBILE:		<u>· (, .</u>										CLIEN						differen	it to rep	ort)									
PROJECT	ID:											1	please also fill in		1	TE NU							P.O	No:					Chain of Custody sheet page of
SITE:												AGS S	SAMP_TYPE & P REF below)						LYSIS	REQUI	IRED	includ	-		nam:	es	_		
	OUND - plea	ase tick						All water	rs - tick for	FOR LABOU	RATORY USE ONL	Y			Ast	oestos	s						TŤ		Т			\Box	SOILS -We are MCERTS accredited for
10 DAY		4 DAY		\Box	Othe	er	\prod	sample	les to be shaken or		COOL BOX TEMP.(i		n:		_	risk								1					samples predominantly made up of sand,
5 DAY		3 DAY				-	ш		ettled		ECIEPT CONDITION				П	\Box	7												loam and clay (no other matrices). Please request an MCERTS report if required.
0 5711			W=Grc	oundV	Vater,	SW=Su	rfaceW	ater, L/E	=Leacha		OW=OtherWater		oduct/Oil)		1 1									1					WATERS - we are accredited for surface and
Sample ID						AGS SAMP TYPE	SAMP		n Settled	S/GW/SW /L/E/OW/P	Date	Time	Depth in Metres	Preserv ation	High	Medium	Low												groundwaters (leachates and effluents are accredited for some tests, please see UKAS schedule). Please tick whether analysis is required on settled or shaken samples
																											floor		
						<u> </u>				'			'																
										<u> </u>			<u> </u>													ĪL	Ī		
						T				Γ'	ſ <u></u>	<u> </u>	/'	Γ				T_{\perp}		\Box		L	\top			L	Ī	T_!	
										_																			
						Ī				'																			
						1				'								7 1			T	\top					T	\neg	
						1												7 1				\top					T	$\neg \neg$	
						1																							
						1																							
						1																							
						1																							
																							\Box		T		T		
		\Box				1											Т				\top		$\dagger \dagger \dagger$				\top	\top	
		\Box				1											Т				\top		$\dagger \dagger \dagger$				\top	\top	
		\Box				1											Т						+		+	\top	\top		
						Ι																							
	SHED BY:														REC	IEVED	BY:												METHOD of SHIPMENT
Name: Of:													Date:		Name: Date:				Consignment note No:										
Of:											now if samples a		Time:		Of:									T	ime:				Courier Company:

aecom.com

Appendix C Tables

- C.1 Table C1 Soil Sampling Locations
- C.2 Table C2 Duplicate Analysis

rea !	Location ID	Final Depth (m)	Samples taken (m)	Scheduled Analysis	<u>Duplicate</u>	Ground Cover	<u>Plot</u>	Any Change from the Detailed Design
	GTCS2-S274	0.02	0-0.02	Stage 2 'Suite 1' (PAHs, lead, asbestos), lead bioaccessibility		Turf	Plot 10	Stage 2 investigation sample
	GTCS2-S275	0.02	0-0.02	Stage 2 'Suite 1' (PAHs, lead, asbestos)		Turf	Plot 8	Stage 2 investigation sample
- 1	GTCS2-S279	0.02	0-0.02	Stage 2 'Suite 1' (PAHs, lead, asbestos), lead bioaccessibility		Turf	Plot 5	Stage 2 investigation sample
	GTCS2-S280	0.05	0-0.05	Stage 2 'Suite 1' (PAHs, lead, asbestos), lead bioaccessibility	DUDOS (I. L.O. L. L.)	Bare soil	Plot 4	Stage 2 investigation sample
	TH101	0.4	0-0.05 0.1-0.2	Asbestos and 9 metals (including lead) Lead	DUP01 (lead & asbestos)	Partial turf	Plot 10	
			0.3-0.4	Lead				
-	TH102	0.7	0-0.05	Asbestos and 13 metals (including lead)		Bare soil	Plot 10	
	111102		0.1-0.2	Lead		Bare 3011	110110	
			0.3-0.4	Lead				
			0.6-0.7	Lead				
F	TH103	0.4	0-0.05	9 metals (including lead)		Partial turf	Plot 10	
			0.1-0.2	Lead and asbestos				
L			0.3-0.4	Lead				
	TH104	1.2	0-0.05	Asbestos, 13 metals (including lead) and PAH-16		Partial turf	Plot 10	
			0.3-0.4	13 metals (including lead) and PAH-16				
			0.6-0.7 1.1-1.2	13 metals (including lead) and PAH-16 Asbestos, 13 metals (including lead) and PAH-16	DUP02 (13 metals (including Lead) and	PAH-16)		
-	TH105	0.2	0-0.05	Lead and asbestos		Turf	Not included in plot	
	11100	0.2	0.1-0.2	Lead and aspestos		Tun	averaging	
- 1	TH106	0.2	0-0.05	Lead and asbestos	- 	Turf	Not included in plot	<u> </u>
	00	0.2	0.1-0.2	Lead and aspestos		Tull	averaging	
ŀ	TH107	0.2	0-0.05	Lead and asbestos	<u> </u>	Turf	Not included in plot	
			0.1-0.2	Lead			averaging	
F	TH108	0.4	0-0.05	Lead and asbestos		Turf	Plot 9	
			0.1-0.2	13 metals (including lead)				
			0.3-0.4	Lead				
- 1	TH109	0.4	0-0.05	Asbestos, 9 metals (including Lead), lead bioaccessibility		Bare soil	Plot 9	
			0.1-0.2	Lead and lead bioaccessibility				
ļ.	TH110		0.3-0.4	Lead		2	DI LO	
	IHIIO	0.7	0-0.05 0.1-0.2	9 metals (including lead) Lead and asbestos		Partial turf	Plot 9	
			0.3-0.4	Lead and aspestos				
			0.6-0.7	Lead				
+	TH111	0.2	0-0.05	Lead and asbestos		Partial turf	Not included in plot	
			0.1-0.2	Lead		r di tidi tari	averaging	
ŀ	TH112	0.2	0-0.05	Lead and asbestos		Partial turf	Not included in plot	
			0.1-0.2	Lead			averaging	
Ī	TH113	0.2	0-0.05	Lead and asbestos		Partial turf	Not included in plot	
			0.1-0.2	Lead			averaging	
- 1	TH114	0.4	0-0.05	Asbestos and 13 metals (including lead)		Partial turf	Plot 8	
			0.1-0.2	Lead				
I.			0.3-0.4	Lead				
	TH115	0.4	0-0.05 0.1-0.2	Asbestos and 9 metals (including Lead)		Turf	Plot 8	
			0.3-0.4	Lead Lead				
+	TH116	0.7	0-0.05	Lead and asbestos		Turf	Plot 8	
	111110		0.1-0.2	Lead	DUP03 (lead)	Tun	11010	
			0.3-0.4	Lead	()			
			0.6-0.7	Lead				
Ī	TH117	0.4	0-0.05	Lead and asbestos		Partial turf	Plot 7	
			0.1-0.2	Lead				
L			0.3-0.4	Lead				
ľ	TH118	0.7	0-0.05	Asbestos and 9 metals (including lead)		Bare soil	Plot 7	
			0.1-0.2	Lead				
			0.3-0.4	Lead Lead				
- 1	TH119	0.4	0-0.05	Lead and asbestos		Turf	Plot 7	
	10119	0.4	0.1-0.2	13 metals (including lead)		Tun	PIOL 7	
			0.3-0.4	Lead				
+	TH120	0.4	0-0.05	Lead and lead bioaccessibility		Bare soil	Plot 7	
			0.1-0.2	Lead				
			0.3-0.4	Lead and asbestos	DUP04 (lead & asbestos)			
ŀ	TH121	0.7	0-0.05	Asbestos and 9 metals (including lead)		Partial turf	Not included in	
			0.1-0.2	Lead			averaging area	
			0.3-0.4	Lead				
L			0.6-0.7	Lead				
ľ	TH122	0.4	0-0.05	Asbestos and 9 metals (including lead)	DUP05 (lead)	Partial turf	Plot 6	
			0.1-0.2	Lead				
L	TH123		0.3-0.4	Lead		D-41 11 C	81.17	
			IU-U D5	Lead and asbestos	(Partial turf	Plot 6	1

1972 1974	Sample Location Area	Location ID	Final Depth (m) Samples taken (m)	Scheduled Analysis	<u>Duplicate</u>	Ground Cover	Plot	Any Change from the Detailed Design
1		TH124	0.2	0-0.05	Lead and asbestos		Bare soil	Plot 6	
1000 1000									
1972 1972		TH125	0.4	0-0.05			Turf	Plot 6	
Professor Prof				0.1-0.2					
1.12		TU12/	0.2				D!!	DI-+ /	
1977 1978		IH126	0.2				Bare soil	PIOT 6	
17.00 10.0		TH127	0.2				Turf	Plot 6	
100 100			0.2				- 1011	11010	
1970 10 20 20 20 20 20 20 2		TH128	0.2	0-0.05	Asbestos and 13 metals (including lead)		Bare soil	Plot 6	
Professor Prof					Lead				
Part		TH129	0.2				Partial turf	Plot 6	
Post									
1982 Seed		IH130	0.7	0-0.05			Turf	Plot 6	
1962 Seed and calculation 1971 1972 1972 1972 1972 1973 1974									
Process Proc									
10 10 10 10 10 10 10 10		TH131	0.2				Turf	Not included in plot	
10 10 10 10 10 10 10 10					Lead				
Principal Prin		TH132	0.2	0-0.05	Lead and asbestos		Turf	Not included in plot	
100 100									
Pit 5		IH133	0.2				Turf	Plot 5	
1		TU12/	0.7			_	Paro soil	Dio+ F	
1998 1998		тП 134	U. /	0-0.03		+	pare son	ri0t 5	
1986 1986									
10 10 10 10 10 10 10 10									
Part		TH135	0.2	0-0.05	Lead and asbestos		Bare soil	Plot 5	
1985 1985									
Hispan Color Col	rse	TH136	0.2				Turf		
Hispan Color Col	훈	TU127	0.3				Tuef		
Hispan Q	8	IH137	0.2				iuri	PIOL 5	
Hispan Color Col	adg	TH138	0.2				Turf	Plot 5	
Phi	Ţ		0.2	0.1-0.2			- 1011	11010	
TH140		TH139	0.2	0-0.05	Lead and asbestos		Turf	Plot 5	
Hi						DUP06 (lead)			
Hit41		TH140	0.2				Turf	Plot 5	
Hi142									
Hit2		IH141	0.2	0-0.05			Bare soil	Plot 4	
Accorder destruction was encountered at 0.75m and the executation was executation was encountered at 0.75m and the executation was encountered at 0.75m and the executation was executation was executation was executation was encountered at 0.75m and the executation was executation was executation was executation was executation was executation was executed by a floating proposed to be at location fills, the windows amount was executed by a floating proposed to be at location fills, which was encountered at 0.75m and the executation was executed by a floating proposed to be at location fills was executed by a floating proposed to be at location fills was executed by a floating proposed to be at location fills with execution was executed by a floating proposed to be at location fills which was executed by a floating proposed to be at location fills with execution fills with execution fills with execution fills was executed by a floating proposed to be at location fills with execution fills with execu		TH1/12	0.75	0.1-0.2	Lead		Turf	Plot 4	The scape intended for the excavation to reach 1.2m depth
1									A concrete obstruction was encountered at 0.75m and the excavation was terminated.
Hi									at location TH145, however this was moved due to on-site
10		TH143	0.2			+	Turf	Plot 4	constraints (a service).
TH144			0.2			<u> </u>		.101.4	
TH145		TH144	0.2	0-0.05			Turf	Plot 4	
1-10-2									
1146		TH145	0.4				Bare soil	Plot 4	
TH146									NOTE ON MAP - Clear circle, red outline
D1-0.2 Lead		TH1//6	0.2			+	Rare soil	Plot 4	
TH147		111140	U.Z	0.1-0.2			Date 2011	PIUL 4	
Direction Dire		TH147	0.2				Bare soil	Plot 4	
D1-0.2 Lead DUPO7 (lead & asbestos) Bare soil Not included in plot averaging									
TH149		TH148	0.2				Bare soil		
D1-0.2									
TH150		TH149	0.2			DUP07 (lead & asbestos)	Bare soil		
D1-0.2		TUITO	0.3				D!!		
TH151		ILION	U.Z			+	pare son		
0.1-0.2		TH151	0.2			+	Bare soil		
0.1-0.2 Lead				0.1-0.2					
TH153		TH152	0.2	0-0.05			Bare soil	Plot 3	
0.1-0.2 Lead									
TH154 0.2 0-0.05 Lead and asbestos Partial turf Plot 3		TH153	0.2				Turf	Plot 3	
0.1-0.2 Lead TH155 0.2 0-0.05 Lead, asbestos and lead bioaccessibility Turf Plot 3		TUIT					Dentiel tone	Di i o	
TH155 0.2 0-0.05 Lead, asbestos and lead bloaccessibility Turf Plot 3		1H154	0.2			<u> </u>	rartiai turf	Plot 3	
0.1-0.2 13 metals (including lead) and lead bioaccessibility		TH155	0.2			1	Turf	Plot 3	
		.11133	0.2		13 metals (including lead) and lead bioaccessibility	 		1101.3	

Table C1 Details of Soil Sampling Locations

Location IE	Final Depth (m)	Samples taken (m)	Scheduled Analysis	<u>Duplicate</u>	Ground Cover	Plot	Any Change from the Detailed Design
TH156	0.7	0-0.05	Lead		Bare soil	Plot 3	
		0.1-0.2	Lead and asbestos				
		0.3-0.4	Lead				
		0.6-0.7	Lead				
TH157	0.2	0-0.05	Lead and asbestos		Partial turf	Plot 3	
		0.1-0.2	Lead				
TH158	0.2	0-0.05	Lead and asbestos		Turf	Plot 2	
		0.1-0.2	Lead				
TH159	0.2	0-0.05	Asbestos and 13 metals (including lead)		Partial turf	Plot 2	
		0.1-0.2	Lead				
TH160	0.2	0-0.05	Lead and asbestos		Turf	Plot 2	
		0.1-0.2	Lead				
TH161	0.9	0-0.05	Asbestos and 13 metals (including lead) and PAH-16		Turf	Plot 2	The scope intended for the excavation to reach 1.2m dept
		0.3-0.4	13 metals (including lead) and PAH-16	DUP08 (lead)			A concrete obstruction was encountered at 0.75m and the
		0.6-0.7	13 metals (including lead) and PAH-16	. ,			excavation was terminated.
TH162	0.4	0-0.05	Asbestos and 9 metals (including lead)		Bare soil	Plot 2	
		0.1-0.2	Lead				NOTE ON MAP - Clear circle, red outline
		0.3-0.4	Lead				
TH163	0.2	0-0.05	Lead and asbestos		Bare soil	Plot 2	
		0.1-0.2	Lead				
TH164	0.2	0-0.05	Lead and asbestos		Bare soil	Plot 1	
		0.1-0.2	13 metals (including lead)				
TH165	0.2	0-0.05	Lead and asbestos		Turf	Plot 1	
		0.1-0.2	Lead				
TH166	0.2	0-0.05	Lead and asbestos		Turf	Plot 1	
		0.1-0.2	Lead				
TH167	0.7	0-0.05	9 metals (including lead)		Turf	Plot 1	
		0.1-0.2	Lead				
		0.3-0.4	Lead				
		0.6-0.7	Lead and asbestos				
TH168	0.2	0-0.05	Lead and asbestos	DUP09 (lead & asbestos)	Bare soil	Plot 1	
		0.1-0.2	Lead				
TH169	0.4	0-0.05	9 metals (including lead) and lead bioaccessibility		Partial turf	Not included in	
		0.1-0.2	Lead			averaging area	
		0.3-0.4	Lead and asbestos				
TH170	1.07	0-0.05	Asbestos, 13 metals (including lead) and PAH-16		Bare soil	Not included in	The scope intended for the excavation to reach 1.2m dept
		0.3-0.4	13 metals (including lead) and PAH-16			averaging area	A concrete obstruction was encountered at 0.75m and the
		0.6-0.7	13 metals (including lead) and PAH-16				excavation was terminated.

Table C1 Details of Soil Sampling Locations

Sample Location Area	Location ID	Final Depth (m)	Samples taken (m)	Scheduled Analysis	<u>Duplicate</u>	Ground Cover	<u>Plot</u>	Any Change from the Detailed Design
	TH171	0.05	0-0.05	Lead		Bare soil	Plot 7	
	TH172	0.05	0-0.05	Lead		Partial turf	Plot 7	
	TH173	0.05	0-0.05	Lead		Turf	Plot 7	
	TH174	0.05	0-0.05	Lead		Partial turf	Plot 8	
	TH175	0.05	0-0.05	Lead		Turf	Plot 8	
	TH176	0.05	0-0.05	Lead		Partial turf	Plot 8	
	TH177	0.05	0-0.05	Lead		Turf	Plot 8	
	TH178	0.05	0-0.05	Lead		Partial turf	Plot 8	
	TH179	0.05	0-0.05	Lead		Turf	Plot 8	An additional 20 samples were added to the scope because
	TH180	0.05	0-0.05	Lead		Partial turf	Plot 8	during sampling it became apparent that the western side of
	TH181 TH182	0.05	0-0.05	Lead Lead		Partial turf Partial turf	Plot 9 Plot 9	the garden is used more frequently by residents than previously thought.
	TH183	0.05	0-0.05	Lead		Partial turf	Plot 9	previously thought.
	TH184	0.05	0-0.05	Lead		Partial turf	Plot 9	
	TH185	0.05	0-0.05	Lead		Partial turf	Plot 9	
	TH186	0.05	0-0.05	Lead		Partial turf	Plot 9	-
	TH187	0.05	0-0.05	Lead		Partial turf	Plot 10	-
	TH188	0.05	0-0.05	Lead		Turf	Plot 10	
	TH189	0.05	0-0.05	Lead		Turf	Plot 10	=
	TH190	0.05	0-0.05	Lead		Bare soil	Plot 10	
	GTCS1-23	0.05	00			Bare soil	N/A	
				Metals (including lead), VOCs, SVOCs, PAH-16, PCBs, chlorinated &				Stage 1 investigation sample
APG Stage 1			0-0.05	brominated dioxins and furans, organophosphorus and brominated				99
samples	GTCS1-24	0.05		flame retardants, PBBs, tetrabromobisphenol A,		Turf	N/A	
Samples				hexabromocyclododecane (1,2,5,6,9,10-), isocyanates, cyanides, asbestos,				Stage 1 investigation sample
			0-0.05	synthetic vitreous fibres (SVF) / man-made mineral fibres (MMMF), TOC				Stage i investigation sample
	APG101	1	0-0.05	Lead		Turf	N/A	The scope did not indicate for a sample to be taken and
	APGIOI	'	0.1-0.2	Lead		- Iuii	IN/A	scheduled at 0.9m. Samples were taken when onsite due to
			0.5-0.6	Asbestos, 13 metals (including lead) and PAH-16		-		a change in the type of material in the inspection pit below
			0.9-1	Asbestos, 13 metals (including lead) and PAH-16				0.6mbql.
	APG102	0.2	0-0.05	Asbestos, 13 metals (including lead) and PAH-16		Turf	N/A	o.ombg.
	7.11 0 102	0.2	0.1-0.2	Lead			1077	
	APG103	0.2	0-0.05	Lead		Bare soil	N/A	
			0.1-0.2	Asbestos, 13 metals (including lead) and PAH-16	DUP10 (lead, asbestos, 13 metals & PAH-16)			
	APG104	0.2	0-0.05	Lead	,	Turf	N/A	
			0.1-0.2	Lead				
	APG105	0.2	0-0.05	Asbestos, 13 metals (including lead) and PAH-16		Bare soil	N/A	
			0.1-0.2	Lead				
	APG106	1	0-0.05	Lead		Bare soil	N/A	
			0.1-0.2	Lead				
			0.5-0.6	Asbestos, 13 metals (including lead) and PAH-16				
			0.9-1.0	Sample not scheduled for testing				
S.	APG107	0.2	0-0.05	Lead		Turf	N/A	
de			0.1-0.2	Lead				
Avondale Park Gardens	APG108	0.2	0-0.05	Asbestos, 13 metals (including lead) and PAH-16		Bare soil	N/A	
붍			0.1-0.2	Lead				
6 P.	APG109	0.2	0-0.05	Lead		Bare soil	N/A	
dale			0.1-0.2	Asbestos, 13 metals (including lead) and PAH-16				
ŭo.	APG110	0.2	0-0.05	Lead		Turf	N/A	
₹			0.1-0.2	Asbestos, 13 metals (including lead) and PAH-16				
	APG111	0.2	0-0.05	Lead		Turf	N/A	
			0.1-0.2	Lead				
	APG112	0.2	0-0.05	Asbestos, 13 metals (including lead) and PAH-16		Turf	N/A	
l			0.1-0.2	Lead				
l	APG113	1	0-0.05	Lead		Turf	N/A	
			0.1-0.2	Lead		_		
			0.5-0.6	Asbestos, 13 metals (including lead) and PAH-16				
			0.9-1.0	Sample not scheduled for testing				
	APG114	1	0-0.05	Lead	DUP11 (lead)	Turf	N/A	The scope did not indicate for a sample to be taken and
			0.1-0.2	Lead				scheduled at 0.9m. Samples were taken when onsite due to
l			0.5-0.6	Asbestos, 13 metals (including lead) and PAH-16				a change in the type of material in the inspection pit below
			0.9-1	Asbestos, 13 metals (including lead) and PAH-16				0.6mbgl.
	APG115	0.2	0-0.05	Lead		Turf	N/A	
			0.1-0.2	Lead				
1	APG116	0.2	0-0.05	Lead		Turf	N/A	
	1		0.1-0.2	Asbestos, 13 metals (including lead) and PAH-16				

Notes: N/A

Individual plot subdivisions were not required for Avondale Park Gardens communal garden.

Table C2 Relative Percentage Difference Calculations for Duplicate Samples

Sheet 1 of 3

Field Duplicates (soil)		Lab Report Number	21/17365/34	21/17365/12		21-18548-2-031221	21-18548-2-031221		21-18548-2-031221	21-18548-2-031221		21-18548-2-031221	21-18548-2-031221	
		Field ID	TH101	DUP01	RPD	TH104	DUP02	RPD	TH116	DUP03	RPD	TH120	DUP04	RPD
		Depth	0-0.05	0-0.05		0.6-0.7	0.6-0.7		0.1-0.2	0.1-0.2		0.3-0.4	0.3-0.4	
		Sampled Date/Time	02/11/2021	02/11/2021		01/11/2021	01/11/2021		02/11/2021	02/11/2021		01/11/2021	01/11/2021	
Parameter	Units	Method Detection Limit												
PAH	Units	Wethod Detection Limit									1		I	т —
Naphthalene	mg/kg	0.04	-	-	-	<0.04	<0.04	0	_	-	_	_	_	-
Acenaphthylene	mg/kg	0.04	-	-	-	<0.03	<0.03	0	-	-	Ė	-	-	
Acenaphthene	mg/kg	0.05		_	-	<0.05	<0.05	0	_	-	-			
Fluorene	mg/kg	0.04	-	-	-	<0.04	<0.04	0	_	-		_	_	
Phenanthrene	mg/kg	0.03		_	-	0.26	0.19	31			-			
Anthracene	mg/kg	0.04	-	-	-	0.1	0.08	22	-	-	-	-	_	-
Fluoranthene	mg/kg	0.03	-	-	-	0.51	0.39	27	-	-	-	-	_	-
Pyrene	mg/kg	0.03	_	-		0.43	0.34	23	-	-	_	-	_	-
Benz(a)anthracene	mg/kg	0.06	-	-	-	0.26	0.21	21	-	-	-	-	-	-
Chrysene	mg/kg	0.02	-	-	-	0.26	0.2	26	-	-	-	-	-	-
Benzo(a) pyrene	mg/kg	0.04	-	-	-	0.2	0.15	29	-	-	-	-	-	-
Indeno(1,2,3-c,d)pyrene	mg/kg	0.04	-	-	-	0.15	0.11	31	-	-	-	-	-	-
Dibenz(a,h)anthracene	mg/kg	0.04	-	-	-	<0.04	<0.04	0	-	-	-	-	-	-
Benzo(g,h,i)perylene	mg/kg	0.04	-	-	-	0.14	0.1	33	-	-	-	-	-	-
Benzo(b)fluoranthene	mg/kg	0.05	-	-	-	0.27	0.2	30	-	-	-	-	-	-
Benzo(k)fluoranthene	mg/kg	0.02	-	-	-	0.1	0.08	22	-	-	-	-	-	-
Benzo(b)&(k)fluoranthene	mg/kg	0.07	-	-	-	0.37	0.28	28	-	-	-	-	-	-
PAH 16 Total	mg/kg	0.6	-	-	-	2.7	2.1	25	-	-	-	-	-	-
Metals														
Arsenic	mg/kg	0.5	-	-	-	14.2	12.5	13	-	-	-	-	-	-
Barium	mg/kg	1	-	-	-	125	110	13	-	-	-	-	-	-
Beryllium	mg/kg	0.5	-	-	-	2.3	2	14	-	-	-	-	-	-
Boron	mg/kg	0.5	-	-	-	2.7	2.9	7	-	-	-	-	-	-
Cadmium	mg/kg	0.1	-	-	-	0.1	<0.1	0	-	-	-	-	-	-
Chromium (III+VI)	mg/kg	0.5	-	-	-	63.4	66.1	4	-	-	-	-	-	-
Copper	mg/kg	1	-	-	-	45	36	22	-	-	-	-	-	-
Lead	mg/kg	5	441	597	30	150	67	76	1,473	1,383	6	1,204	3,152	89
Mercury	mg/kg	0.1	-	-	-	3.3	<0.1	188	-	-	-	-	-	-
Nickel	mg/kg	0.7	-	-	-	40.4	39.3	3	-	-	-	-	-	-
Selenium	mg/kg	1	-	-	-	1	<1	0	-	-	-	-	-	-
Vanadium	mg/kg	1	-	-	-	106	102	4	-	-	-	-	-	-
Zinc	mg/kg	5	-	-	-	187	104	57	-	-	-	-	-	-
Asbestos														
Asbestos Type	none		0	0	0	-	-	-	-	-	-	0	0	0
General Description (Bulk Analysis) none		0	0	0	-	-	-	-	-	-	0	0	0
Asbestos Containing Material	none		0	0	0	-	-	-	-	-	-	0	0	0
Total Detailed Gravimetric Quantific		0.001	-	-	-	-	-	-	-	-	-	-	-	-
Asbestos Gravimetric & PCOM Tot		0.001	-	-	-	-	-	-	-	-	-	-	-	-
Asbestos PCOM Quantification (Fi		0.001	-	-	-	-	-	-	-	-	-	-	-	-
Total ACM Gravimetric Quantificati		0.001	-	-	-	-	-	-	-	-	-	-	-	-
Asbestos Gravimetric Quantification	nmass %	0.001	-	-	-	-	-	-	-	-	-	-	-	-
Asbestos fibres			0	0	0	-	-	-	-		-	0	0	0

^{**}High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 80 (1-10 x EQL); 50 (10-20 x EQL); 30 (> 20 x EQL))

**Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

Table C2 Relative Percentage Difference Calculations for Duplicate Samples

Sheet 2 of 3

Field Duplicates (soil)		Lab Report Number	21-18548-3-021221	21-18548-3-021221		21-18548-3-021221	21-18548-3-021221		21-18548-3-021221	21-18548-3-021221		21-18548-2-031221	21-18548-2-031221	\Box
		Field ID	TH122	DUP05	RPD	TH139	DUP06	RPD	TH149	DUP07	RPD	TH161	DUP08	RPD
		Depth	0.1-0.2	0.1-0.2		0.1-0.2	0.1-0.2		0-0.05	0-0.05		0.3-0.4	0.3-0.4	1
		Sampled Date/Time	02/11/2021	02/11/2021		01/11/2021	01/11/2021		02/11/2021	02/11/2021		01/11/2021	01/11/2021	1
Parameter	Units	Method Detection Limit												
PAH	Units	Wethod Detection Limit		ſ	1			1		T	1		ſ	$\overline{}$
Naphthalene	mg/kg	0.04	-	_	-	-	_	-	-	_	-	_	-	+
Acenaphthylene	ma/ka	0.04	-	-	-	-	-	-	-	-		-	-	$+\dot{-}$
Acenaphthene	mg/kg	0.05	-		-	-			-			-	_	+-
Fluorene	mg/kg	0.04	-		-	-		-	-			-	-	+-
Phenanthrene	mg/kg	0.03	-		-	-		-	-		-	-	_	
Anthracene	mg/kg	0.04	-	-	-	-		-	-			-	_	+ -
Fluoranthene	mg/kg	0.03	-	-	-	-		-	-		-	-	-	<u> </u>
Pyrene	mg/kg	0.03	-	-	-	-		-	-	-	-	-	-	+ -
Benz(a)anthracene		0.06		-	-	-	-	-	-	-		-	-	-
Chrysene	mg/kg mg/kg	0.02		-	-	-	-	-	-	<u> </u>	-	· ·	-	-
Benzo(a) pyrene	mg/kg	0.02		-	-			-	-	-		-	-	-
Indeno(1,2,3-c,d)pyrene	mg/kg	0.04		-	-	-	-	-	-	-	-		-	-
Dibenz(a,h)anthracene	mg/kg	0.04		-	-	-		-	-	-		-	-	-
Benzo(g,h,i)perylene	mg/kg	0.04			-		-	-	-	-	-		-	+ -
Benzo(g,n,n)peryiene Benzo(b)fluoranthene	mg/kg	0.05	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(k)fluoranthene	mg/kg	0.02	-	-	-		-	-	-	-	-	-	-	 -
	0 0	0.02			_					-				+ -
Benzo(b)&(k)fluoranthene PAH 16 Total	mg/kg	0.6	-	-	-	-	-	-	-	-	-	-	-	-
	mg/kg	0.6	-	-	-	-	-	-	-	-	-	-	-	+
Metals Arsenic		0.5	-	-	-	-	_	_	-	_	-	_	_	+-+
Barium	mg/kg mg/kg	0.5	-	-	-	-	-	-	-	-	-	-	-	-
Beryllium		0.5	-	-	-	-		-	-	-		-	-	+-
Boron	mg/kg	0.5	-	-	-	-	-	-	-	-		-	-	+ -
Cadmium	mg/kg	0.5		-	-	-	-		-	-			-	-
Chromium (III+VI)	mg/kg	0.5	-	-		-	-	-	-	-	-	-	-	
Copper	mg/kg	1	-	-	-	-		-	-	-	-		-	-
Lead	mg/kg mg/kg	5	1,346	1,463	- 8	1,135	1,344	17	1,327	1,294	3	1,189	865	32
Mercury	mg/kg	0.1	1,340	1,403	-	-	1,344	-	1,327	1,294	-	1,109	-	- 32
Nickel	mg/kg	0.7	-	-	-	-	-	-	-	-	-		-	-
Selenium	mg/kg	1	-		-	-	-	-	-	-	-	-	-	+ -
Vanadium	mg/kg	1		-	-	-		-	-	-		-	-	-
Zinc	mg/kg	5	-	-	-	-		-	-	-	-	-	-	-
	mg/kg	5		-	_	-	-	_	-	-	_	-	-	+-
Asbestos Type	2000			_	-	_	_	-	1	1	0	_	-	+-
General Description (Bulk Analysi	none			-		-	-	-	1	1	0	-	-	+-
Asbestos Containing Material					-				0	0	0			-
Total Detailed Gravimetric Quanti	none fic mass %	0.001	-	-	-	-	-	-	<0.001	0.003		-	-	-
Asbestos Gravimetric & PCOM T		0.001	-		-			-	<0.001	0.003	100			-
Asbestos PCOM Quantification (F		0.001	-	-	-	-	-	-	<0.001	<0.003	100	-	-	-
Total ACM Gravimetric Quantification (0.001	-	-	-	-	-	-	<0.001	<0.001	0	-	-	+
Asbestos Gravimetric Quantificat		0.001	-	-	-	-	-	-	<0.001 <0.001	<0.001 0.003	0	-	-	-
Asbestos Gravimetric Quantificat Asbestos fibres	on mass %	0.001	-	-	-	-	-	-	<0.001 1	0.003	100	-	-	+
ASDESIOS IIDIES			-	-	-	-	-	-	l l	1	0	-	-	-

^{*}RPDs have only been considered where a concentration is greater than 1 tin
**High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are

^{***}Interlab Duplicates are matched on a per compound basis as methods vary between

Table C2 Relative Percentage Difference Calculations for Duplicate Samples

Sheet 3 of 3

Field Duplicates (soil)		Lab Report Number	21-18548-2-031221	21-18548-2-031221		21/17365/34	21-18548-5-211221		21-18548-5-211221	21-18548-5-211221	
		Field ID	TH168	DUP09	RPD	APG103	DUP10	RPD	APG114	DUP11	RPD
		Depth	0.3-0.4	0.3-0.4		0.1-0.2	0.1-0.2		0-0.05	0-0.05	
		Sampled Date/Time	01/11/2021	01/11/2021		06/12/2021	06/12/2021		06/12/2021	06/12/2021	
Parameter	Units	Method Detection Limit									
PAH	· · · · · ·	motilou Dotootion Liniit			1				•		T
Naphthalene	mg/kg	0.04	-	-	-	0.37	0.29	24	-	-	-
Acenaphthylene	mg/kg	0.03	-	-	-	1.59	1.26	23		-	-
Acenaphthene	mg/kg	0.05	-	-	-	0.39	0.23	52	-	-	-
Fluorene	mg/kg	0.04	-	_	_	0.4	0.2	67	_	-	-
Phenanthrene	mg/kg	0.03			- 1	7.39	3.18	80			<u> </u>
Anthracene	mg/kg	0.04			_	2.4	1.37	55			-
Fluoranthene	mg/kg	0.03	-	-	-	15.49	10.11	42	-	-	-
Pyrene	mg/kg	0.03			-	13.47	9.07	39	-		1
•		0.06	-	-	-	7.43	5.02	39	-		-
Benz(a)anthracene	mg/kg	0.06		-	-	7.43	5.02	37	-	-	+ :
Chrysene Benzo(a) pyrene	mg/kg mg/kg	0.02	-	-	-	8.27	5.4	41	-	-	-
					-	7.27	4.79		+	1	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.04	-	-	-			41	-	-	-
Dibenz(a,h)anthracene	mg/kg	0.04	-	-	-	1.59	0.84	62	-	-	-
Benzo(g,h,i)perylene	mg/kg	0.04	-	-	-	6.45	4.1	45	-	-	-
Benzo(b)fluoranthene	mg/kg	0.05	-	-	-	10.74	7.2	39	-	-	-
Benzo(k)fluoranthene	mg/kg	0.02	-	-	-	4.17	2.8	39	-	-	-
Benzo(b)&(k)fluoranthene	mg/kg	0.07	-	-	-	14.91	10	39	-	-	-
PAH 16 Total	mg/kg	0.6	-	-	-	95.2	61.3	43	-	-	-
Metals											<u> </u>
Arsenic	mg/kg	0.5	-	-	-	22.2	21.4	4	-	-	-
Barium	mg/kg	1	-	-	-	382	550	36	-	-	-
Beryllium	mg/kg	0.5	-	-	-	1.7	1.8	6	-	-	-
Boron	mg/kg	0.5	-	-	-	6.4	5.7	12	-	-	-
Cadmium	mg/kg	0.1	-	-	-	0.8	0.9	12	-	-	-
Chromium (III+VI)	mg/kg	0.5	-	-	-	75.2	76.7	2	-	-	-
Copper	mg/kg	1	-	-	-	95	87	9	-	-	-
Lead	mg/kg	5	233	140	50	912	1,644	57	715	912	24
Mercury	mg/kg	0.1	-	-	-	1.1	1	10	-	-	-
Nickel	mg/kg	0.7	-	-	-	27.5	30.1	9	-	-	-
Selenium	mg/kg	1	-	-	-	1	<1	0	-	-	-
Vanadium	mg/kg	1	-	-	-	61	69	12	-	-	-
Zinc	mg/kg	5	-	-	-	392	418	6	-	-	-
Asbestos											1
Asbestos Type	none		0	0	0	0	0	0	-	-	-
General Description (Bulk Analysis)			0	0	0	0	0	0	-	-	-
Asbestos Containing Material	none		0	0	0	0	0	0	-	-	 -
Total Detailed Gravimetric Quantific		0.001	-	-	-	-	-	-	-	-	
Asbestos Gravimetric & PCOM Total		0.001			-			<u> </u>	-		+-
Asbestos PCOM Quantification (Fib		0.001	-		-		-	-			1
Total ACM Gravimetric Quantification		0.001		-		-	-		-	-	1
Asbestos Gravimetric Quantification		0.001	-	-	-		-		-	-	-
	111d55 70	0.001			-			-			-
Asbestos fibres			0	0	0	0	0	0	-	-	-

^{*}RPDs have only been considered where a concentration is greater than 1 tin
**High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are
***Interlab Duplicates are matched on a per compound basis as methods vary between

Part 2A Investigation

Appendix D Walkover Photolog and Sample Logs & Photos

Appendix E Treadgold House Laboratory Certificates

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

AECOM 9th Floor Reception Sunley House 4 Bedford Park Croydon CR0 2AP

Attention: David Dyson

Date: 30th November, 2021

Your reference : 60632092

Our reference : Test Report 21/18548 Batch 1

Location : Treadgold House (Stage 2 Grenfell)

Date samples received: 23rd November, 2021

Status: Final Report

Issue:

Seven samples were received for analysis on 23rd November, 2021 of which seven were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Baler

Paul Boden BSc Senior Project Manager

Please include all sections of this report if it is reproduced

Client Name: AECOM Report : Solid

Reference: 60632092

Location: Treadgold House (Stage 2 Grenfell) Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Contact: David Dyson
EMT Job No: 21/18548

EMT Job No:	21/18548										
EMT Sample No.	1-4	5-8	9-12	13-16	17-20	21-24	25-28				
Sample ID	TH164	TH164	TH166	TH166	TH168	TH168	DUP09				
Depth	0.00-0.05	0.10-0.20	0.00-0.05	0.10-0.20	0.00-0.05	0.10-0.20	0.00-0.05		Division		. 6 6 11
COC No / misc										e attached nations and a	
Containers		VJT	VJT	VJT	VJT	VJT	VJT				
Sample Date					22/11/2021						
Sample Type		Loam	Loam	Loam	Sandy Loam	Loam	Sandy Loam				
Batch Number	1	1	1	1	1	1	1		LOD/LOR	Units	Method No.
Date of Receipt	23/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021				
Arsenic **M	-	39.5	-	-	-	-	-		<0.5	mg/kg	TM30/PM15
Barium ^{#M} Beryllium	-	676 3.5	-	-	-	-	-		<1 <0.5	mg/kg mg/kg	TM30/PM15 TM30/PM15
Cadmium **M	-	0.9	-	-	-	-	-		<0.5	mg/kg	TM30/PM15
Chromium *M	-	69.5	-	-	-	-	-		<0.5	mg/kg	TM30/PM15
Copper *M	-	334 _{AA}	-	-	-	-	-		<1	mg/kg	TM30/PM15
Lead #M	925	1005	1311	1997	233	148	140		<5	mg/kg	TM30/PM15
Mercury ^{#M}	-	1.6	-	-	-	-	-		<0.1	mg/kg	TM30/PM15
Nickel #M	-	47.5	-	-	-	-	-		<0.7	mg/kg	TM30/PM15
Selenium **M	-	2	-	-	-	-	-		<1	mg/kg	TM30/PM15
Vanadium Water Soluble Boron ^{#M}	-	70 6.4	-	-	-	-	-		<1 <0.1	mg/kg mg/kg	TM30/PM15 TM74/PM32
Zinc #M	-	646	-	-	-	-	-		<5	mg/kg	TM30/PM15
2.110		0.0							Ū	99	11110071 11110
Sample Type	Loam	Loam	Loam	Loam	Sandy Loam	Loam	Sandy Loam			None	PM13/PM0
Sample Colour	Dark Brown	Dark Brown	Dark Brown	Dark Brown	Medium Brown	Medium Brown	Medium Brown			None	PM13/PM0
Other Items	stones and vegetation	vegetation	stones and vegetation			None	PM13/PM0				

Location: Treadgold House (Stage 2 Grenfell)

Contact: David Dyson

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level less than 0.1%, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative sampling.

EMT				EMT	Dot- Of		
Job No.	Batch	Sample ID	Depth	Sample No.	Date Of Analysis	Analysis	Result
		T11101					
21/18548	1	TH164	0.00-0.05	4	25/11/2021 25/11/2021	General Description (Bulk Analysis)	soil NAD
						Asbestos Fibres	
					25/11/2021	Asbestos ACM	NAD
					25/11/2021	Asbestos Type	NAD
					25/11/2021	Asbestos Level Screen	NAD
21/18548	1	TH166	0.00-0.05	12	25/11/2021	General Description (Bulk Analysis)	soil
					25/11/2021	Asbestos Fibres	NAD
					25/11/2021	Asbestos ACM	NAD
					25/11/2021	Asbestos Type	NAD
					25/11/2021	Asbestos Level Screen	NAD
21/18548	1	TH168	0.00.0.05	20	25/44/2024	Consent Description (Bully Analysis)	CallChange
21/18548	'	11100	0.00-0.05	20	25/11/2021	General Description (Bulk Analysis)	Soil/Stones
					25/11/2021	Asbestos Fibres	NAD
					25/11/2021	Asbestos ACM	NAD
					25/11/2021	Asbestos Type	NAD
					25/11/2021	Asbestos Level Screen	NAD
21/18548	1	DUP09	0.00-0.05	28	25/11/2021	General Description (Bulk Analysis)	Soil/Stones
					25/11/2021	Asbestos Fibres	NAD
					25/11/2021	Asbestos ACM	NAD
					25/11/2021	Asbestos Type	NAD
					25/11/2021	Asbestos Level Screen	NAD

Location: Treadgold House (Stage 2 Grenfell)

Contact: David Dyson

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
					No deviating sample report results for job 21/18548	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 21/18548

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

EMT Job No.: 21/18548

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ос	Outside Calibration Range
AA	x5 Dilution

HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

EMT Job No: 21/18548

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM13	A visual examination of the solid sample is carried out to ascertain sample make up, colour and any other inclusions. This is not a geotechnical description.	PM0	No preparation is required.			AR	No
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev. 2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev. 2, Dec. 1996; Modified EPA Method 3050B, Rev. 2, Dec. 1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes	Yes	AD	Yes
TM65	Asbestos Bulk Identification method based on HSG 248 First edition (2006)	PM42	Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1:2018. Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM74	Analysis of water soluble boron (20:1 extract) by ICP-OES.	PM32	Hot water soluble boron is extracted from dried and ground samples using a 20:1 ratio.	Yes	Yes	AD	Yes

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

AECOM 9th Floor Reception Sunley House 4 Bedford Park Croydon CR0 2AP

Attention: David Dyson

Date: 1st December, 2021

Your reference : 60632092

Our reference : Test Report 21/18548 Batch 2

Location : Treadgold House (Stage 2 Grenfell)

Date samples received: 25th November, 2021

Status: Final Report

Issue: 1

Sixty samples were received for analysis on 25th November, 2021 of which sixty were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Simon Gomery BSc

Project Manager

Please include all sections of this report if it is reproduced

Client Name: AECOM

Reference: 60632092

Location: Treadgold House (Stage 2 Grenfell)

Contact: David Dyson EMT Job No: 21/18548

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

LWIT JOD NO.											ı		
EMT Sample No.	29-32	33-36	37-40	41-44	45-48	49-52	53-56	57-60	61-64	65-68			
Sample ID	TH163	TH163	TH165	TH165	TH153	TH153	TH155	TH155	TH157	TH157			
Depth	0.00-0.05	0.10-0.20	0.00-0.05	0.10-0.20	0.00-0.05	0.10-0.20	0.00-0.05	0.10-0.20	0.00-0.05	0.10-0.20	Please se	e attached n	otes for all
COC No / misc												ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Sample Date	22/11/2021	22/11/2021	22/11/2021	22/11/2021	22/11/2021	22/11/2021	22/11/2021	22/11/2021	22/11/2021	22/11/2021			
Sample Type	Loam	Clayey Loam	Loam	Loam	Loam	Loam	Loam	Sandy Loam	Sandy Loam	Clayey Sand			
Batch Number	2	2	2	2	2	2	2	2	2	2			Method
Date of Receipt	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	LOD/LOR	Units	No.
Arsenic **M	-	-	-	-	-	-	-	77.0	-	-	<0.5	mg/kg	TM30/PM15
Barium *M	-	-	_	_	_	-	-	1500	_	-	<1	mg/kg	TM30/PM15
Beryllium	_	-	_	_	_	_	_	7.4	_	_	<0.5	mg/kg	TM30/PM15
Cadmium *M	_	_	_	_	_	_	_	1.7	_	_	<0.1	mg/kg	TM30/PM15
Chromium #M	_	_	_	_	_	_	_	95.4	_	_	<0.5	mg/kg	TM30/PM15
Copper **M		-	-	_	-	_	-	751 _{AA}	-	-	<1	mg/kg	TM30/PM15
Copper													
Lead #M	1068	1329	1489	384900 _{AB}	1693	3752 _{AA}	1485	3623 _{AA}	1271	995	<5	mg/kg	TM30/PM15
Mercury #M	-	-	-	-	-	-	-	3.2	-	-	<0.1	mg/kg	TM30/PM15
Nickel #M	-	-	-	-	-	-	-	88.3	-	-	<0.7	mg/kg	TM30/PM15
Selenium **M	-	-	-	-	-	-	-	1	-	-	<1	mg/kg	TM30/PM15
Vanadium	-	-	-	-	-	-	-	105	-	-	<1	mg/kg	TM30/PM15
Water Soluble Boron ^{#M}	-	-	-	-	-	-	-	4.8	-	-	<0.1	mg/kg	TM74/PM32
Zinc *M	-	-	-	-	-	-	-	1350	-	-	<5	mg/kg	TM30/PM15
PAH MS													
Naphthalene #M	-	-	-	-	-	-	-	-	-	-	<0.04	mg/kg	TM4/PM8
Acenaphthylene	-	-	-	-	-	-	-	-	-	-	<0.03	mg/kg	TM4/PM8
Acenaphthene #M	-	-	-	-	-	-	-	-	-	-	<0.05	mg/kg	TM4/PM8
Fluorene #M	-	-	-	-	-	-	-	-	-	-	<0.04	mg/kg	TM4/PM8
Phenanthrene *M	-	-	-	-	-	-	-	-	-	-	<0.03	mg/kg	TM4/PM8
Anthracene #	-	-	-	-	-	-	-	-	-	-	<0.04	mg/kg	TM4/PM8
Fluoranthene #M	-	-	-	-	-	-	-	-	-	-	<0.03	mg/kg	TM4/PM8
Pyrene#	-	-	-	-	-	-	-	-	-	-	<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene #	-	-	_	_	-	_	-	-	-	-	<0.06	mg/kg	TM4/PM8
Chrysene *M	-	_	_	_	_	_	-	_	-	_	<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #M	_	_	_	_	_	_	_	_	_	_	<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	_	_	_	_	_	_	_	_	_	_	<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene #M	_	-		-	-	<u>-</u>	_	-	_	-	<0.04		TM4/PM8
	-	-	-	-	-	-	-	-	-			mg/kg	TM4/PM8
Dibenzo(ah)anthracene#	-	-	-	-	-	-	-	-	-	-	<0.04	mg/kg	
Benzo(ghi)perylene #	-	-	-	-	-	-	-	-	-	-	<0.04	mg/kg	TM4/PM8
PAH 16 Total	-	-	-	-	-	-	-	-	-	-	<0.6	mg/kg	TM4/PM8
Benzo(b)fluoranthene	-	-	-	-	-	-	-	-	-	-	<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	-	-	-	-	-	-	-	-	-	-	<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	-	-	-	-	-	-	-	-	-	-	<0	%	TM4/PM8
Natural Moisture Content	-	-	-	-	-	-	-	-	-	-	<0.1	%	PM4/PM0
Sample Type	Loam	Clayey Loam	Loam	Loam	Loam	Loam	Loam	Sandy Loam	Sandy Loam	Clayey Sand		None	PM13/PM0
Sample Colour	Dark Brown	Medium Brown		Medium Brown				Dark Brown				None	PM13/PM0
Other Items	stones and vegertation	stones	stones and roots		stones and roots		stones and roots		stones and roots			None	PM13/PM0
Salar Romo		0.01163			2110 10013		2101000	2110 10013	2110 10013			110116	. 141 1 3/1 1410
		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>			<u> </u>	<u> </u>	

Client Name: AECOM

Reference: 60632092

Location: Treadgold House (Stage 2 Grenfell)

Contact: David Dyson EMT Job No: 21/18548

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

											i		
EMT Sample No.	69-72	73-76	77-80	81-84	85-88	89-92	93-96	97-100	101-104	105-108			
Sample ID	TH160	TH160	TH158	TH158	TH159	TH159	TH150	TH150	TH161	TH161			
Depth	0.00-0.05	0.10-0.20	0.00-0.05	0.10-0.20	0.00-0.05	0.10-0.20	0.00-0.05	0.10-0.20	0.00-0.05	0.30-0.40	Please se	e attached n	otes for all
COC No / misc												ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Sample Date	22/11/2021	22/11/2021	22/11/2021	22/11/2021	22/11/2021	22/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021			
Sample Type	Loam	Loam	Loam	Loam	Sandy Loam	Loam	Loam	Loam	Loam	Clay			
Batch Number	2	2	2	2	2	2	2	2	2	2			
Date of Receipt		25/11/2021	25/11/2021	25/11/2021	25/11/2021		25/11/2021	25/11/2021	25/11/2021	25/11/2021	LOD/LOR	Units	Method No.
Arsenic *M	_	_	-	_	40.6	-	-	-	52.9	39.9	<0.5	mg/kg	TM30/PM15
Barium **M	_	_	_	_	1215	_	_	_	1149	681	<1	mg/kg	TM30/PM15
Beryllium	_	_	_		4.0	_	_	_	5.1	3.7	<0.5	mg/kg	TM30/PM15
Cadmium **M	_	_	-	_	1.6	_	_	_	1.4	0.8	<0.1	mg/kg	TM30/PM15
Chromium #M	_	_	_	_	171.0	_	_	_	58.3	67.8	<0.5	mg/kg	TM30/PM15
Copper **M	-	-	-	-	351 _{AA}	-	-	-	471 _{AA}	287 _{AA}	<1	mg/kg	TM30/PM15
Lead **M	1580	3168 _{AA}	1785	1738	1591	1700	1921	2434	1941	1189	<5	mg/kg	TM30/PM15
Mercury #M	-	-	-	-	1.9	-	-	-	2.4	1.4	<0.1	mg/kg	TM30/PM15
Nickel #M	-	-	-	-	57.3	-	-	-	67.1	53.8	<0.7	mg/kg	TM30/PM15
Selenium ^{#M}	-	-	-	-	2	-	-	-	<1	1	<1	mg/kg	TM30/PM15
Vanadium	-	-	-	-	77	-	-	-	85	84	<1	mg/kg	TM30/PM15
Water Soluble Boron ***	-	-	-	-	11.5	-	-	-	5.9	2.7	<0.1	mg/kg	TM74/PM32
Zinc ^{#M}	-	-	-	-	944	-	-	-	1141	777	<5	mg/kg	TM30/PM15
PAH MS													
Naphthalene ^{#M}	-	-	-	-	-	-	-	-	0.16	0.05	<0.04	mg/kg	TM4/PM8
Acenaphthylene	-	-	-	-	-	-	-	-	0.27	0.29	<0.03	mg/kg	TM4/PM8
Acenaphthene #M	-	-	-	-	-	-	-	-	<0.05	0.06	<0.05	mg/kg	TM4/PM8
Fluorene #M	-	-	-	-	-	-	-	-	<0.04	0.05	<0.04	mg/kg	TM4/PM8
Phenanthrene *M	-	-	-	-	-	-	-	-	0.93	0.90	<0.03	mg/kg	TM4/PM8
Anthracene #	-	-	-	-	-	-	-	-	0.37	0.44	<0.04	mg/kg	TM4/PM8
Fluoranthene #M	-	-	-	-	-	-	-	-	2.96	3.17	<0.03	mg/kg	TM4/PM8
Pyrene #	-	-	-	-	-	-	-	-	2.68	2.84	<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene #	-	-	-	-	-	-	-	-	1.66	2.43	<0.06	mg/kg	TM4/PM8
Chrysene #M	-	-	-	-	-	-	-	-	1.74	2.42	<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #M	-	-	-	-	-	-	-	-	3.64	4.62	<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	-	-	-	-	-	-	-	-	1.92	2.32	<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene #M	-	-	-	-	-	-	-	-	1.89	2.19	<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene#	-	-	-	-	-	-	-	-	0.30 1.54	0.48 1.68	<0.04 <0.04	mg/kg	TM4/PM8 TM4/PM8
Benzo(ghi)perylene * PAH 16 Total	_	_	_	-	-	-	_		20.1	23.9	<0.04	mg/kg mg/kg	TM4/PM8
Benzo(b)fluoranthene	-	_	_	-	_		_	-	2.62	3.33	<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	-	-	_	-	_	_	-	_	1.02	1.29	<0.03	mg/kg	TM4/PM8
PAH Surrogate % Recovery	-	_	_	_	_	_	-	-	99	99	<0.02	%	TM4/PM8
,,											-		
Natural Moisture Content	-	-	-	-	-	-	-	-	41.1	22.1	<0.1	%	PM4/PM0
Sample Type	Loam	Loam	Loam	Loam	Sandy Loam	Loam	Loam	Loam	Loam	Clay		None	PM13/PM0
Sample Colour	Dark Brown	Dark Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Dark Brown	Dark Brown	Dark Brown	Medium Brown		None	PM13/PM0
Other Items	stones and vegertation	sand and vegertation	sand and roots	stones and roots	stones and roots	stones and roots	stones and roots	stones	stones and roots	atones, sand and brick fragment		None	PM13/PM0

Client Name: AECOM

Reference: 60632092

Location: Treadgold House (Stage 2 Grenfell) **Solids:** V=60g VOC jar, J=250g glass jar, T=plastic tub

Report: Solid

Contact: David Dyson EMT Job No: 21/18548

EMT Job No:	21/18548												
EMT Sample No.	109-112	113-116	117-120	121-124	125-128	129-132	133-136	137-140	141-144	145-148			
Sample ID	TH161	TH154	TH154	DUP08	TH151	TH151	TH152	TH152	TH156	TH156			
Depth	0.60-0.70	0.00-0.05	0.10-0.20	0.30-0.40	0.00-0.05	0.10-0.20	0.00-0.05	0.10-0.20	0.00-0.05	0.10-0.20		e attached n ations and a	
COC No / misc											abbievi	ations and a	Sionymis
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Sample Date	23/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021			
Sample Type	Clay	Loam	Loam	Clay	Loam	Loam	Loam	Loam	Sandy Loam	Sandy Loam			
Batch Number	2	2	2	2	2	2	2	2	2	2			Method
Date of Receipt	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	LOD/LOR	Units	No.
Arsenic #M	31.3	-	-	-	-	-	-	-	-	-	<0.5	mg/kg	TM30/PM15
Barium #M	452	-	-	-	-	-	-	-	-	-	<1	mg/kg	TM30/PM15
Beryllium	2.9	-	-	-	-	-	-	-	-	-	<0.5	mg/kg	TM30/PM15
Cadmium #M	0.5	-	-	-	-	-	-	-	-	-	<0.1	mg/kg	TM30/PM15
Chromium #M	45.4	-	-	-	-	-	-	-	-	-	<0.5	mg/kg	TM30/PM15
Copper *M	196	-	-	-	-	-	-	-	-	-	<1	mg/kg	TM30/PM15
Lead #M	715	1415	2119	865	1001	1239	926	3101 _{AA}	6029 _{AA}	2049	<5	mg/kg	TM30/PM15
Mercury *** Nickel ***	1.1	-	-	-	-	-	-	-	-	-	<0.1	mg/kg	TM30/PM15 TM30/PM15
Selenium *M	39.2 <1	-	-	-	-	-	-	-	-	-	<0.7 <1	mg/kg mg/kg	TM30/PM15
Vanadium	70	_	_	_	_	_	_	_	_	_	<1	mg/kg	TM30/PM15
Water Soluble Boron #M	2.1	-	-	-	-	-	-	-	-	-	<0.1	mg/kg	TM74/PM32
Zinc ^{#M}	421	-	-	-	-	-	-	-	-	-	<5	mg/kg	TM30/PM15
PAH MS													
Naphthalene **M	0.11	-	-	-	-	-	-	-	-	-	<0.04	mg/kg	TM4/PM8
Acenaphthylene	0.40	-	-	-	-	-	-	-	-	-	<0.03	mg/kg	TM4/PM8
Acenaphthene #M	0.16	-	-	-	-	-	-	-	-	-	<0.05	mg/kg	TM4/PM8
Fluorene #M	0.21	-	-	-	-	-	-	-	-	-	<0.04	mg/kg	TM4/PM8
Phenanthrene **M Anthracene **	3.02 0.93	-	-	-	-	-	-	-	-	-	<0.03 <0.04	mg/kg mg/kg	TM4/PM8 TM4/PM8
Fluoranthene *M	5.10	-	-	-	-	-	-	-	-	-	<0.03	mg/kg	TM4/PM8
Pyrene #	4.19	-	-	-	-	-	-	-	-	-	<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene#	2.47	-	-	-	-	-	-	-	-	-	<0.06	mg/kg	TM4/PM8
Chrysene *M	2.29	-	-	-	-	-	-	-	-	-	<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #M	4.01	-	-	-	-	-	-	-	-	-	<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	2.18	-	-	-	-	-	-	-	-	-	<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene #M	1.83	-	-	-	-	-	-	-	-	-	<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene#	0.35	-	-	-	-	-	-	-	-	-	<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene # PAH 16 Total	1.48 28.7	-	-	-	-	-	-	-	-	-	<0.04 <0.6	mg/kg	TM4/PM8 TM4/PM8
Benzo(b)fluoranthene	2.89	-	-	-	-	-	-	-	-	-	<0.05	mg/kg mg/kg	TM4/PM8
Benzo(k)fluoranthene	1.12	-	-	-	-	-	-	-	-	-	<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	96	-	-	-	-	-	-	-	-	-	<0	%	TM4/PM8
Natural Moisture Content	21.2	-	-	-	-	-	-	-	-	-	<0.1	%	PM4/PM0
Sample Type	Clay	Loam	Loam	Clay	Loam	Loam	Loam	Loam	Sandy Loam	Sandy Loam		None	PM13/PM0
Sample Colour	Medium Brown	Dark Brown	Dark Brown	Medium Brown	Dark Brown	Medium Brown	Dark Brown	Dark Brown	Dark Brown	Medium Brown		None	PM13/PM0
Other Items	stones and brick fragment	stones, sand and roots	roots	stones and brick fragment	sand and vegertation	stones, sand and vegertation	stones and sand	stones and vegertation	stones	stone and roots		None	PM13/PM0

Client Name: AECOM

Reference: 60632092

Location: Treadgold House (Stage 2 Grenfell) **Solids:** V=60g VOC jar, J=250g glass jar, T=plastic tub

Report: Solid

Contact: David Dyson EMT Job No: 21/18548

EMT Job No:	21/18548												
EMT Sample No.	149-152	153-156	157-160	161-164	165-168	169-172	173-176	177-180	181-184	185-188			
Sample ID	TH149	TH149	TH142	TH142	TH142	TH148	TH148	TH104	TH104	TH104			
Depth	0.00-0.05	0.10-0.20	0.00-0.05	0.30-0.40	0.60-0.70	0.00-0.05	0.10-0.20	0.00-0.05	0.30-0.40	0.60-0.70		e attached n	
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Sample Date	23/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021			
Sample Type	Loam	Loam	Loam	Clayey Sand	Clay	Loam	Loam	Clayey Loam	Clay	Clay			
Batch Number	2	2	2	2	2	2	2	2	2	2	LOD/LOR	Units	Method
Date of Receipt	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	LOD/LOIX	Office	No.
Arsenic **M	-	-	89.8	32.9	30.0	-	-	33.2	30.7	14.2	<0.5	mg/kg	TM30/PM15
Barium #M	-	-	1654	484	320	-	-	760	411	125	<1	mg/kg	TM30/PM15
Beryllium	-	-	8.2	2.4	2.3	-	-	2.9	2.3	2.3	<0.5	mg/kg	TM30/PM15
Cadmium #M	-	-	2.0	0.4	0.6	-	-	1.1	0.4	0.1	<0.1	mg/kg	TM30/PM15
Chromium #M	-	-	135.0	64.7	40.6	-	-	104.9	61.1	63.4	<0.5	mg/kg	TM30/PM15
Copper #M	-	-	934 _{AA}	169	272 _{AA}	-	-	230	167	45	<1	mg/kg	TM30/PM15
Lead #M	1327	1920	3996 _{AA}	634	685	1678	2031	1071	630	150	<5	mg/kg	TM30/PM15
Mercury *M	-	-	5.1	0.7	0.9	-	-	1.8	1.2	3.3	<0.1	mg/kg	TM30/PM15
Nickel *M	-	-	99.6	39.9	30.5	-	-	44.1	31.5	40.4	<0.7	mg/kg	TM30/PM15
Selenium #M	-	-	2	2	<1	-	-	2	1	1	<1	mg/kg	TM30/PM15
Vanadium	-	-	112	65	64	-	-	82	82	106	<1	mg/kg	TM30/PM15
Water Soluble Boron ***	-	-	5.9	2.4	2.4	-	-	4.5	2.5	2.7	<0.1	mg/kg	TM74/PM32
Zinc *M	-	-	1668	483	387	-	-	771	413	187	<5	mg/kg	TM30/PM15
PAH MS													
Naphthalene #M	-	-	0.21	0.07	0.35	-	-	0.11	0.14	<0.04	<0.04	mg/kg	TM4/PM8
Acenaphthylene	-	-	0.49	0.18	0.33	-	-	0.40	0.26	<0.03	<0.03	mg/kg	TM4/PM8
Acenaphthene #M	-	-	<0.05	0.20	0.62	-	-	0.16	0.10	<0.05	<0.05	mg/kg	TM4/PM8
Fluorene #M	-	-	0.07	0.14	0.46	-	-	0.14	0.11	<0.04	<0.04	mg/kg	TM4/PM8
Phenanthrene *M	-	-	1.29	2.25	4.84	-	-	2.47	2.46	0.26	<0.03	mg/kg	TM4/PM8
Anthracene #	-	-	0.62	0.69	1.39	-	-	0.83	0.41	0.10	<0.04	mg/kg	TM4/PM8
Fluoranthene #M	-	-	3.05	4.37	7.06	-	-	6.75	3.57	0.51	<0.03	mg/kg	TM4/PM8
Pyrene #	-	-	2.59	3.48	5.60	-	-	5.80	2.85	0.43	<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene#	-	-	1.66	1.99	3.18	-	-	3.26	1.16	0.26	<0.06	mg/kg	TM4/PM8
Chrysene #M	-	-	1.89	2.07	3.18	-	-	3.37	1.62	0.26	<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #M	-	-	3.88	3.43	5.35	-	-	6.22	2.61	0.37	<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	-	-	1.96	1.79	2.85	-	-	3.17	1.36	0.20	<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene #M	-	-	2.18	1.54	2.29	-	-	2.77	1.20	0.15	<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene#	-	-	0.49	0.33	0.45	-	-	0.49	0.24	<0.04	<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene#	-	-	2.25	1.32	1.96	-	-	2.51	1.06	0.14	<0.04	mg/kg	TM4/PM8
PAH 16 Total	-	-	22.6	23.9	39.9	-	-	38.5	19.2	2.7	<0.6	mg/kg	TM4/PM8
Benzo(b)fluoranthene	-	-	2.79	2.47	3.85	-	-	4.48	1.88	0.27	<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	-	-	1.09	0.96	1.50	-	-	1.74	0.73	0.10	<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	-	-	94	92	92	-	-	93	92	93	<0	%	TM4/PM8
Natural Moisture Content	-	-	38.7	18.3	22.2	-	-	25.9	23.8	9.5	<0.1	%	PM4/PM0
Sample Type	Loam	Loam	Loam	Clavey Sond	Clay	Loam	Loam	Clayey Loam	Clay	Clay		None	PM13/PM0
Sample Colour				Clayey Sand Medium Brown				Medium Brown					PM13/PM0
Sample Colour Other Items	Daik DIOWN	stones and roots	stones and roots		down and not be to be.			stones and roots	stones and sand	stones		None	PM13/PM0
Outer Items	and vegenation	SIOU DI LE CONTOUR	SJOOT DITE COLORS	Jan work magners		vegertation	stones	Stories and roots	Siones and Sand	Stories		None	FIVI I 3/PIVIU

Client Name: AECOM

Reference: 60632092

Location: Treadgold House (Stage 2 Grenfell)

Contact: David Dyson EMT Job No: 21/18548

Report: Solid
Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMI JOD NO:	21/18548												
EMT Sample No.	189-192	193-196	197-200	201-204	205-208	209-212	213-216	217-220	221-224	225-228			
Sample ID	TH104	DUP02	TH110	TH110	TH110	TH110	TH102	TH102	TH102	TH102			
Depth	1.10-1.20	0.60-0.70	0.00-0.05	0.10-0.20	0.30-0.40	0.60-0.70	0.00-0.05	0.10-0.20	0.30-0.40	0.60-0.70	i		
COC No / misc												e attached n ations and a	
	\/ I.T	V 1.T	\/ I.T	\/ I.T	\/ I.T	\/ I.T	\/ I.T	\/ I.T	\/ I.T	V 1.T			
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Sample Date	23/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021			
Sample Type	Clay	Clay	Loam	Clay	Clay	Clay	Clay	Clay	Clay	Clay			
Batch Number	2	2	2	2	2	2	2	2	2	2	LOD/LOR	Units	Method
Date of Receipt	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	LODILOIT	Onio	No.
Arsenic #M	16.9	12.5	24.0	-	-	-	25.8	-	-	-	<0.5	mg/kg	TM30/PM15
Barium ^{#M}	119	110	-	-	-	-	495	-	-	-	<1	mg/kg	TM30/PM15
Beryllium	2.5	2.0	-	-	-	-	2.6	-	-	-	<0.5	mg/kg	TM30/PM15
Cadmium #M	<0.1	<0.1	0.6	-	-	-	0.7	-	-	-	<0.1	mg/kg	TM30/PM15
Chromium #M	75.6	66.1	87.4	-	-	-	75.9	-	-	-	<0.5	mg/kg	TM30/PM15 TM30/PM15
Copper ^{#M} Lead ^{#M}	38 507	36 67	139 670	1418	991	483	158 668	- 676	309	153	<1 <5	mg/kg mg/kg	TM30/PM15
Mercury **M	<0.1	<0.1	1.0	-	-	-	1.3	-	-	-	<0.1	mg/kg	TM30/PM15
Nickel #M	51.6	39.3	29.5	-	-	-	42.6	-	-	-	<0.7	mg/kg	TM30/PM15
Selenium *M	<1	<1	1	-	-	-	2	-	-	-	<1	mg/kg	TM30/PM15
Vanadium	131	102	-	-	-	-	81	-	-	-	<1	mg/kg	TM30/PM15
Water Soluble Boron #M	4.7	2.9	-	-	-	-	4.9	-	-	-	<0.1	mg/kg	TM74/PM32
Zinc ^{#M}	105	104	547	-	-	-	446	-	-	-	<5	mg/kg	TM30/PM15
PAH MS													
Naphthalene *M	<0.04	<0.04	-	-	-	-	-	-	-	-	<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03	-	-	-	-	-	-	-	-	<0.03	mg/kg	TM4/PM8
Acenaphthene #M	<0.05	<0.05	-	-	-	-	-	-	-	-	<0.05	mg/kg	TM4/PM8
Fluorene #M	<0.04	<0.04	-	-	-	-	-	-	-	-	<0.04	mg/kg	TM4/PM8
Phenanthrene #M	<0.03	0.19	-	-	-	-	-	-	-	-	<0.03	mg/kg	TM4/PM8
Anthracene # Fluoranthene #M	<0.04 0.06	0.08	-	-	-	-	-	-	-	-	<0.04 <0.03	mg/kg mg/kg	TM4/PM8 TM4/PM8
Pyrene #	0.06	0.34	_	_	_	_	_	_	_	_	<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene#	<0.06	0.21	_	_	-	_	-	_	_	_	<0.06	mg/kg	TM4/PM8
Chrysene #M	0.04	0.20	-	-	-	-	-	-	-	-	<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #M	<0.07	0.28	-	-	-	-	-	-	-	-	<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene#	<0.04	0.15	-	-	-	-	-	-	-	-	<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene #M	<0.04	0.11	-	-	-	-	-	-	-	-	<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene#	<0.04	<0.04	-	-	-	-	-	-	-	-	<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	<0.04	0.10	-	-	-	-	-	-	-	-	<0.04	mg/kg	TM4/PM8
PAH 16 Total	<0.6	2.1	-	-	-	-	-	-	-	-	<0.6	mg/kg	TM4/PM8
Benzo(b)fluoranthene	<0.05	0.20	-	-	-	-	-	-	-	-	<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	<0.02	0.08	-	-	-	-	-	-	-	-	<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	90	86	-	-	-	-	-	-	-	-	<0	%	TM4/PM8
Natural Moisture Content	25.2	25.5	_	_	_	_	_	_	_	_	<0.1	%	PM4/PM0
	25.2	25.5									3.1	,,,	
Sample Type	Clay	Clay	Loam	Clay	Clay	Clay	Clay	Clay	Clay	Clay		None	PM13/PM0
Sample Colour	Light Brown	Light Brown	Dark Brown	Dark Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Light Brown		None	PM13/PM0
Other Items	brick fragment	stones	stones, sand and vegertation	stones, loam and roots	loam and stones	brick and stones	clay, roots and stone	loan, brick fragment, stones and roots	brick fragment and roots	stones and brick fragment		None	PM13/PM0
	l	1	l	I	l	l	I	l	l	ı			1

Client Name: AECOM

Reference: 60632092

Location: Treadgold House (Stage 2 Grenfell)

Contact: David Dyson EMT Job No: 21/18548

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Job No:	21/18548												
EMT Sample No.	229-232	233-236	237-240	241-244	245-248	249-252	253-256	257-260	261-264	265-268			
Sample ID	TH116	TH116	TH116	TH116	DUP03	TH170	TH170	TH170	TH156	TH156			
Depth	0.00-0.05	0.10-0.20	0.30-0.40	0.60-0.70	0.10-0.20	0.00-0.05	0.30-0.40	0.60-0.70	0.30-0.40	0.60-0.70	Please se	e attached n	ntes for all
COC No / misc												ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Sample Date	23/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021			
Sample Type	Sandy Loam	Sandy Loam	Clay	Clay	Sandy Loam	Sandy Loam	Clayey Sand	Clayey Sand	Clayey Sand	Clay			
Batch Number	2	2	2	2	2	2	2	2	2	2	LOD/LOR	l leite	Method
Date of Receipt	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	LOD/LOR	Units	No.
Arsenic **M	-	-	-	-	-	44.6	35.2	21.0	-	-	<0.5	mg/kg	TM30/PM15
Barium ^{#M}	-	-	-	-	-	803	490	442	-	-	<1	mg/kg	TM30/PM15
Beryllium	-	-	-	-	-	3.5	2.6	4.8	-	-	<0.5	mg/kg	TM30/PM15
Cadmium #M	-	-	-	-	-	1.0	1.2	0.3	-	-	<0.1	mg/kg	TM30/PM15
Chromium #M	-	-	-	-	-	58.9	58.1	51.3	-	-	<0.5	mg/kg	TM30/PM15
Copper #M	-	-	-	-	-	318 _{AA}	187	60	-	-	<1	mg/kg	TM30/PM15
Lead #M	2103	1473	1407	1233	1383	1315	785	364	1095	903	<5	mg/kg	TM30/PM15
Mercury #M	-	-	-	-	-	2.7	1.2	0.9	-	-	<0.1	mg/kg	TM30/PM15
Nickel #M	-	-	-	-	-	53.3	39.5	14.8	-	-	<0.7	mg/kg	TM30/PM15
Selenium #M	-	-	-	-	-	1	<1	<1	-	-	<1	mg/kg	TM30/PM15
Vanadium	-	-	-	-	-	71	72	111	-	-	<1	mg/kg	TM30/PM15
Water Soluble Boron #M	-	-	-	-	-	3.0	1.7	2.4	-	-	<0.1	mg/kg	TM74/PM32
Zinc ^{#M}	-	-	-	-	-	821	471	230	-	-	<5	mg/kg	TM30/PM15
PAH MS													
Naphthalene **M	-	-	-	-	-	0.12	0.09	0.26	-	-	<0.04	mg/kg	TM4/PM8
Acenaphthylene	-	-	-	-	-	0.24	0.19	0.90	-	-	<0.03	mg/kg	TM4/PM8
Acenaphthene #M	-	-	-	-	-	<0.05	0.06	0.31	-	-	<0.05	mg/kg	TM4/PM8
Fluorene #M	-	-	-	-	-	<0.04	0.06	0.34	-	-	<0.04	mg/kg	TM4/PM8
Phenanthrene *M	-	-	-	-	-	0.50	1.21	5.39	-	-	<0.03	mg/kg	TM4/PM8
Anthracene #	-	-	-	-	-	0.28	0.42	2.06	-	-	<0.04	mg/kg	TM4/PM8
Fluoranthene #M	-	-	-	-	-	1.49	3.31	11.84	-	-	<0.03	mg/kg	TM4/PM8
Pyrene#	-	-	-	-	-	1.34	2.79	9.79	-	-	<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene#	-	-	-	-	-	0.86	1.56	5.68	-	-	<0.06	mg/kg	TM4/PM8
Chrysene *M	-	-	-	-	-	1.04	1.67	5.53	-	-	<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #M	-	-	-	-	-	2.12	2.83	9.62	-	-	<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	-	-	-	-	-	1.06	1.51	5.00	-	-	<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene *M	-	-	-	-	-	1.16	1.29	4.37	-	-	<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	-	-	-	-	-	0.19	0.25	0.88	-	-	<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	-	-	-	-	-	1.08	1.14	4.01	-	-	<0.04	mg/kg	TM4/PM8
PAH 16 Total	-	-	-	-	-	11.5	18.4	66.0	-	-	<0.6	mg/kg	TM4/PM8
Benzo(b)fluoranthene	-	-	-	-	-	1.53	2.04	6.93	-	-	<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	-	-	-	-	-	0.59	0.79	2.69	-	-	<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	-	-	-	-	-	92	92	91	-	-	<0	%	TM4/PM8
Natural Moisture Content	-	-	-	-	-	20.0	17.9	14.5	-	-	<0.1	%	PM4/PM0
Sample Type	Conduit	Sandy Loam	Clari	Clari	Cond I	Conduit	Claver C :	Claver C '	Clayer C :	Clay		Non-	DM43/DM40
Sample Type	,	,	Clay	Clay		Sandy Loam		Clayey Sand		Clay		None	PM13/PM0
Sample Colour	Dark Brown		Dark Brown							wedium Brown		None	PM13/PM0
Other Items	atones, brick fragment and roots	stones and brick fragment	loam, roots and stones	stones and loam	stones and roots	stones and roots	stones and brick fragment	stones adn carbon	stones and brick fragment	stones, item and sand brick fragment		None	PM13/PM0

Location: Treadgold House (Stage 2 Grenfell)

Contact: David Dyson

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level less than 0.1%, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative sampling.

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Date Of Analysis	Analysis	Result
21/18548	2	TH163	0.00-0.05	32	29/11/2021	General Description (Bulk Analysis)	Soil/Stones
					29/11/2021	Asbestos Fibres	NAD
					29/11/2021	Asbestos ACM	NAD
					29/11/2021	Asbestos Type	NAD
					29/11/2021	Asbestos Level Screen	NAD
21/18548	2	TH165	0.00-0.05	40	29/11/2021	General Description (Bulk Analysis)	Soil/Stones
					29/11/2021	Asbestos Fibres	NAD
					29/11/2021	Asbestos ACM	NAD
					29/11/2021	Asbestos Type	NAD
					29/11/2021	Asbestos Level Screen	NAD
21/18548	2	TH153	0.00-0.05	48	29/11/2021	General Description (Bulk Analysis)	Soil/Stones
					29/11/2021	Asbestos Fibres	NAD
					29/11/2021	Asbestos ACM	NAD
					29/11/2021	Asbestos Type	NAD
					29/11/2021	Asbestos Level Screen	NAD
21/18548	2	TH155	0.00-0.05	56	29/11/2021	General Description (Bulk Analysis)	Soil/Stones
					29/11/2021	Asbestos Fibres	NAD
					29/11/2021	Asbestos ACM	NAD
					29/11/2021	Asbestos Type	NAD
					29/11/2021	Asbestos Level Screen	NAD
21/18548	2	TH157	0.00-0.05	64	29/11/2021	General Description (Bulk Analysis)	Soil/Stones
					29/11/2021	Asbestos Fibres	NAD
					29/11/2021	Asbestos ACM	NAD
					29/11/2021	Asbestos Type	NAD
					29/11/2021	Asbestos Level Screen	NAD
21/18548	2	TH160	0.00-0.05	72	29/11/2021	General Description (Bulk Analysis)	soil
					29/11/2021	Asbestos Fibres	NAD
					29/11/2021	Asbestos ACM	NAD
					29/11/2021	Asbestos Type	NAD
					29/11/2021	Asbestos Level Screen	NAD
21/18548	2	TH158	0.00-0.05	80	29/11/2021	General Description (Bulk Analysis)	soil
					29/11/2021	Asbestos Fibres	NAD
					29/11/2021	Asbestos ACM	NAD

Location: Treadgold House (Stage 2 Grenfell)

Contact: David Dyson

Contact			David Dy				
EMT	5	Campula ID		EMT	Date Of		2 4
Job No.	Batch	Sample ID	Depth	Sample No.	Analysis	Analysis	Result
21/18548	2	TH158	0.00-0.05	80	29/11/2021	Asbestos Type	NAD
					29/11/2021	Asbestos Level Screen	NAD
21/18548	2	TH159	0.00-0.05	88	29/11/2021	General Description (Bulk Analysis)	Soil/Stones
					29/11/2021	Asbestos Fibres	NAD
					29/11/2021	Asbestos ACM	NAD
					29/11/2021	Asbestos Type	NAD
					29/11/2021	Asbestos Level Screen	NAD
21/18548	2	TH150	0.00-0.05	96	29/11/2021	General Description (Bulk Analysis)	Soil/Stones
					29/11/2021	Asbestos Fibres	NAD
					29/11/2021	Asbestos ACM	NAD
					29/11/2021	Asbestos Type	NAD
					29/11/2021	Asbestos Level Screen	NAD
21/18548	2	TH161	0.00-0.05	104	29/11/2021	General Description (Bulk Analysis)	Soil/Stones
					29/11/2021	Asbestos Fibres	NAD
					29/11/2021	Asbestos ACM	NAD
					29/11/2021	Asbestos Type	NAD
					29/11/2021	Asbestos Level Screen	NAD
21/18548	2	TH154	0.00-0.05	116	29/11/2021	General Description (Bulk Analysis)	Soil/Stones
					29/11/2021	Asbestos Fibres	NAD
					29/11/2021	Asbestos ACM	NAD
					29/11/2021	Asbestos Type	NAD
					29/11/2021	Asbestos Level Screen	NAD
21/18548	2	TH151	0.00-0.05	128	29/11/2021	General Description (Bulk Analysis)	soil
					29/11/2021	Asbestos Fibres	NAD
					29/11/2021	Asbestos ACM	NAD
					29/11/2021	Asbestos Type	NAD
					29/11/2021	Asbestos Level Screen	NAD
21/18548	2	TH152	0.00-0.05	136	29/11/2021	General Description (Bulk Analysis)	soil
					29/11/2021	Asbestos Fibres	NAD
					29/11/2021	Asbestos ACM	NAD
					29/11/2021	Asbestos Type	NAD
					29/11/2021	Asbestos Level Screen	NAD
21/18548	2	TH156	0.10-0.20	148	29/11/2021	General Description (Bulk Analysis)	Soil/Stone
					29/11/2021	Asbestos Fibres	NAD
					29/11/2021	Asbestos ACM	NAD
					29/11/2021	Asbestos Type	NAD
					29/11/2021	Asbestos Level Screen	NAD
21/18548	2	TH149	0.00-0.05	152	29/11/2021	General Description (Bulk Analysis)	Soil/Stone
					29/11/2021	Asbestos Fibres	Fibre Bundles
					29/11/2021	Asbestos ACM	NAD
					29/11/2021	Asbestos Type	Chrysotile
					29/11/2021	Asbestos Level Screen	less than 0.1%
21/18548	2	TH142	0.30-0.40	164	29/11/2021	General Description (Bulk Analysis)	Soil/Stone
					29/11/2021	Asbestos Fibres	NAD
						1	ı

Location: Treadgold House (Stage 2 Grenfell)

Contact: David Dyson

Oontac			David Dy				
EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Date Of Analysis	Analysis	Result
21/18548	2	TH142	0.30-0.40	164	20/11/2021	Asbestos ACM	NAD
21/10040	2	111172	0.30-0.40	104	29/11/2021		
					29/11/2021	Asbestos Type	NAD
					29/11/2021	Asbestos Level Screen	NAD
21/18548	2	TH148	0.00-0.05	172	29/11/2021	General Description (Bulk Analysis)	Soil/Stones
					29/11/2021	Asbestos Fibres	NAD
					29/11/2021	Asbestos ACM	NAD
					29/11/2021	Asbestos Type	NAD
					29/11/2021	Asbestos Level Screen	NAD
21/18548	2	TH104	0.00-0.05	180	29/11/2021	General Description (Bulk Analysis)	 Soil/Stones
	-		0.00 0.00	.00	29/11/2021	Asbestos Fibres	NAD
					29/11/2021	Asbestos ACM	NAD
					29/11/2021	Asbestos Type	NAD
					29/11/2021	Asbestos Level Screen	NAD
		711404					
21/18548	2	TH104	1.10-1.20	192	29/11/2021	General Description (Bulk Analysis)	Soil/Stones
					29/11/2021	Asbestos Fibres	NAD
					29/11/2021	Asbestos ACM	NAD
					29/11/2021	Asbestos Type	NAD
					29/11/2021	Asbestos Level Screen	NAD
21/18548	2	TH110	0.10-0.20	204	29/11/2021	General Description (Bulk Analysis)	soil
					29/11/2021	Asbestos Fibres	NAD
					29/11/2021	Asbestos ACM	NAD
					29/11/2021	Asbestos Type	NAD
					29/11/2021	Asbestos Level Screen	NAD
21/18548	2	TH102	0.00-0.05	216	29/11/2021	General Description (Bulk Analysis)	soil
					29/11/2021	Asbestos Fibres	NAD
					29/11/2021	Asbestos ACM	NAD
					29/11/2021	Asbestos Type	NAD
					29/11/2021	Asbestos Level Screen	NAD
					23/11/2021	Assestos Level ociden	TVAL
21/18548	2	TH116	0.00-0.05	222	29/11/2021	Conoral Description (Bulk Analysis)	 Soil/Stone
21/10040	2	111110	0.00-0.03	232		General Description (Bulk Analysis)	
						Asbestos Fibres	NAD
						Asbestos ACM	NAD
						Asbestos Type	NAD
					29/11/2021	Asbestos Level Screen	NAD
21/18548	2	TH170	0.00-0.05	252	29/11/2021	General Description (Bulk Analysis)	Soil/Stone
		-			29/11/2021	Asbestos Fibres	Fibre Bundles
					29/11/2021	Asbestos ACM	NAD NAD
					29/11/2021		Chrysotile
						Asbestos Type	
					29/11/2021	Asbestos Level Screen	less than 0.1%

Location: Treadgold House (Stage 2 Grenfell)

Contact: David Dyson

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
No deviating sample report results for job 21/18548						

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 21/18548

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is guoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

EMT Job No.: 21/18548

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ос	Outside Calibration Range
AA	x5 Dilution

HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

EMT Job No: 21/18548

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes	Yes	AR	Yes
PM13	A visual examination of the solid sample is carried out to ascertain sample make up, colour and any other inclusions. This is not a geotechnical description.	PM0	No preparation is required.			AR	No
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec. 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec. 1996; Modified EPA Method 3050B, Rev.2, Dec. 1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes	Yes	AD	Yes
TM65	Asbestos Bulk Identification method based on HSG 248 First edition (2006)	PM42	Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1:2018. Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM74	Analysis of water soluble boron (20:1 extract) by ICP-OES.	PM32	Hot water soluble boron is extracted from dried and ground samples using a 20:1 ratio.	Yes	Yes	AD	Yes

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

trial Park W: www.element.com

AECOM 9th Floor Reception Sunley House 4 Bedford Park Croydon CR0 2AP

Attention: David Dyson

Date: 3rd December, 2021

Your reference : 60632092

Our reference : Test Report 21/18548 Batch 2 Schedule C

Location : Treadgold House (Stage 2 Grenfell)

Date samples received : 25th November, 2021

Status: Final Report

Issue: 1

Sixty samples were received for analysis on 25th November, 2021 of which two were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Baler

Paul Boden BSc Senior Project Manager

Please include all sections of this report if it is reproduced

Client Name: AECOM Reference: 60632092

Location: Treadgold House (Stage 2 Grenfell)

Contact: David Dyson

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level less than 0.1%, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative sampling.

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Date Of Analysis	Analysis	Result
21/18548	2	TH149	0.00-0.05	152	02/12/2021	Total ACM Gravimetric Quantification (% Asb)	<0.001 (mass %)
					02/12/2021	Total Detailed Gravimetric Quantification (% Asb)	<0.001 (mass %)
					02/12/2021	Total Gravimetric Quantification (ACM + Detailed) (% Asb)	<0.001 (mass %)
					02/12/2021	Asbestos PCOM Quantification (Fibres)	<0.001 (mass %)
					02/12/2021	Asbestos Gravimetric & PCOM Total	<0.001 (mass %)
21/18548	2	TH170	0.00-0.05	252	02/12/2021	Total ACM Gravimetric Quantification (% Asb)	<0.001 (mass %)
					02/12/2021	Total Detailed Gravimetric Quantification (% Asb)	<0.001 (mass %)
					02/12/2021	Total Gravimetric Quantification (ACM + Detailed) (% Asb)	<0.001 (mass %)
					02/12/2021	Asbestos PCOM Quantification (Fibres)	<0.001 (mass %)
					02/12/2021	Asbestos Gravimetric & PCOM Total	<0.001 (mass %)

Client Name: AECOM Reference: 60632092

Location: Treadgold House (Stage 2 Grenfell)

Contact: David Dyson

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason				
	No deviating sample report results for job 21/18548									

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 21/18548

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is guoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

EMT Job No.: 21/18548

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range

HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

EMT Job No: 21/18548

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM131	Quantification of Asbestos Fibres and ACM based on HSG248 First edition:2006, HSG 264 Second edition:2012, HSE Contract Research Report No.83/1996, MDHS 87:1998, WM3 1st Edition v1.1:2018	PM42	Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1:2018. Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	Yes

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

AECOM 9th Floor Reception Sunley House 4 Bedford Park Croydon CR0 2AP

Attention: David Dyson

Date: 7th January, 2022

Your reference: 60632092

Our reference : Test Report 21/18548 Batch 2 Schedule F

Location : Treadgold House (Stage 2 Grenfell)

Date samples received : 25th November, 2021

Status: Final Report

Issue: 1

Sixty samples were received for analysis on 25th November, 2021 of which two were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Balen

Paul Boden BSc Senior Project Manager

Please include all sections of this report if it is reproduced

Client Name: AECOM

Reference: 60632092

Location: Treadgold House (Stage 2 Grenfell)

Contact: David Dyson
FMT Joh No: 21/18548

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Job No:	21/18548						_		
EMT Sample No.	53-56	57-60							
Sample ID	TH155	TH155							
Depth	0.00-0.05	0.10-0.20					Please se	e attached n	otes for all
COC No / misc							abbrevia	ations and a	cronyms
Containers		VJT							
Sample Date	22/11/2021	22/11/2021					Ì		
Sample Type		Sandy Loam					ĺ		
Batch Number		2							Method
Date of Receipt		25/11/2021					LOD/LOR	Units	No.
Bioaccessible Lead (Stomach)	1345	2081					<5	mg/kg	TM171/PM124
Bioaccessible Lead (Stomach And Intestine)	352	609					<5	mg/kg	TM171/PM124
Total Lead	1676	3482 _{AA}					<5	mg/kg	TM30/PM15
Bioaccessible Fraction (BAF) - Lead	80	60 _{AA}					<0	%	TM30/PM15/PM124

Client Name: AECOM Reference: 60632092

Location: Treadgold House (Stage 2 Grenfell)

Contact: David Dyson

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason				
	No deviating sample report results for job 21/18548									

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 21/18548

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is guoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

EMT Job No.: 21/18548

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
M	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range
AA	x5 Dilution

HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

EMT Job No: 21/18548

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.				Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15/PM124	please refer to PM15/PM124 for method details				Yes
TM171	Operation and analysis of metals by Thermo Fisher iCAPQc ICP-MS	PM124	UBM Unified BARGE bioaccessibility extraction of soil, in vitro method for simulating human digestive procedure using synthetic digestive fluids, carried out on the <250um fraction of the sample.				Yes

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

AECOM 9th Floor Reception Sunley House 4 Bedford Park Croydon CR0 2AP

Attention: David Dyson

Date: 20th December, 2021

Your reference: 60632092

Our reference: Test Report 21/18548 Batch 2 Schedule D 21/18548 Batch 2 Schedule E

Location : Treadgold House (Stage 2 Grenfell)

Date samples received: 25th November, 2021

Status: Final report

Issue:

Sixty samples were received for analysis on 25th November, 2021 of which one was scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Baler

Paul Boden BSc Senior Project Manager

Please include all sections of this report if it is reproduced

Client Name: AECOM

Reference: 60632092

Location: Treadgold House (Stage 2 Grenfell)

Contact: David Dyson EMT Job No: 21/18548

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMI JOB NO:	21/18548										
EMT Sample No.	41-44										
Sample ID	TH165										
Depth	0.10-0.20					Diagona	e attached n	otoo for all			
COC No / misc						abbrevi	ations and a	cronyms			
Containers	VJT										
Sample Date	22/11/2021										
Sample Type	Loam										
Batch Number	2					LOD/LOR	Units	Method			
Date of Receipt						LOD/LOK	Offics	No.			
Lead #M (dried and crushed)	8536 _{AB}					<5	mg/kg	TM30/PM15			
Lead **M (as received)	4740 _{AA}					<5	mg/kg	TM30/PM15			
,											

Client Name: AECOM Reference: 60632092

Location: Treadgold House (Stage 2 Grenfell)

Contact: David Dyson

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
					No deviating sample report results for job 21/18548	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 21/18548

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory.

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

EMT Job No.: 21/18548

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
M	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range
AA	x5 Dilution

HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

EMT Job No: 21/18548

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes	Yes	AD	Yes

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

AECOM 9th Floor Reception Sunley House 4 Bedford Park Croydon CR0 2AP

Attention: David Dyson

Date: 2nd December, 2021

Your reference : 60632092

Our reference: Test Report 21/18548 Batch 3 Schedule A 21/18548 Batch 3 Schedule B

Location : Treadgold House (Stage 2 Grenfell)

Date samples received: 26th November, 2021

Status: Final Report

Issue: 1

Eighty six samples were received for analysis on 26th November, 2021 of which eighty six were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Simon Gomery BSc

Project Manager

Please include all sections of this report if it is reproduced

Client Name: AECOM Report : Solid

Reference: 60632092

Location: Treadgold House (Stage 2 Grenfell) Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Contact: David Dyson PMT Job No: 21/18548

EMT Job No:	21/18548												
EMT Sample No.	269-272	273-276	277-280	281-284	285-288	289-292	293-296	297-300	301-304	305-308			
Sample ID	TH123	TH123	TH128	TH128	TH135	TH135	TH141	TH141	TH143	TH143			
Depth	0.00-0.05	0.10-0.20	0.00-0.05	0.10-0.20	0.00-0.05	0.10-0.20	0.00-0.05	0.10-0.20	0.00-0.05	0.10-0.20		e attached n	
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Sample Date	24/11/2021	24/11/2021	24/11/2021	24/11/2021	24/11/2021	24/11/2021	24/11/2021	24/11/2021	24/11/2021	24/11/2021			
Sample Type	Clayey Loam	Clayey Loam	Clay	Clay	Clay	Clayey Loam	Clayey Loam	Clayey Loam	Clay	Clayey Loam			
Batch Number	3	3	3	3	3	3	3	3	3	3	LOD/LOR	Units	Method
Date of Receipt	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	LOD/LOR	Office	No.
Arsenic ^{#M}	-	-	28.3	-	-	-	32.9	-	-	-	<0.5	mg/kg	TM30/PM15
Barium ^{#M}	-	-	440	-	-	-	389	-	-	-	<1	mg/kg	TM30/PM15
Beryllium	-	-	2.4	-	-	-	2.0	-	-	-	<0.5	mg/kg	TM30/PM15
Cadmium #M	-	-	1.2	-	-	-	0.7	-	-	-	<0.1	mg/kg	TM30/PM15
Chromium #M	-	-	84.3	-	-	-	60.0	-	-	-	<0.5	mg/kg	TM30/PM15
Copper #M	-	-	292 _{AA}	-	-	-	198	-	-	-	<1	mg/kg	TM30/PM15
Lead ^{#M}	999	1100	758	661	947	994	584	649	1357	1616	<5	mg/kg	TM30/PM15
Mercury #M	-	-	5.0	-	-	-	0.9	-	-	-	<0.1	mg/kg	TM30/PM15
Nickel *M	-	-	38.7	-	-	-	32.6	-	-	-	<0.7	mg/kg	TM30/PM15
Selenium **M	-	-	1	-	-	-	1	-	-	-	<1	mg/kg	TM30/PM15
Vanadium	-	-	58	-	-	-	47	-	-	-	<1	mg/kg	TM30/PM15
Water Soluble Boron ***	-	-	10.9	-	-	-	5.7	-	-	-	<0.1	mg/kg	TM74/PM32
Zinc #M	-	-	635	-	-	-	440	-	-	-	<5	mg/kg	TM30/PM15
Sample Type	Clayey Loam	Clayey Loam	Clay	Clay	Clay	Clayey Loam	Clayey Loam	Clayey Loam	Clay	Clayey Loam		None	PM13/PM0
Sample Colour	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown		None	PM13/PM0				
Other Items	stones, vegetation	stones, vegetation	stones, vegetation	stones, vegetation	stones, vegetation. loam	stones, tile, vegetation	stones, debris, glass, vegetation	stones, vegetation	stones, vegetation, loam	stones, vegetation		None	PM13/PM0

Client Name: AECOM Report : Solid

Reference: 60632092

Location: Treadgold House (Stage 2 Grenfell) Solids: V=60g VOC jar,

Contact: David Dyson EMT Job No: 21/18548

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EWI JOD NO:	21/10040										•		
EMT Sample No.	309-312	313-316	317-320	321-324	325-328	329-332	333-336	337-340	341-344	345-348			
Sample ID	TH146	TH146	TH133	TH133	TH138	TH138	DUP06	TH139	TH139	TH140			
Depth	0.00-0.05	0.10-0.20	0.00-0.05	0.10-0.20	0.00-0.05	0.10-0.20	0.10-0.20	0.00-0.05	0.10-0.20	0.00-0.05	Diagon	e attached n	otoo for all
COC No / misc												ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Sample Date	24/11/2021	24/11/2021	24/11/2021	24/11/2021	24/11/2021	24/11/2021	24/11/2021	24/11/2021	24/11/2021	24/11/2021			
Sample Type	Clayey Loam	Clay	Clay	Clay	Clay	Clay	Clayey Loam	Clay	Clay	Clay			
Batch Number	3	3	3	3	3	3	3	3	3	3			Method
Date of Receipt	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	LOD/LOR	Units	No.
Arsenic *M	-	-	-	-	-	-	-	-	-	-	<0.5	mg/kg	TM30/PM15
Barium #M	-	-	-	-	-	-	-	-	-	-	<1	mg/kg	TM30/PM15
Beryllium	-	-	-	-	-	-	-	-	-	-	<0.5	mg/kg	TM30/PM15
Cadmium #M	-	-	-	-	-	-	-	-	-	-	<0.1	mg/kg	TM30/PM15
Chromium #M	-	-	_	_	_	-	-	_	_	_	<0.5	mg/kg	TM30/PM15
Copper*M	-	_	_	-	-	_	_	_	_	_	<1	mg/kg	TM30/PM15
Lead **M													TM30/PM15
	1358	1751	1736	1876	1834	5942 _{AA}	1344	1353	1135	1398	<5	mg/kg	
Mercury #M	-	-	-	-	-	-	-	-	-	-	<0.1	mg/kg	TM30/PM15
Nickel #M	-	-	-	-	-	-	-	-	-	-	<0.7	mg/kg	TM30/PM15
Selenium #M	-	-	-	-	-	-	-	-	-	-	<1	mg/kg	TM30/PM15
Vanadium	-	-	-	-	-	-	-	-	-	-	<1	mg/kg	TM30/PM15
Water Soluble Boron ^{#M}	-	-	-	-	-	-	-	-	-	-	<0.1	mg/kg	TM74/PM32
Zinc **M	-	-	-	-	-	-	-	-	-	-	<5	mg/kg	TM30/PM15
Sample Type	Clayey Loam	Clay	Clay	Clay	Clay	Clay	Clayey Loam	Clay	Clay	Clay		None	PM13/PM0
Sample Colour		Medium Brown		•		-						None	PM13/PM0
Other Items	stones, vegetation, brick	stones, vegetation, loam	stones, vegetation		stones, vegetation, loam	stones, vegetation	stones, vegetation			stones, vegetation, loam		None	PM13/PM0
Other items			Stories, Vegetation	otorico, regetation		Guido, Vogetaliui	GOIGO, VOGGGGGG	Stories, regulator	Storico, Vogetation			None	1 10113/1 1010
					l			l			1		

Client Name: AECOM Report : Solid

Reference: 60632092

Location: Treadgold House (Stage 2 Grenfell) Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Contact: David Dyson EMT Job No: 21/18548

EMT Job No:	21/18548													
EMT Sample No.	349-352	353-356	357-360	361-364	365-368	369-372	373-376	377-380	381-384	385-388				
Sample ID	TH140	TH131	TH131	TH136	TH136	TH137	TH137	TH132	TH132	TH147				
Depth	0.10-0.20	0.00-0.05	0.10-0.20	0.00-0.05	0.10-0.20	0.00-0.05	0.10-0.20	0.00-0.05	0.10-0.20	0.00-0.05	Please se	e attached n	otes for all	
COC No / misc											abbrevi	ations and a	cronyms	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT				
Sample Date	24/11/2021	24/11/2021	24/11/2021	24/11/2021	24/11/2021	24/11/2021	24/11/2021	24/11/2021	24/11/2021	24/11/2021				
Sample Type	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clayey Loam				
Batch Number	3	3	3	3	3	3	3	3	3	3			Method	
Date of Receipt	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	LOD/LOR	Units	No.	
Arsenic #M	-	-	-	-	-	-	109.8	-	-	-	<0.5	mg/kg	TM30/PM15	
Barium ^{#M}	-	-	-	-	-	-	2009	-	-	-	<1	mg/kg	TM30/PM15	
Beryllium	-	-	-	-	-	-	9.8	-	-	-	<0.5	mg/kg	TM30/PM15	
Cadmium #M	-	-	-	-	-	-	1.7	-	-	-	<0.1	mg/kg	TM30/PM15	
Chromium #M	-	-	-	-	-	-	94.3	-	-	-	<0.5	mg/kg	TM30/PM15	
Copper ^{#M}	-	-	-	-	-	-	1061 _{AA}	-	-	-	<1	mg/kg	TM30/PM15	
Lead ^{#M}	3172 _{AA}	1893	1831	1615	3644 _{AA}	2766 _{AA}	3774 _{AA}	1692	4638 _{AA}	1432	<5	mg/kg	TM30/PM15	
Mercury **M	-	-	-	-	-	-	4.8	-	-	-	<0.1	mg/kg	TM30/PM15	
Nickel #M	-	-	-	-	-	-	120.4	-	-	-	<0.7	mg/kg	TM30/PM15	
Selenium *M	-	-	-	-	-	-	2	-	-	-	<1	mg/kg	TM30/PM15	
Vanadium	-	-	-	-	-	-	125	-	-	-	<1	mg/kg	TM30/PM15	
Water Soluble Boron ***	-	-	-	-	-	-	5.6	-	-	-	<0.1	mg/kg	TM74/PM32	
Zinc #M	-	-	-	-	-	-	1648	-	-	-	<5	mg/kg	TM30/PM15	
Sample Type	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clayey Loam		None	PM13/PM0	
Sample Colour	Medium Brown		Medium Brown							Medium Brown		None	PM13/PM0	
Other Items	stones, vegetation, loam	stones, vegetation, loam	stones, brick, vegetation	stones, vegetation	stones, brick, vegetation	stones, vegetation	stones, vegetation	stones, vegetation	stones, vegetation, loam	stones, vegetation		None	PM13/PM0	

Client Name: AECOM

Reference: 60632092

Location: Treadgold House (Stage 2 Grenfell) Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Report: Solid

Contact: David Dyson EMT Job No: 21/18548

EAT Semple No. 309-302 355-366 307-400 401-400 405-406 409-412 415-416 417-420 421-424 428-422	EMT Job No:	21/18548												
Depth COC No / misc COC	EMT Sample No.	389-392	393-396	397-400	401-404	405-408	409-412	413-416	417-420	421-424	425-428			
COC No / misc Containers VJT	Sample ID	TH147	TH144	TH144	DUP07	TH167	TH167	TH167	TH167	TH162	TH162			
COC No / misc Containers VJT	Depth	0.10-0.20	0.00-0.05	0.10-0.20	0.00-0.05	0.00-0.05	0.10-0.20	0.30-0.40	0.60-0.70	0.00-0.05	0.10-0.20	Please se	e attached n	otes for all
Nation N	COC No / misc													
Sample Date Sample Date Sample Date Sample Type Clay		VIT	VIT	VIT	VIT	VIT	VIT	VIT	VIT	VIT	VIT			
Clay														
Batch Number 3 3 3 3 3 3 3 3 3														
Date of Receipt 26/11/2021	Sample Type	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clayey Loam	Clay			
Date of Receipt 26/11/2021	Batch Number	3	3	3	3	3	3	3	3	3	3	LOD/LOR	Units	
Barium ^{™M} - - <t< th=""><th>Date of Receipt</th><th>26/11/2021</th><th>26/11/2021</th><th>26/11/2021</th><th>26/11/2021</th><th>26/11/2021</th><th>26/11/2021</th><th>26/11/2021</th><th>26/11/2021</th><th>26/11/2021</th><th>26/11/2021</th><th></th><th></th><th>NO.</th></t<>	Date of Receipt	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021			NO.
Beryllium		-	-	-	-	21.8	-	-	-	42.5	-	<0.5	mg/kg	TM30/PM15
Cadmium #M		-	-	-	-	-	-	-	-	-	-		mg/kg	
Chromium **M - - - 82.1 - - 73.4 - <0.5		-	-	-	-		-	-	-		-			
Copper #M - - - 189 - - - 390_AA - 1 mg/kg TM30/PM15 Lead #M 2107 1059 596 1294 677 2229 451 469 1411 6245_AA <5														
Lead #M 2107 1059 596 1294 677 2229 451 469 1411 6245AA <5														
Mercury **M - - - - 0.6 - - - 1.6 - <0.1														
Nickel **M - - - - 47.5 - - 58.9 - <0.7			1059											
Selenium #M - - - - - - - - -			-											
Vanadium -<														
Water Soluble Boron M														
Zinc *** 630 840 - <5 mg/kg TM30/PM15 Sample Type Clay Clay Clay Clay Clay Clay Clay Clay		_	_	_	_	-	_		_	_	_			
Sample Type Clay Clay Clay Clay Clay Clay Clay Clay		-	-	-	-	630	-	-	-	840	-			
Sample Colour Medium Brown Medi													0 0	
	Sample Type	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clayey Loam	Clay		None	PM13/PM0
Other Items dozes, vegetation and consecution of the consecution of t	Sample Colour	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown		None	PM13/PM0
	Other Items	stones, vegetation	stones, vegetation	stones, vegetation	stones, vegetation, loam	stones, vegetation	stones, vegetation	stones, chalk	stones, brick	stones, vegetation	stones, chalk, vegetation, loam		None	PM13/PM0

Client Name: AECOM

Reference: 60632092

Location: Treadgold House (Stage 2 Grenfell)

Contact: David Dyson EMT Job No: 21/18548

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Job No:	21/18548												
EMT Sample No.	429-432	433-436	437-440	441-444	445-448	449-452	453-456	457-460	461-464	465-468			
Sample ID	TH162	TH119	TH119	TH119	TH130	TH130	TH130	TH130	TH145	TH145			
Depth	0.30-0.40	0.00-0.05	0.10-0.20	0.30-0.40	0.00-0.05	0.10-0.20	0.30-0.40	0.60-0.70	0.00-0.05	0.10-0.20	Please se	e attached n	otes for all
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Sample Date	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021			
Sample Type	Clay	Clay	Clay	Clay	Clayey Loam	Clay	Clay	Clay	Clayey Loam	Clayey Loam			
Batch Number	3	3	3	3	3	3	3	3	3	3	LOD/LOR	Units	Method
Date of Receipt	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	LOBILOIT	Onito	No.
Arsenic #M	-	-	64.5	-	81.3	-	-	-	49.7	-	<0.5	mg/kg	TM30/PM15
Barium #M	-	-	1361	-	-	-	-	-	-	-	<1	mg/kg	TM30/PM15
Beryllium	-	-	4.9	-	-	-	-	-	-	-	<0.5	mg/kg	TM30/PM15
Cadmium #M	-	-	1.6	-	1.5	-	-	-	1.3	-	<0.1	mg/kg	TM30/PM15
Chromium #M	-	-	120.7	-	93.9	-	-	-	74.5	-	<0.5	mg/kg	TM30/PM15
Copper ^{#M}	-	-	594 _{AA}	-	594 _{AA}	-	-	-	484 _{AA}	-	<1	mg/kg	TM30/PM15
Lead #M	1090	1843	2174	2069	1774	2307	526	575	1476	1766	<5	mg/kg	TM30/PM15
Mercury #M	-	-	2.6	-	3.1	-	-	-	2.2	-	<0.1	mg/kg	TM30/PM15
Nickel #M	-	-	85.1	-	77.8	-	-	-	62.6	-	<0.7	mg/kg	TM30/PM15
Selenium #M	-	-	1	-	4	-	-	-	3	-	<1	mg/kg	TM30/PM15
Vanadium	-	-	97	-	-	-	-	-	-	-	<1	mg/kg	TM30/PM15
Water Soluble Boron #M	-	-	4.1	-	-	-	-	-	-	-	<0.1	mg/kg	TM74/PM32
Zinc ^{#M}	-	-	1163	-	1358	-	-	-	1177	-	<5	mg/kg	TM30/PM15
Sample Type	Clay	Clay	Clay	Clay	Clayey Loam	Clay	Clay	Clay	Clayey Loam	Clayey Loam		None	PM13/PM0
Sample Colour	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown		None	PM13/PM0
Other Items	stones, vegetation, loam	stones, vegetation, loam	stones, brick, vegetation	stones, brick, vegetation	stones, vegetation	stones, vegetation, loam	stones, vegetation, sand	stones, chalk, vegetation	stones, vegetation	stones, vegetation		None	PM13/PM0

Client Name: AECOM

Reference: 60632092

Location: Treadgold House (Stage 2 Grenfell) Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Report: Solid

Contact: David Dyson EMT Joh No: 21/18548

EMT Job No:	21/18548												
EMT Sample No.	469-472	473-476	477-480	481-484	485-488	489-492	493-496	497-500	501-504	505-508			
Sample ID	TH145	TH134	TH134	TH134	TH134	TH125	TH125	TH125	TH118	TH118			
Depth	0.30-0.40	0.00-0.05	0.10-0.20	0.30-0.40	0.60-0.70	0.00-0.05	0.10-0.20	0.30-0.40	0.00-0.05	0.10-0.20	Please se	e attached n	otos for all
COC No / misc												ations and a	
Containers		VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Sample Date						25/11/2021							
Sample Type	-	Clay	Clay	Clay	Clay	Clayey Loam	Clayey Loam	-	Clayey Loam	,			
Batch Number	3	3	3	3	3	3	3	3	3	3	LOD/LOR	Units	Method
Date of Receipt	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021			No.
Arsenic **M	-	-	-	-	-	-	-	-	16.3	-	<0.5	mg/kg	TM30/PM15
Barium #M	-	-	-	-	-	-	-	-	-	-	<1	mg/kg	TM30/PM15
Beryllium	-	-	-	-	-	-	-	-	-	-	<0.5	mg/kg	TM30/PM15
Cadmium ^{#M} Chromium ^{#M}	-	-	-	-	-	-	-	-	2.3 62.2	-	<0.1 <0.5	mg/kg	TM30/PM15 TM30/PM15
Copper *M	-	-	-	-	-	-	-	-	72	-	<0.5	mg/kg mg/kg	TM30/PM15
Lead *M	2841 _{AA}	717	1081	1649	541	6230 _{AA}	1535	854	342	192	<5	mg/kg	TM30/PM15
Mercury ^{#M}	-	-	-	-	-	-	-	-	0.3	-	<0.1	mg/kg	TM30/PM15
Nickel #M	-	-	-	-	-	-	-	-	21.4	-	<0.7	mg/kg	TM30/PM15
Selenium *M	-	-	-	-	-	-	-	-	1	-	<1	mg/kg	TM30/PM15
Vanadium	-	-	-	-	-	-	-	-	-	-	<1	mg/kg	TM30/PM15
Water Soluble Boron #M	-	-	-	-	-	-	-	-	-	-	<0.1	mg/kg	TM74/PM32
Zinc **M	-	-	-	-	-	-	-	-	258	-	<5	mg/kg	TM30/PM15
Sample Type	Clay	Clay	Clay	Clay	Clay		Clayey Loam	,	Clayey Loam	Clay		None	PM13/PM0
Sample Colour	Medium Brown		Medium Brown									None	PM13/PM0
Other Items	stones, vegetation, loam	stones, vegetation, loam	stones, vegetation	stones, vegetation	stones, brick, vegetation	stones, vegetation	stones, vegetation	stones, brick, vegetation	stones, vegetation	stones		None	PM13/PM0

Client Name: AECOM

Reference: 60632092

Location: Treadgold House (Stage 2 Grenfell)

Contact: David Dyson EMT Job No: 21/18548

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EWI JOD NO:	21/10040										_		
EMT Sample No.	509-512	513-516	517-520	521-524	525-528	529-532	533-536	537-540	541-544	545-548			
Sample ID	TH118	TH118	TH117	TH117	TH117	TH121	TH121	TH121	TH121	TH120			
Depth	0.30-0.40	0.60-0.70	0.00-0.05	0.10-0.20	0.30-0.40	0.00-0.05	0.10-0.20	0.30-0.40	0.60-0.70	0.00-0.05	Di		-4 6!!
COC No / misc												e attached n ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Sample Date	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021			
Sample Type	Clay	Clay	Clay	Clay	Clay	Clay	Clayey Loam	Clay	Clay	Clayey Loam			
Batch Number	3	3	3	3	3	3	3	3	3	3			Method
Date of Receipt	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	LOD/LOR	Units	No.
Arsenic ^{#M}	-	-	-	-	-	40.9	-	-	-	-	<0.5	mg/kg	TM30/PM15
Barium #M	-	-	-	-	-	-	-	-	-	-	<1	mg/kg	TM30/PM15
Beryllium	-	-	-	-	-	-	-	-	-	-	<0.5	mg/kg	TM30/PM15
Cadmium *M	-	-	-	-	-	1.1	-	-	-	-	<0.1	mg/kg	TM30/PM15
Chromium #M	-	-	_	_	-	76.1	-	-	_	_	<0.5	mg/kg	TM30/PM15
Copper *M	-	-	_	_	-	295 _{AA}	-	_	-	_	<1	mg/kg	TM30/PM15
Lead **M		456				1214	818		1027	1065	<5		TM30/PM15
	550		2148	3693 _{AA}	1253			660				mg/kg	
Mercury #M	-	-	-	-		1.7	-	-	-	-	<0.1	mg/kg	TM30/PM15
Nickel #M	-	-	-	-	-	52.9	-	-	-	-	<0.7	mg/kg	TM30/PM15
Selenium *M	-	-	-	-	-	2	-	-	-	-	<1	mg/kg	TM30/PM15
Vanadium	-	-	-	-	-	-	-	-	-	-	<1	mg/kg	TM30/PM15
Water Soluble Boron ^{#M}	-	-	-	-	-	-	-	-	-	-	<0.1	mg/kg	TM74/PM32
Zinc #M	-	-	-	-	-	739	-	-	-	-	<5	mg/kg	TM30/PM15
Sample Type	Clay	Clay	Clay	Clay	Clay	Clay	Clayey Loam	Clay	Clay	Clayey Loam		None	PM13/PM0
Sample Colour	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown		None	PM13/PM0
Other Items	stones, vegetation	stones, brick	stones, vegetation, loam	stones, loam, vegetation	stones, vegetation	stones, vegetation	stones, vegetation	stones, brick, vegetation, loam	stones, vegetation, brick	stones, vegetation		None	PM13/PM0

Client Name: AECOM

Reference: 60632092

Location: Treadgold House (Stage 2 Grenfell) Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Report: Solid

Contact: David Dyson EMT Job No: 21/18548

EMT Job No:	21/18548												
EMT Sample No.	549-552	553-556	557-560	561-564	565-568	569-572	573-576	577-580	581-584	585-588			
Sample ID	TH120	TH120	TH114	TH114	TH114	DUP04	DUP05	TH115	TH115	TH115			
Depth	0.10-0.20	0.30-0.40	0.00-0.05	0.10-0.20	0.30-0.40	0.30-0.40	0.00-0.05	0.00-0.05	0.10-0.20	0.30-0.40		e attached n	
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Sample Date	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021			
Sample Type	Clay	Clay	Clay	Clay	Clay	Clay	Clayey Loam	Clayey Loam	Clayey Loam	Clay			
Batch Number	-	3	3	3	3	3	3	3	3	3			
Date of Receipt								26/11/2021			LOD/LOR	Units	Method No.
						20/11/2021					40 F		TM20/DM45
Arsenic ^{#M} Barium ^{#M}	-	-	59.5	-	-	-	-	69.0	-	-	<0.5	mg/kg	TM30/PM15 TM30/PM15
Beryllium	-	-	1005 5.1	-	-	-	-	-	-	-	<1 <0.5	mg/kg mg/kg	TM30/PM15
Cadmium #M	_	-	1.5	-	_	-	-	1.5	-	_	<0.1	mg/kg	TM30/PM15
Chromium *M	-	-	88.3	-	-	-	-	84.7	-	-	<0.5	mg/kg	TM30/PM15
Copper *M	-	-	368 _{AA}	-	-	-	-	533 _{AA}	-	-	<1	mg/kg	TM30/PM15
Lead *M	2763 _{AA}	1204	1556	1606	1612	3152 _{AA}	1463	1951	4102 _{AA}	1240	<5	mg/kg	TM30/PM15
Mercury **M	-	-	2.6	-	-	-	-	2.7	-	-	<0.1	mg/kg	TM30/PM15
Nickel #M	-	-	68.3	-	-	-	-	81.9	-	-	<0.7	mg/kg	TM30/PM15
Selenium #M	-	-	2	-	-	-	-	<1	-	-	<1	mg/kg	TM30/PM15
Vanadium	-	-	95	-	-	-	-	-	-	-	<1	mg/kg	TM30/PM15
Water Soluble Boron ***	-	-	3.8	-	-	-	-	-	-	-	<0.1	mg/kg	TM74/PM32
Zinc #M	-	-	1086	-	-	-	-	974	-	-	<5	mg/kg	TM30/PM15
Sample Type	Clay	Clay	Clay	Clay	Clay	Clay		Clayey Loam		,		None	PM13/PM0
Sample Colour Other Items	Medium Brown stones, vegetation, loam	Medium Brown	Medium Brown	Medium Brown stones, vegetation, loam	Medium Brown	Medium Brown		Medium Brown				None	PM13/PM0 PM13/PM0
Other items	stones, vegetation, ioam	stones, chaix, vegetatori, loam	stones, vegetation, loam	stones, vegetation, loam	siones, vegetation, loam, onck	stones, vegetation, loam	stones, vegetation	stones, vegetation	stones, vegetation	stones		None	PIVI 13/PIVIU

Client Name: AECOM

Reference: 60632092

Location: Treadgold House (Stage 2 Grenfell)

Contact: David Dyson EMT Job No: 21/18548

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EWIT JOB NO.	21/10040										
EMT Sample No.	589-592	593-596	597-600	601-604	605-608	609-612					
Sample ID	TH122	TH122	TH122	TH169	TH169	TH169					
Depth	0.00-0.05	0.10-0.20	0.30-0.40	0.00-0.05	0.10-0.20	0.30-0.40			Please se	e attached n	otes for all
COC No / misc										ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT					
Sample Date	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021					
Sample Type	Clayey Loam	Clayey Loam	Clay	Clay	Clayey Loam	Clay					
Batch Number	3	3	3	3	3	3					Method
Date of Receipt	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021			LOD/LOR	Units	No.
Arsenic ^{#M}	53.9	-	-	48.5	-	-			<0.5	mg/kg	TM30/PM15
Barium #M	-	-	-	-	-	-			<1	mg/kg	TM30/PM15
Beryllium	-	-	-	-	-	-			<0.5	mg/kg	TM30/PM15
Cadmium #M	1.2	-	-	1.5	-	-			<0.1	mg/kg	TM30/PM15
Chromium #M	79.1	-	-	85.2	-	-			<0.5	mg/kg	TM30/PM15
Copper #M	466 _{AA}	-	-	548 _{AA}	-	-			<1	mg/kg	TM30/PM15
Lead *M	1549	1346	638	3649 _{AA}	1643	1200			<5	mg/kg	TM30/PM15
Mercury #M	3.0	-	-	5.5	-	-			<0.1	mg/kg	TM30/PM15
Nickel *M	64.2	-	-	64.7	-	-			<0.7	mg/kg	TM30/PM15
Selenium *M	<1	-	-	2	-	-			<1	mg/kg	TM30/PM15
Vanadium	-	-	-	-	-	-			<1		TM30/PM15
Water Soluble Boron **M	-	-	-	-	-	-			<0.1	mg/kg	TM74/PM32
Zinc **M	880	-	-	1130	-	-			<5	mg/kg	TM30/PM15
Zinc	000	-	-	1130	-	-			/3	mg/kg	TIVISU/PIVITS
Sample Type	Clavey I oam	Clayey Loam	Clay	Clay	Clayey Loam	Clay				None	PM13/PM0
Sample Colour	Medium Brown	Medium Brown	Medium Brown		Medium Brown					None	PM13/PM0
Other Items	stones, vegetation	stones, vegetation	stones, chalk, vegetation	stones, vegetation		stones				None	PM13/PM0
		<u> </u>	<u> </u>	<u> </u>		<u> </u>					

Client Name: AECOM Reference: 60632092

Location: Treadgold House (Stage 2 Grenfell)

Contact: David Dyson

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level less than 0.1%, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative sampling.

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Date Of Analysis	Analysis	Result
21/18548	3	TH123	0.00-0.05	272	01/12/2021	General Description (Bulk Analysis)	soil
					01/12/2021	Asbestos Fibres	NAD
					01/12/2021	Asbestos ACM	NAD
					01/12/2021	Asbestos Type	NAD
					01/12/2021	Asbestos Level Screen	NAD
21/18548	3	TH128	0.00-0.05	280	01/12/2021	General Description (Bulk Analysis)	soil
					01/12/2021	Asbestos Fibres	NAD
					01/12/2021	Asbestos ACM	NAD
					01/12/2021	Asbestos Type	NAD
					01/12/2021	Asbestos Level Screen	NAD
21/18548	3	TH135	0.00-0.05	288	01/12/2021	General Description (Bulk Analysis)	soil
					01/12/2021	Asbestos Fibres	NAD
					01/12/2021	Asbestos ACM	NAD
					01/12/2021	Asbestos Type	NAD
					01/12/2021	Asbestos Level Screen	NAD
21/18548	3	TH141	0.00-0.05	296	01/12/2021	General Description (Bulk Analysis)	soil
					01/12/2021	Asbestos Fibres	Fibre Bundles
					01/12/2021	Asbestos ACM	NAD
					01/12/2021	Asbestos Type	Amosite
					01/12/2021	Asbestos Level Screen	less than 0.1%
21/18548	3	TH143	0.00-0.05	304	01/12/2021	General Description (Bulk Analysis)	Soil/Stone
					01/12/2021	Asbestos Fibres	NAD
					01/12/2021	Asbestos ACM	NAD
					01/12/2021	Asbestos Type	NAD
					01/12/2021	Asbestos Level Screen	NAD
21/18548	3	TH146	0.00-0.05	312	01/12/2021	General Description (Bulk Analysis)	soil
					01/12/2021	Asbestos Fibres	NAD
					01/12/2021	Asbestos ACM	NAD
					01/12/2021	Asbestos Type	NAD
					01/12/2021	Asbestos Level Screen	NAD
21/18548	3	TH133	0.00-0.05	320	30/11/2021	General Description (Bulk Analysis)	Soil/Stones
					30/11/2021	Asbestos Fibres	NAD
					30/11/2021	Asbestos ACM	NAD

Client Name: AECOM Reference: 60632092

Location: Treadgold House (Stage 2 Grenfell)

Contact: David Dyson

No. 21/18548 3 TH133 0.	Depth Sa	EMT Sample No.	Date Of Analysis	Analysis	Result
	.00-0.05	320			
	.00-0.03	320	30/11/2021	Asbestos Type	NAD
21/18548 3 TH138 0.			30/11/2021		NAD
21/18548 3 TH138 0.			30/11/2021	Asbestos Level Screen	ועאט
21/18548 3 111156 0	00 0 05	220	20/44/2024	Concret Description (Pulk Analysis)	soil/stones
	.00-0.05	328		. , , , ,	
			30/11/2021		NAD
			30/11/2021		NAD
					NAD
			30/11/2021	Asbestos Level Screen	NAD
04/40540 0 TU400 0		0.40	00/44/0004		0.1101
21/18548 3 TH139 0.	.00-0.05	340	30/11/2021	General Description (Bulk Analysis)	Soil/Stones
			30/11/2021		NAD
			30/11/2021		NAD
			30/11/2021		NAD
			30/11/2021	Asbestos Level Screen	NAD
21/18548 3 TH140 0.	.00-0.05	348	30/11/2021	. , , , ,	soil/stones
			30/11/2021	Asbestos Fibres	NAD
			30/11/2021	Asbestos ACM	NAD
			30/11/2021	Asbestos Type	NAD
			30/11/2021	Asbestos Level Screen	NAD
21/18548 3 TH131 0.	.00-0.05	356	30/11/2021	General Description (Bulk Analysis)	soil
			30/11/2021	Asbestos Fibres	NAD
			30/11/2021	Asbestos ACM	NAD
			30/11/2021	Asbestos Type	NAD
			30/11/2021	Asbestos Level Screen	NAD
21/18548 3 TH136 0.	.00-0.05	364	30/11/2021	General Description (Bulk Analysis)	soil/stones
			30/11/2021	Asbestos Fibres	NAD
			30/11/2021	Asbestos ACM	NAD
			30/11/2021	Asbestos Type	NAD
			30/11/2021		NAD
21/18548 3 TH137 0.	.00-0.05	372	30/11/2021	General Description (Bulk Analysis)	Soil/Stone
			30/11/2021		NAD
					NAD
				Asbestos Type	NAD
					NAD
21/18548 3 TH132 0.	.00-0.05	380	30/11/2021	General Description (Bulk Analysis)	soil
	0.00	300	30/11/2021		NAD
			30/11/2021		NAD
			30/11/2021		NAD
			30/11/2021	Asbestos Level Screen	NAD
04/40540 2 71/447 -	00.005	200	20/44/0224	Company December (During to 1)	CallChange
21/18548 3 TH147 0.	.00-0.05	388			Soil/Stones
					NAD
					NAD
					NAD
			30/11/2021	Asbestos Level Screen	NAD
21/18548 3 TH144 0.	.00-0.05	396			soil
			01/12/2021	Asbestos Fibres	NAD

Client Name: AECOM Reference: 60632092

Location: Treadgold House (Stage 2 Grenfell)

Contact: David Dyson

Contact			David Dy							
EMT Job	Batch	Sample ID	Depth	EMT Sample	Date Of	Analysis	Result			
No.	Dateil	campio is	Вериі	No.	Analysis	Analysis	result			
21/18548	3	TH144	0.00-0.05	396	01/12/2021	Asbestos ACM	NAD			
					01/12/2021	Asbestos Type	NAD			
					01/12/2021	Asbestos Level Screen	NAD			
21/18548	3	DUP07	0.00-0.05	404	01/12/2021	General Description (Bulk Analysis)	soil			
					01/12/2021	Asbestos Fibres	Fibre Bundles			
					01/12/2021	Asbestos ACM	NAD			
					01/12/2021	Asbestos Type	Chrysotile			
					01/12/2021	Asbestos Level Screen	less than 0.1%			
04/40540		T11467	0.00.0.70	400	00/44/0004		0.1401			
21/18548	3	TH167	0.60-0.70	420	30/11/2021	General Description (Bulk Analysis)	Soil/Stone			
					30/11/2021	Asbestos Fibres	NAD			
					30/11/2021	Asbestos ACM	NAD			
					30/11/2021	Asbestos Type	NAD			
					30/11/2021	Asbestos Level Screen	NAD			
04/40540		T11460	0.00.0.05	404	00/44/0004	Company Description (Bully Amplicate)	0.1/04			
21/18548	3	TH162	0.00-0.05	424	30/11/2021	General Description (Bulk Analysis)	Soil/Stone			
					30/11/2021	Asbestos Fibres	Fibre Bundles			
					30/11/2021	Asbestos ACM	NAD			
					30/11/2021	Asbestos Type	Chrysotile			
					30/11/2021	Asbestos Level Screen	less than 0.1%			
04/40540	0	T11440	0.00.0.05	400	00/44/0004	Company Description (Bully Amplicate)	0.1/01			
21/18548	3	TH119	0.00-0.05	436	30/11/2021	General Description (Bulk Analysis)	Soil/Stone			
					30/11/2021	Asbestos Fibres	NAD			
					30/11/2021	Asbestos ACM	NAD			
					30/11/2021	Asbestos Type	NAD			
					30/11/2021	Asbestos Level Screen	NAD			
21/18548	3	TH130	0.60-0.70	460	30/11/2021	General Description (Bulk Analysis)	Soil/Stones			
21/10340	3	111130	0.00-0.70	400	30/11/2021	Asbestos Fibres	Fibre Bundles			
					30/11/2021	Asbestos ACM	NAD			
					30/11/2021	Asbestos Type	Chrysotile			
					30/11/2021	Asbestos Level Screen	less than 0.1%			
					30/11/2021	Assested Level ocitetii	1635 titali (1.176			
21/18548	3	TH145	0.00-0.05	464	30/11/2021	General Description (Bulk Analysis)	Soil/Stone			
21/10040			0.00 0.00	101	30/11/2021	Asbestos Fibres	Fibre Bundles			
						Asbestos ACM	NAD			
					30/11/2021	Asbestos Type	Chrysotile			
					30/11/2021	Asbestos Level Screen	less than 0.1%			
21/18548	3	TH134	0.00-0.05	476	30/11/2021	General Description (Bulk Analysis)	soil			
	-		2.23 0.00		30/11/2021	Asbestos Fibres	NAD			
					30/11/2021	Asbestos ACM	NAD			
					30/11/2021	Asbestos Type	NAD			
					30/11/2021	Asbestos Level Screen	NAD			
21/18548	3	TH125	0.00-0.05	492	30/11/2021	General Description (Bulk Analysis)	Soil/Stones			
	-				30/11/2021	Asbestos Fibres	NAD			
					30/11/2021	Asbestos ACM	NAD			
					30/11/2021	Asbestos Type	NAD			
					30/11/2021	Asbestos Level Screen	NAD			
						1	I.			

Location: Treadgold House (Stage 2 Grenfell)

Contact: David Dyson

			David Dy				
EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Date Of Analysis	Analysis	Result
21/18548	3	TH118	0.00-0.05	504	30/11/2021	General Description (Bulk Analysis)	soil
			0.00 0.00		30/11/2021	Asbestos Fibres	NAD
					30/11/2021	Asbestos ACM	NAD
					30/11/2021	Asbestos Type	NAD
							NAD
					30/11/2021	Asbestos Level Screen	INAU
21/18548	3	TH117	0.00-0.05	520	30/11/2021	General Description (Bulk Analysis)	 Soil/Stones
21/10040	3	111117	0.00-0.03	320		General Description (Bulk Analysis) Asbestos Fibres	NAD
					30/11/2021		
					30/11/2021	Asbestos ACM	NAD
					30/11/2021	Asbestos Type	NAD
					30/11/2021	Asbestos Level Screen	NAD
21/18548	3	TH121	0.00-0.05	532	30/11/2021	General Description (Bulk Analysis)	Soil/Stones
21/10540	3	111121	0.00-0.03	332	30/11/2021	Asbestos Fibres	NAD
					30/11/2021	Asbestos ACM	NAD
					30/11/2021	Asbestos Type	NAD
					30/11/2021	Asbestos Level Screen	NAD
		T11400					2 112
21/18548	3	TH120	0.30-0.40	556	30/11/2021	General Description (Bulk Analysis)	Soil/Stones
					30/11/2021	Asbestos Fibres	NAD
					30/11/2021	Asbestos ACM	NAD
					30/11/2021	Asbestos Type	NAD
					30/11/2021	Asbestos Level Screen	NAD
21/18548	3	TH114	0.00-0.05	560	30/11/2021	General Description (Bulk Analysis)	Soil/Stone
					30/11/2021	Asbestos Fibres	NAD
					30/11/2021	Asbestos ACM	NAD
					30/11/2021	Asbestos Type	NAD
					30/11/2021	Asbestos Level Screen	NAD
21/18548	3	DUP04	0.30-0.40	572	30/11/2021	General Description (Bulk Analysis)	Soil/Stone
					30/11/2021	Asbestos Fibres	NAD
					30/11/2021	Asbestos ACM	NAD
					30/11/2021	Asbestos Type	NAD
					30/11/2021	Asbestos Level Screen	NAD
21/18548	3	TH115	0.00-0.05	580	30/11/2021	General Description (Bulk Analysis)	Soil/Stones
					30/11/2021	Asbestos Fibres	NAD
					30/11/2021	Asbestos ACM	NAD
					30/11/2021	Asbestos Type	NAD
					30/11/2021	Asbestos Level Screen	NAD
21/18548	3	TH122	0.00-0.05	592	30/11/2021	General Description (Bulk Analysis)	soil
					30/11/2021	Asbestos Fibres	NAD
					30/11/2021	Asbestos ACM	NAD
					30/11/2021	Asbestos Type	NAD
					30/11/2021	Asbestos Level Screen	NAD
21/18548	3	TH169	0.30-0.40	612	01/12/2021	General Description (Bulk Analysis)	Soil/Stone
	-		2.22 0.10		01/12/2021	Asbestos Fibres	NAD
					01/12/2021	Asbestos ACM	NAD
					01/12/2021	Asbestos Type	NAD
						Asbestos Level Screen	NAD
					V 1/ 12/2021	Managina Farei acideli	וייטע

Location: Treadgold House (Stage 2 Grenfell)

Contact: David Dyson

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason						
	No deviating sample report results for job 21/18548											

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 21/18548

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is guoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

EMT Job No.: 21/18548

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ос	Outside Calibration Range
AA	x5 Dilution

HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

EMT Job No: 21/18548

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM13	A visual examination of the solid sample is carried out to ascertain sample make up, colour and any other inclusions. This is not a geotechnical description.	PM0	No preparation is required.			AR	No
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec. 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec. 1996; Modified EPA Method 3050B, Rev.2, Dec. 1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes	Yes	AD	Yes
TM65	Asbestos Bulk Identification method based on HSG 248 First edition (2006)	PM42	Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1:2018. Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM74	Analysis of water soluble boron (20:1 extract) by ICP-OES.	PM32	Hot water soluble boron is extracted from dried and ground samples using a 20:1 ratio.	Yes	Yes	AD	Yes

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

AECOM 9th Floor Reception Sunley House 4 Bedford Park Croydon CR0 2AP

Attention: David Dyson

Date: 3rd December, 2021

Your reference: 60632092

Our reference : Test Report 21/18548 Batch 3 Schedule C

Location : Treadgold House (Stage 2 Grenfell)

Date samples received: 26th November, 2021

Status: Final Report

Issue: 1

Eighty six samples were received for analysis on 26th November, 2021 of which five were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Baler

Paul Boden BSc Senior Project Manager

Please include all sections of this report if it is reproduced

Location: Treadgold House (Stage 2 Grenfell)

Contact: David Dyson

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level less than 0.1%, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative sampling.

EMT Job	Batch	Sample ID	Depth	EMT Sample	Date Of	Analysis	Result
No.	Dateil	Campio ID	Берш	No.	Analysis	Allalysis	result
21/18548	3	TH141	0.00-0.05	296	02/12/2021	Total ACM Gravimetric Quantification (% Asb)	<0.001 (mass %)
					02/12/2021	Total Detailed Gravimetric Quantification (% Asb)	<0.001 (mass %)
					02/12/2021	Total Gravimetric Quantification (ACM + Detailed) (% Asb)	<0.001 (mass %)
					03/12/2021	Asbestos PCOM Quantification (Fibres)	<0.001 (mass %)
					03/12/2021	Asbestos Gravimetric & PCOM Total	<0.001 (mass %)
21/18548	3	DUP07	0.00-0.05	404	02/12/2021	Total ACM Gravimetric Quantification (% Asb)	<0.001 (mass %)
					02/12/2021	Total Detailed Gravimetric Quantification (% Asb)	0.003 (mass %)
					02/12/2021	Total Gravimetric Quantification (ACM + Detailed) (% Asb)	0.003 (mass %)
					03/12/2021	Asbestos PCOM Quantification (Fibres)	<0.001 (mass %)
					03/12/2021	Asbestos Gravimetric & PCOM Total	0.003 (mass %)
					00/12/2021	Assested Gravimetric & Form Form	0.000 (11400 70)
21/18548	3	TH162	0.00-0.05	424	02/12/2021	Total ACM Gravimetric Quantification (% Asb)	<0.001 (mass %)
	-				02/12/2021	Total Detailed Gravimetric Quantification (% Asb)	<0.001 (mass %)
					02/12/2021	Total Gravimetric Quantification (ACM + Detailed) (% Asb)	<0.001 (mass %)
					03/12/2021	Asbestos PCOM Quantification (Fibres)	<0.001 (mass %)
					03/12/2021	Asbestos Gravimetric & PCOM Total	<0.001 (mass %)
					00/12/2021	Assested Gravimetric & Form Form	-0.001 (mass 70)
21/18548	3	TH130	0.60-0.70	460	02/12/2021	Total ACM Gravimetric Quantification (% Asb)	<0.001 (mass %)
21710010			0.00 0.10	.00	02/12/2021	Total Detailed Gravimetric Quantification (% Asb)	<0.001 (mass %)
					02/12/2021	Total Gravimetric Quantification (ACM + Detailed) (% Asb)	<0.001 (mass %)
					03/12/2021	Asbestos PCOM Quantification (Fibres)	<0.001 (mass %)
					03/12/2021	Asbestos Gravimetric & PCOM Total	<0.001 (mass %)
					00/12/2021		oloca (mass 15)
21/18548	3	TH145	0.00-0.05	464	02/12/2021	Total ACM Gravimetric Quantification (% Asb)	<0.001 (mass %)
21710010			0.00 0.00	101	02/12/2021	Total Detailed Gravimetric Quantification (% Asb)	<0.001 (mass %)
					02/12/2021	Total Gravimetric Quantification (ACM + Detailed) (% Asb)	<0.001 (mass %)
					03/12/2021	Asbestos PCOM Quantification (Fibres)	<0.001 (mass %)
					03/12/2021	Asbestos Gravimetric & PCOM Total	<0.001 (mass %)
					00/12/2021	Assested Gravimente & Foom Fotal	-0.001 (mass 70)

Location: Treadgold House (Stage 2 Grenfell)

Contact: David Dyson

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason						
	No deviating sample report results for job 21/18548											

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 21/18548

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is guoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

EMT Job No.: 21/18548

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range

HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

EMT Job No: 21/18548

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM131	Quantification of Asbestos Fibres and ACM based on HSG248 First edition:2006, HSG 264 Second edition:2012, HSE Contract Research Report No.83/1996, MDHS 87:1998, WM3 1st Edition v1.1:2018	PM42	Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1:2018. Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	Yes

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

AECOM 9th Floor Reception Sunley House 4 Bedford Park Croydon CR0 2AP

Attention: David Dyson

Date: 7th January, 2022

Your reference: 60632092

Our reference : Test Report 21/18548 Batch 3 Schedule D

Location : Treadgold House (Stage 2 Grenfell)

Date samples received: 26th November, 2021

Status: Final Report

Issue: 1

Eighty six samples were received for analysis on 26th November, 2021 of which two were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Balen

Paul Boden BSc Senior Project Manager

Please include all sections of this report if it is reproduced

Client Name: AECOM

Reference: 60632092

Location: Treadgold House (Stage 2 Grenfell)

Contact: David Dyson EMT Job No: 21/18548

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EWI JOD NO:	21/10040		 	 	 	 			
EMT Sample No.	545-548	601-604							
Sample ID	TH120	TH169							
Depth	0.00-0.05	0.00-0.05					Please see attached note		-4 fII
COC No / misc							abbrevi	e attached no ations and ac	cronyms
Containers	VJT	VJT							
Sample Date	25/11/2021	25/11/2021							
Sample Type									
Batch Number		3							Method
Date of Receipt	26/11/2021	26/11/2021					LOD/LOR	Units	No.
Bioaccessible Lead (Stomach)	804	1516					<5	mg/kg	TM171/PM124
Bioaccessible Lead (Stomach And Intestine)	290	240					<5	mg/kg	TM171/PM124
Total Lead	1118	2243					<5	mg/kg	TM30/PM15
Bioaccessible Fraction (BAF) - Lead	72	68					<0	%	TM30/PM15/PM124
								,,,	

Location: Treadgold House (Stage 2 Grenfell)

Contact: David Dyson

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
					No deviating sample report results for job 21/18548	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 21/18548

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is guoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

EMT Job No.: 21/18548

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range

HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

EMT Job No: 21/18548

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.				Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15/PM124	please refer to PM15/PM124 for method details				Yes
TM171	Operation and analysis of metals by Thermo Fisher iCAPQc ICP-MS	PM124	UBM Unified BARGE bioaccessibility extraction of soil, in vitro method for simulating human digestive procedure using synthetic digestive fluids, carried out on the <250um fraction of the sample.				Yes

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

AECOM 9th Floor Reception Sunley House 4 Bedford Park Croydon CR0 2AP

Attention: David Dyson

Date: 2nd December, 2021

Your reference : 60632092

Our reference : Test Report 21/18548 Batch 4

Location : Treadgold House (Stage 2 Grenfell)

Date samples received: 27th November, 2021

Status: Final Report

Issue:

Fifty three samples were received for analysis on 27th November, 2021 of which fifty three were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Simon Gomery BSc

Project Manager

Please include all sections of this report if it is reproduced

Client Name: AECOM Report : Solid

Reference: 60632092

Location: Treadgold House (Stage 2 Grenfell) **Solids:** V=60g VOC jar, J=250g glass jar, T=plastic tub

Contact: David Dyson EMT Job No: 21/18548

EMT Job No:	21/18548												
EMT Sample No.	613-614	615-616	617-618	619-620	621-622	623-624	625-626	627-628	629-630	631-632			
Sample ID	TH171	TH172	TH173	TH174	TH175	TH176	TH177	TH178	TH179	TH180			
Depth	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05		e attached n	
COC No / misc											abbrevi	ations and a	cronyms
Containers	JΤ	JΤ	JT	JT	JΤ	JT	JT	JΤ	JT	JT			
Sample Date	26/11/2021 08:40	26/11/2021 08:45	26/11/2021 09:04	26/11/2021 09:14	26/11/2021 09:29	26/11/2021 09:45	26/11/2021 09:58	26/11/2021 10:10	26/11/2021 10:24	26/11/2021 10:36			
Sample Type	Clay	Clayey Loam	Clayey Loam	Clayey Loam	Clay	Clayey Loam	Clayey Loam	Clayey Loam	Clayey Loam	Clayey Loam			
Batch Number	4	4	4	4	4	4	4	4	4	4	LOD#LOD	l loite	Method
Date of Receipt	27/11/2021	27/11/2021	27/11/2021	27/11/2021	27/11/2021	27/11/2021	27/11/2021	27/11/2021	27/11/2021	27/11/2021	LOD/LOR	Units	No.
Arsenic #M	-	-	-	-	-	-	-	-	-	-	<0.5	mg/kg	TM30/PM15
Barium **M	-	-	-	-	-	-	-	-	-	-	<1	mg/kg	TM30/PM15
Beryllium	-	-	-	-	-	-	-	-	-	-	<0.5	mg/kg	TM30/PM15
Cadmium #M	-	-	-	-	-	-	-	-	-	-	<0.1	mg/kg	TM30/PM15
Chromium #M	-	-	-	-	-	-	-	-	-	-	<0.5	mg/kg	TM30/PM15
Copper ^{#M}	-	-	-	-	-	-	-	-	-	-	<1	mg/kg	TM30/PM15
Lead #M	1169	1260	1515	1422	1883	1525	1752	754	1394	1349	<5	mg/kg	TM30/PM15
Mercury **M	-	-	-	-	-	-	-	-	-	-	<0.1	mg/kg	TM30/PM15
Nickel **M	-	-	-	-	-	-	-	-	-	-	<0.7	mg/kg	TM30/PM15
Selenium #M	-	-	-	-	-	-	-	-	-	-	<1	mg/kg	TM30/PM15
Vanadium	-	-	-	-	-	-	-	-	-	-	<1	mg/kg	TM30/PM15
Water Soluble Boron #M	-	-	-	-	-	-	-	-	-	-	<0.1	mg/kg	TM74/PM32
Zinc #M	-	-	-	-	-	-	-	-	-	-	<5	mg/kg	TM30/PM15
Sample Type	Clay	Clayey Loam	Clayey Loam	Clayey Loam	Clay	Clayey Loam	Clayey Loam	Clayey Loam	Clayey Loam	Clayey Loam		None	PM13/PM0
Sample Colour	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown		None	PM13/PM0
Other Items	atones, brick, vegetation, loam	stones, vegetation	stones, vegetation	stones, vegetation	stones, vegetation, loam	stones, vegetation	stones, vegetation	stones, vegetation, brick	stones, vegetation	stones, vegetation		None	PM13/PM0

Client Name: AECOM

Reference: 60632092

Location: Treadgold House (Stage 2 Grenfell) **Solids:** V=60g VOC jar, J=250g glass jar, T=plastic tub

Report: Solid

Contact: David Dyson

EMT Job No:	21/18548												
EMT Sample No.	633-634	635-636	637-638	639-640	641-642	643-644	645-646	647-648	649-650	651-652			
Sample ID	TH181	TH182	TH183	TH184	TH185	TH186	TH187	TH188	TH189	TH190			
Depth	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05		e attached n	
COC No / misc											abbrevi	ations and a	cronyms
Containers	JΤ	JΤ	JТ	JТ	JΤ	JТ	JT	JΤ	JT	JT			
Sample Date	26/11/2021 10:53	26/11/2021 11:07	26/11/2021 11:25	26/11/2021 11:37	26/11/2021 11:47	26/11/2021 11:58	26/11/2021 12:11	26/11/2021 12:20	26/11/2021 12:31	26/11/2021 12:40			
Sample Type	Clay	Clayey Loam	Clay	Clay	Clay	Clayey Loam	Clayey Loam	Clayey Loam	Clayey Loam	Clay			
Batch Number	4	4	4	4	4	4	4	4	4	4	LOD/LOR	Units	Method
Date of Receipt	27/11/2021	27/11/2021	27/11/2021	27/11/2021	27/11/2021	27/11/2021	27/11/2021	27/11/2021	27/11/2021	27/11/2021	LODILOR	Onits	No.
Arsenic #M	-	-	-	-	-	-	-	-	-	-	<0.5	mg/kg	TM30/PM15
Barium #M	-	-	-	-	-	-	-	-	-	-	<1	mg/kg	TM30/PM15
Beryllium	-	-	-	-	-	-	-	-	-	-	<0.5	mg/kg	TM30/PM15
Cadmium #M	-	-	-	-	-	-	-	-	-	-	<0.1	mg/kg	TM30/PM15
Chromium #M	-	-	-	-	-	-	-	-	-	-	<0.5	mg/kg	TM30/PM15
Copper ^{#M}	-	-	-	-	-	-	-	-	-	-	<1	mg/kg	TM30/PM15
Lead #M	426	481	460	1042	1099	1651	1283	1414	1556	340	<5	mg/kg	TM30/PM15
Mercury **M	-	-	-	-	-	-	-	-	-	-	<0.1	mg/kg	TM30/PM15
Nickel *M	-	-	-	-	-	-	-	-	-	-	<0.7	mg/kg	TM30/PM15
Selenium **M	-	-	-	-	-	-	-	-	-	-	<1	mg/kg	TM30/PM15
Vanadium	-	-	_	_	-	-	-	-	-	-	<1	mg/kg	TM30/PM15
Water Soluble Boron #M	-	-	-	-	-	-	-	-	-	-	<0.1	mg/kg	TM74/PM32
Zinc **M	_	_	_	_	-	_	_	_	_	_	<5	mg/kg	TM30/PM15
2.110											-	99	
Sample Type	Clay	Clayey Loam	Clay	Clay	Clay	Clavey Loam	Clavey Loam	Clayey Loam	Clavey Loam	Clay		None	PM13/PM0
Sample Colour	Medium Brown		Medium Brown							,		None	PM13/PM0
Other Items	stones, vegetation	stones, vegetation, brick	stones, vegetation, loam	stones, vegetation, loam	stones, vegetation, loam		stones, vegetation		stones, vegetation	stones, vegetation, loam		None	PM13/PM0
Other items	otorios, regulation					otorios, vegetation	otorico, regulation		Stories, regulation			None	1 10113/1 1010

Client Name: AECOM

Reference: 60632092

Location: Treadgold House (Stage 2 Grenfell)

Contact: David Dyson EMT Job No: 21/18548

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMI JOD NO:	21/10040										-		
EMT Sample No.	653-656	657-660	661-664	665-668	669-672	673-676	677-680	681-684	685-688	689-692			
Sample ID	TH108	TH108	TH108	TH109	TH109	TH109	TH129	TH129	TH127	TH127			
Depth	0.00-0.05	0.10-0.20	0.30-0.40	0.00-0.05	0.10-0.20	0.30-0.40	0.00-0.05	0.10-0.20	0.00-0.05	0.10-0.20	Diagon	e attached n	otoo for all
COC No / misc												ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Sample Date	26/11/2021 09:40	26/11/2021 09:40	26/11/2021 09:40	26/11/2021 09:30	26/11/2021 09:30	26/11/2021 09:30	26/11/2021 14:09	26/11/2021 14:09	26/11/2021 14:05	26/11/2021 14:05			
Sample Type	Clayey Loam	Clayey Loam	Clayey Loam	Clayey Loam	Clayey Loam	Clay	Clayey Loam	Clay	Clay	Clayey Loam			
Batch Number	4	4	4	4	4	4	4	4	4	4			Madhad
Date of Receipt			27/11/2021				27/11/2021			27/11/2021	LOD/LOR	Units	Method No.
Arsenic #M	-	29.0	-	47.2	-	-	-	-	-	-	<0.5	mg/kg	TM30/PM15
Barium #M	-	974	-	-	-	-	-	-	-	-	<1	mg/kg	TM30/PM15
Beryllium	-	2.3	-	-	-	-	-	-	-	-	<0.5	mg/kg	TM30/PM15
Cadmium #M	-	0.8	-	1.0	-	-	-	-	-	-	<0.1	mg/kg	TM30/PM15
Chromium #M	-	93.5	-	64.5	-	-	-	-	-	-	<0.5	mg/kg	TM30/PM15
Copper **M	-	192	-	402 _{AA}	-	-	-	-	-	-	<1	mg/kg	TM30/PM15
Lead #M	2871 _{AA}	18960 _{AB}	20630 _{AB}	1576	8259 _{AA}	2870 _{AA}	1557	4405 _{AA}	1754	1212	<5	mg/kg	TM30/PM15
Mercury *M	-	1.5	-	2.3	-	-	-	-	-	-	<0.1	mg/kg	TM30/PM15
Nickel ^{#M}	-	38.0	-	55.4	-	-	-	-	-	-	<0.7	mg/kg	TM30/PM15
Selenium #M	-	<1	-	<1	-	-	-	-	-	-	<1	mg/kg	TM30/PM15
Vanadium	-	70	-	-	-	-	-	-	-	-	<1	mg/kg	TM30/PM15
Water Soluble Boron ^{#M}	-	2.3	-	-	-	-	-	-	-	-	<0.1	mg/kg	TM74/PM32
Zinc *M	-	783	-	804	-	-	-	-	-	-	<5	mg/kg	TM30/PM15
Sample Type	Clayey Loam	Clayey Loam	Clayey Loam	Clayey Loam	Clayey Loam	Clay	Clayey Loam	Clay	Clay	Clayey Loam		None	PM13/PM0
Sample Colour	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown		None	PM13/PM0
Other Items	stones, vegetation	stones, vegetation, chalk	stones, vegetation, brick	stones, vegetation	stones, vegetation	stones, loam, vegetation	stones, vegetation, brick	stones, vegetation, loam	stones, vegetation, loam	stones, vegetation		None	PM13/PM0
	I		L	L	I	L	I	L					

Client Name: AECOM Report : Solid

Reference: 60632092

Location: Treadgold House (Stage 2 Grenfell) **Solids:** V=60g VOC jar, J=250g glass jar, T=plastic tub

Contact: David Dyson EMT Joh No: 21/18548

EMT Job No:	21/18548												
EMT Sample No.	693-696	697-700	701-704	705-708	709-712	713-716	717-720	721-724	725-728	729-732			
Sample ID	TH124	TH124	TH126	TH126	TH113	TH113	TH107	TH107	TH106	TH106			
Depth	0.00-0.05	0.10-0.20	0.00-0.05	0.10-0.20	0.00-0.05	0.10-0.20	0.00-0.05	0.10-0.20	0.00-0.05	0.10-0.20	Please se	e attached n	otes for all
COC No / misc												ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Sample Date	26/11/2021 13:25	26/11/2021 13:25	26/11/2021 13:50	26/11/2021 13:50	26/11/2021 12:15	26/11/2021 12:15	26/11/2021 11:00	26/11/2021 11:00	26/11/2021 10:50	26/11/2021 10:50			
Sample Type	Clay	Clay	Clay	Clayey Loam	Clay	Clay	Clayey Loam	Clayey Loam	Clay	Clay			
Batch Number	-	4	4	4	4	4	4	4	4	4			Method
Date of Receipt	27/11/2021	27/11/2021	27/11/2021	27/11/2021	27/11/2021	27/11/2021	27/11/2021	27/11/2021	27/11/2021	27/11/2021	LOD/LOR	Units	No.
Arsenic #M	-	_	_	-	-	_	_	-	_	_	<0.5	mg/kg	TM30/PM15
Barium **M	_	_	_	_	_	_	_	_	_	_	<1	mg/kg	TM30/PM15
Beryllium	_	_	_	_	_	_	_	_	_	_	<0.5	mg/kg	TM30/PM15
Cadmium #M	_	_	_	_	_	_	_	_	_	_	<0.1	mg/kg	TM30/PM15
Chromium #M	-	-	-	-	-	-	-	-	-	-	<0.5	mg/kg	TM30/PM15
Copper **M	_	-	_	-	-	-	_	-	-	-	<1	mg/kg	TM30/PM15
Lead *M	1399	1508	2136	1722	1270	3930 _{AA}	1307	1122	1381	1488	<5	mg/kg	TM30/PM15
Mercury **M	-	-	2130	-	-	-	-	-	-	-	<0.1	mg/kg	TM30/PM15
Nickel *M	_	_	_	_	_	_	-	_	_	_	<0.7	mg/kg	TM30/PM15
Selenium *M	_	_	_	_	_	_	_	_	-	_	<1	mg/kg	TM30/PM15
Vanadium	-	-	_	_	-	_	-	-	_	-	<1	mg/kg	TM30/PM15
Water Soluble Boron #M	_	-	_	-	-	_	-	_	_		<0.1	mg/kg	TM74/PM32
Zinc #M	-	-	_	-	-	-		-	-	-	<5		TM30/PM15
Zinc	-	-	-	-	-	-	-	-	-	-	\sigma_0	mg/kg	TIVISU/PIVITS
Comple Time	Clavi	Clavi	Clavi	Clayey Loam	Clavi	Clavi	Clayov I sam	Clayey Loam	Class	Ol		Nama	PM13/PM0
Sample Type	Clay	Clay	Clay		,	Clay			Clay	Clay		None	
Sample Colour	Medium Brown		Medium Brown									None	PM13/PM0
Other Items	stones, vegetation, loam	stones, vegetation, loam	stones, vegetation	stones, vegetation	stones, vegetation, loam	stones, brick, vegetation	stones, vegetation	stones, vegetation	stones, vegetation, loam	stones, vegetation, loam		None	PM13/PM0

Client Name: AECOM Report : Solid

Reference: 60632092

Location: Treadgold House (Stage 2 Grenfell)

Contact: David Dyson EMT Job No: 21/18548

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Job No:	21/18548												
EMT Sample No.	733-736	737-740	741-744	745-748	749-752	753-756	757-760	761-764	765-768	769-772			
Sample ID	TH103	TH103	TH103	TH101	TH101	TH101	TH105	TH105	DUP01	TH111			
Depth	0.00-0.05	0.10-0.20	0.30-0.40	0.00-0.05	0.10-0.20	0.30-0.40	0.00-0.05	0.10-0.20	0.00-0.05	0.00-0.05	Please se	e attached n	otes for all
COC No / misc												ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Sample Date	26/11/2021 09:15	26/11/2021 09:15	26/11/2021 09:15	26/11/2021 09:00	26/11/2021 09:00	26/11/2021 09:00	26/11/2021 10:35	26/11/2021 10:35	26/11/2021 10:35	26/11/2021 11:40			
Sample Type	Clay	Clay	Clay	Clay	Clay	Clay	Clayey Loam	Clayey Loam	Clay	Clay			
Batch Number	4	4	4	4	4	4	4	4	4	4			Method
Date of Receipt	27/11/2021	27/11/2021	27/11/2021	27/11/2021	27/11/2021	27/11/2021	27/11/2021	27/11/2021	27/11/2021	27/11/2021	LOD/LOR	Units	No.
Arsenic *M	68.9	-	-	28.0	-	-	-	-	-	-	<0.5	mg/kg	TM30/PM15
Barium #M	-	-	-	-	-	-	-	-	-	-	<1	mg/kg	TM30/PM15
Beryllium	-	-	-	-	-	-	-	-	-	-	<0.5	mg/kg	TM30/PM15
Cadmium *M	3.2	-	-	0.5	-	-	-	-	-	-	<0.1	mg/kg	TM30/PM15
Chromium *M	88.2	-	-	89.0	-	-	-	-	-	-	<0.5	mg/kg	TM30/PM15
Copper *M	872 _{AA}	-	-	128	-	-	-	-	-	-	<1	mg/kg	TM30/PM15
Lead #M	2748 _{AA}	609	453	650	441	559	1326	2412	597	1027	<5	mg/kg	TM30/PM15
Mercury ^{#M}	6.9	-	-	0.7	-	-	-	-	-	-	<0.1	mg/kg	TM30/PM15
Nickel #M	100.5	-	-	44.0	-	-	-	-	-	-	<0.7	mg/kg	TM30/PM15
Selenium **M	2	-	-	<1	-	-	-	-	-	-	<1	mg/kg	TM30/PM15 TM30/PM15
Vanadium	-	-	-	-	-	-	-	-	-	-	<1 <0.1	mg/kg mg/kg	TM74/PM32
Water Soluble Boron *** Zinc ***	2183	-	-	360	-	-	-	-	-	-	<5	mg/kg	TM30/PM15
Sample Type	Clay	Clay	Clay	Clay	Clay	Clay		Clayey Loam	Clay	Clay		None	PM13/PM0
Sample Colour	Medium Brown	Medium Brown	Medium Brown				Medium Brown	Medium Brown	Medium Brown	Medium Brown		None	PM13/PM0
Other Items	stones, vegetation, loam	stones, vegetation	stones, brick	stones, vegetation, brick	stones, chalk, brick	stones, chalk, brick	stones, vegetation, chalk	stones, vegetation	stones, vegetation	stones, vegetation		None	PM13/PM0

Client Name: AECOM

Reference: 60632092

Location: Treadgold House (Stage 2 Grenfell)

Contact: David Dyson EMT Job No: 21/18548

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Job No:	21/18548									
EMT Sample No.	773-776	777-780	781-784							
Sample ID	TH111	TH112	TH112							
Depth	0.10-0.20	0.00-0.05	0.10-0.20					Diogra so	e attached n	otos for all
COC No / misc								abbrevi	ations and a	cronyms
Containers	VJT	VJT	VJT							
Sample Date	26/11/2021 11:40	26/11/2021 11:57	26/11/2021 11:57							
Sample Type	Clayey Loam	Clay	Clay							
Batch Number	4	4	4							
Date of Receipt			27/11/2021					LOD/LOR	Units	Method No.
Arsenic **M	-	-	-					<0.5	mg/kg	TM30/PM15
Barium *M	_	_	_					<1	mg/kg	TM30/PM15
Beryllium	_	_	_					<0.5	mg/kg	TM30/PM15
Cadmium #M	_	_	_					<0.1	mg/kg	TM30/PM15
Chromium #M	-	-	-					<0.5	mg/kg	TM30/PM15
Copper *M	-	-	-					<1	mg/kg	TM30/PM15
Lead #M	1273	1009	935					<5	mg/kg	TM30/PM15
Mercury #M	-	-	-					<0.1	mg/kg	TM30/PM15
Nickel #M	-	-	-					<0.7	mg/kg	TM30/PM15
Selenium #M	-	-	-					<1	mg/kg	TM30/PM15
Vanadium	-	-	-					<1	mg/kg	TM30/PM15
Water Soluble Boron #M	-	-	-					<0.1	mg/kg	TM74/PM32
Zinc #M	-	-	-					<5	mg/kg	TM30/PM15
Sample Type	Clayey Loam	Clay	Clay						None	PM13/PM0
Sample Colour	Medium Brown	Medium Brown	Medium Brown						None	PM13/PM0
Other Items	stones, vegetation	stones, vegetation	stones, vegetation						None	PM13/PM0
				1	1					

Location: Treadgold House (Stage 2 Grenfell)

Contact: David Dyson

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level less than 0.1%, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative sampling.

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Date Of Analysis	Analysis	Result
21/18548	4	TH108	0.00-0.05	656	01/12/2021	General Description (Bulk Analysis)	Soil/Stone
					01/12/2021	Asbestos Fibres	NAD
					01/12/2021	Asbestos ACM	NAD
					01/12/2021	Asbestos Type	NAD
					01/12/2021	Asbestos Level Screen	NAD
21/18548	4	TH109	0.00-0.05	668	01/12/2021	General Description (Bulk Analysis)	soil
					01/12/2021	Asbestos Fibres	NAD
					01/12/2021	Asbestos ACM	NAD
					01/12/2021	Asbestos Type	NAD
					01/12/2021	Asbestos Level Screen	NAD
21/18548	4	TH129	0.00-0.05	680	01/12/2021	General Description (Bulk Analysis)	soil
					01/12/2021	Asbestos Fibres	NAD
					01/12/2021	Asbestos ACM	NAD
					01/12/2021	Asbestos Type	NAD
					01/12/2021	Asbestos Level Screen	NAD
21/18548	4	TH127	0.00-0.05	688	01/12/2021	General Description (Bulk Analysis)	Soil/Stones
					01/12/2021	Asbestos Fibres	NAD
					01/12/2021	Asbestos ACM	NAD
					01/12/2021	Asbestos Type	NAD
					01/12/2021	Asbestos Level Screen	NAD
21/18548	4	TH124	0.00-0.05	696	01/12/2021	General Description (Bulk Analysis)	soil
					01/12/2021	Asbestos Fibres	NAD
					01/12/2021	Asbestos ACM	NAD
					01/12/2021	Asbestos Type	NAD
					01/12/2021	Asbestos Level Screen	NAD
21/18548	4	TH126	0.00-0.05	704	01/12/2021	General Description (Bulk Analysis)	soil
					01/12/2021	Asbestos Fibres	NAD
					01/12/2021	Asbestos ACM	NAD
					01/12/2021	Asbestos Type	NAD
					01/12/2021	Asbestos Level Screen	NAD
21/18548	4	TH113	0.00-0.05	712	01/12/2021	General Description (Bulk Analysis)	soil/stones
					01/12/2021	Asbestos Fibres	NAD
					01/12/2021	Asbestos ACM	NAD

Location: Treadgold House (Stage 2 Grenfell)

Contact: David Dyson

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Date Of Analysis	Analysis	Result
21/18548	4	TH113	0.00-0.05	712	01/12/2021	Asbestos Type	NAD
21/10040	-4	111113	0.00-0.03	712	01/12/2021		
					01/12/2021	Asbestos Level Screen	NAD
		T11407					
21/18548	4	TH107	0.00-0.05	720	01/12/2021	General Description (Bulk Analysis)	soil/stones
					01/12/2021	Asbestos Fibres	NAD
					01/12/2021	Asbestos ACM	NAD
					01/12/2021	Asbestos Type	NAD
					01/12/2021	Asbestos Level Screen	NAD
21/18548	4	TH106	0.00-0.05	728	01/12/2021	General Description (Bulk Analysis)	Soil/Stones
					01/12/2021	Asbestos Fibres	NAD
					01/12/2021	Asbestos ACM	NAD
					01/12/2021	Asbestos Type	NAD
					01/12/2021	Asbestos Level Screen	NAD
21/18548	4	TH103	0.10-0.20	740	01/12/2021	General Description (Bulk Analysis)	brick/soil
21/10540	-4	111103	0.10-0.20	740			
					01/12/2021	Asbestos Fibres	NAD
					01/12/2021	Asbestos ACM	NAD
					01/12/2021	Asbestos Type	NAD
					01/12/2021	Asbestos Level Screen	NAD
21/18548	4	TH101	0.00-0.05	748	01/12/2021	General Description (Bulk Analysis)	soil/stone
					01/12/2021	Asbestos Fibres	NAD
					01/12/2021	Asbestos ACM	NAD
					01/12/2021	Asbestos Type	NAD
					01/12/2021	Asbestos Level Screen	NAD
21/18548	4	TH105	0.00-0.05	760	01/12/2021	General Description (Bulk Analysis)	Soil/Stone
21/10040	-		0.00 0.00	700	01/12/2021	Asbestos Fibres	NAD
							NAD
					01/12/2021	Asbestos ACM	
					01/12/2021	Asbestos Type	NAD
					01/12/2021	Asbestos Level Screen	NAD
21/18548	4	DUP01	0.00-0.05	768	01/12/2021	General Description (Bulk Analysis)	soil
					01/12/2021	Asbestos Fibres	NAD
					01/12/2021	Asbestos ACM	NAD
					01/12/2021	Asbestos Type	NAD
					01/12/2021	Asbestos Level Screen	NAD
21/18548	4	TH111	0.00-0.05	772	01/12/2021	General Description (Bulk Analysis)	soil
					01/12/2021	Asbestos Fibres	NAD
					01/12/2021	Asbestos ACM	NAD
					01/12/2021	Asbestos Type	NAD
					01/12/2021	Asbestos Level Screen	NAD
					01/12/2021	ACCESSION LEVEL OCIEGII	
04/40= -		T11440	0.00.0.0=	700	04/46/222	Comment Described to 12 th A 1 to 1	
21/18548	4	TH112	0.00-0.05	780		General Description (Bulk Analysis)	soil
					01/12/2021	Asbestos Fibres	NAD
						Asbestos ACM	NAD
					01/12/2021	Asbestos Type	NAD
					01/12/2021	Asbestos Level Screen	NAD
			-			1	1

Location: Treadgold House (Stage 2 Grenfell)

Contact: David Dyson

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason						
	No deviating sample report results for job 21/18548											

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 21/18548

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is guoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

EMT Job No.: 21/18548

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ос	Outside Calibration Range
AA	x5 Dilution

HWOL ACRONYMS AND OPERATORS USED

MS	Mass Spectrometry.
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
_	Operator - underscore to separate acronyms (exception for +).
#2	EU_Total but with fatty acids mathematically subtracted
#1	EH_Total but with humics mathematically subtracted
2D	GC-GC - Double coil gas chromatography.
AR	Aromatics only.
AL	Aliphatics only.
Total	Aliphatics & Aromatics.
1D	GC - Single coil gas chromatography.
CU	Clean-up - e.g. by florisil, silica gel.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
HS	Headspace Analysis.

EMT Job No: 21/18548

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM13	A visual examination of the solid sample is carried out to ascertain sample make up, colour and any other inclusions. This is not a geotechnical description.	PM0	No preparation is required.			AR	No
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes	Yes	AD	Yes
TM65	Asbestos Bulk Identification method based on HSG 248 First edition (2006)	PM42	Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1:2018. Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM74	Analysis of water soluble boron (20:1 extract) by ICP-OES.	PM32	Hot water soluble boron is extracted from dried and ground samples using a 20:1 ratio.	Yes	Yes	AD	Yes

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

AECOM 9th Floor Reception Sunley House 4 Bedford Park Croydon CR0 2AP

Attention: David Dyson

Date: 7th January, 2022

Your reference : 60632092

Our reference : Test Report 21/18548 Batch 4 Schedule C

Location : Treadgold House (Stage 2 Grenfell)

Date samples received: 27th November, 2021

Status: Final Report

Issue: 1

Fifty three samples were received for analysis on 27th November, 2021 of which two were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Balen

Paul Boden BSc Senior Project Manager

Please include all sections of this report if it is reproduced

Client Name: AECOM

Reference: 60632092

Location: Treadgold House (Stage 2 Grenfell)

Contact: David Dyson EMT Job No: 21/18548

Report : Solid

EMI JOD NO:	21/10040		 	 	 	 			
EMT Sample No.	665-668	669-672							
Sample ID	TH109	TH109							
Depth	0.00-0.05	0.10-0.20					Division		
COC No / misc							Please se abbrevi	e attached nations and a	otes for all cronyms
Containers		VJT							
Sample Date									
Sample Type									
Batch Number		4							Method
Date of Receipt							LOD/LOR	Units	No.
Bioaccessible Lead (Stomach)	1787	3208					<5	mg/kg	TM171/PM124
Bioaccessible Lead (Stomach And Intestine)	711	1157					<5	mg/kg	TM171/PM124
Total Lead	2238	4321 _{AA}					<5	mg/kg	TM30/PM15
Bioaccessible Fraction (BAF) - Lead	80	74 _{AA}					<0	%	TM30/PM15/PM124

Client Name: AECOM Reference: 60632092

Location: Treadgold House (Stage 2 Grenfell)

Contact: David Dyson

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
					No deviating sample report results for job 21/18548	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 21/18548

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is guoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

EMT Job No.: 21/18548

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
M	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range
AA	x5 Dilution

HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

EMT Job No: 21/18548

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.				Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15/PM124	please refer to PM15/PM124 for method details				Yes
TM171	Operation and analysis of metals by Thermo Fisher iCAPQc ICP-MS	PM124	UBM Unified BARGE bioaccessibility extraction of soil, in vitro method for simulating human digestive procedure using synthetic digestive fluids, carried out on the <250um fraction of the sample.				Yes

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

AECOM
9th Floor Reception
Sunley House
4 Bedford Park
Croydon
CR0 2AP

MCERT

Attention: David Dyson

Date: 3rd December, 2020

Your reference: 60632092

Our reference: Test Report 20/14697 Batch 11 Schedule A

Location : Grenfell Stage 2

Date samples received: 6th November, 2020

Status: Final report

Issue:

Seventy samples were received for analysis on 6th November, 2020 of which thirty five were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Balen

Paul Boden BSc Senior Project Manager

Please include all sections of this report if it is reproduced

AECOM Client Name:

60632092 Reference: Location: Grenfell Stage 2

David Dyson

Report : Solid

Contact:	David Dys
EMT Job No:	20/14697

PAPER Pape	EMT Job No:	20/14697										_		
Depth Dept	EMT Sample No.	2296-2300	2306-2310	2316-2320	2326-2330	2336-2340	2346-2350	2356-2360	2366-2370	2376-2380	2386-2390			
Coctainers V.J.T	Sample ID	GTCS2-S385A	GTCS2-S385A	GTCS2-S385A	GTCS2-S316A	GTCS2-S312A				GTCS2-S271A	GTCS2-S272A			
Column C	Depth	0.00-0.02	0.00-0.20	0.50-0.60	0.00-0.02	0.00-0.02	0.00-0.05	0.00-0.20	0.50-0.60	0.00-0.02	0.00-0.02	Please se	otes for all	
Sample Type California Ca	COC No / misc											abbrevi	cronyms	
Sample Type Cleyy Leam Cl	Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Batch Number 11	Sample Date	04/11/2020	04/11/2020	04/11/2020	04/11/2020	04/11/2020	05/11/2020	05/11/2020	05/11/2020	05/11/2020	05/11/2020			
Batch Number 11	Sample Type	Clayey Loam	Clayey Loam	Clayey Sand	Clayey Loam	Clayey Loam	Clayey Loam	Clay	Clay	Clayey Loam	Clayey Loam			
Date of Receipt OB/11/2020				11	11	11	11			11	11			
Antimony												LOD/LOR	Units	
Martinory 32 50 172 26 61 158 422 NDP 744 454 <5 mg/kg TM30PMt5	•								-	-		<1	ma/ka	TM30/PM15
Antimony	•								NDP	744				
Park MS	Antimony													
Naphthalene	Lead	-	-	-	-	-	-	-	457	-	-	<5		TM30/PM62
Naphthalene														
Acenaphthylene	PAH MS													
Companishmene														
Fluorene e	Acenaphthylene													
Phenanthrene														
Anthracene ** An														
Purpose Marker														
Pyrene # 0.40 0.82 6.29 <0.03 0.19 0.94 1.12 33.91 2.99 2.83 <0.03 mg/kg TMA/PM8 3enzo(a)anthracene # 0.28 0.51 4.29 <0.06 0.23 0.71 0.70 19.62 1.77 1.73 <0.06 mg/kg TMA/PM8 2enzo(b)fluoranthene # 0.27 0.51 4.57 <0.02 0.19 0.69 0.81 19.57 1.96 1.91 <0.02 mg/kg TMA/PM8 3enzo(b)fluoranthene # 0.51 1.00 10.90 <0.07 0.44 1.30 1.59 35.56 4.00 3.80 <0.07 mg/kg TMA/PM8 3enzo(a)pyrene # 0.30 0.58 6.57 <0.04 0.25 0.72 0.88 20.10 2.19 2.07 <0.04 mg/kg TMA/PM8 3enzo(a)pyrene 0.22 0.43 4.54 <0.04 0.21 0.54 0.68 13.95 1.73 1.50 <0.04 mg/kg TMA/PM8 3enzo(a)pyrene # 0.22 0.42 4.37 <0.04 0.21 0.57 0.64 13.43 1.63 1.45 <0.04 mg/kg TMA/PM8 3enzo(a)pyrene # 0.22 0.42 4.37 <0.04 0.21 0.57 0.64 13.43 1.63 1.45 <0.04 mg/kg TMA/PM8 3enzo(b)fluoranthene # 0.27 0.42 4.37 <0.04 0.21 0.57 0.64 13.43 1.63 1.45 <0.04 mg/kg TMA/PM8 3enzo(b)fluoranthene 0.37 0.72 7.85 <0.05 0.32 0.94 1.14 25.60 2.88 2.74 <0.05 mg/kg TMA/PM8 3enzo(b)fluoranthene 0.14 0.28 3.05 <0.02 0.12 0.36 0.45 9.96 1.12 1.06 <0.02 mg/kg TMA/PM8 3enzo(b)fluoranthene 0.14 0.28 3.05 <0.02 0.12 0.36 0.45 9.96 1.12 1.06 <0.02 mg/kg TMA/PM8 3enzo(b)fluoranthene 0.14 0.28 3.05 <0.02 0.12 0.36 0.45 9.96 1.12 1.06 <0.02 mg/kg TMA/PM8 3enzo(b)fluoranthene 0.14 0.28 3.05 <0.02 0.12 0.36 0.45 9.96 1.12 1.06 <0.02 mg/kg TMA/PM8 3enzo(b)fluoranthene 0.14 0.28 3.05 <0.02 0.12 0.36 0.45 9.96 1.12 1.06 <0.02 mg/kg TMA/PM8 3enzo(b)fluoranthene 0.14 0.28 3.05 <0.02 0.12 0.36 0.45 9.96 1.12 1.06 <0.02 mg/kg TMA/PM8 3enzo(b)fluoranthene 0.14 0.28 3.05 <0.02 0.12 0.36 0.45 9.96 1.12 1.06 <0.02 mg/kg TMA/PM8 3enzo(b)fluoranthene 0.14 0.28 3.05 <0.02 0.12 0.36 0.45 9.96 1.12 1.06 <0.02 mg/kg TMA/PM8 3enzo(b)fluoranthene 0.14 0.28 3.05 <0.02 0.12 0.36 0.45 9.96 1.12 1.06 <0.02 mg/kg TMA/PM8 3enzo(b)fluoranthene 0.14 0.28 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15														
Chrysene M 0.27 0.51 4.57 < 0.02 0.19 0.69 0.81 19.57 1.96 1.91 < 0.02 mg/kg TMA/PMB 3enzo(bk)fluoranthene M 0.51 1.00 10.90 < 0.07 0.44 1.30 1.59 35.56 4.00 3.80 < 0.07 mg/kg TMA/PMB 3enzo(a)pyrene M 0.30 0.58 6.57 < 0.04 0.25 0.72 0.88 20.10 2.19 2.07 < 0.04 mg/kg TMA/PMB 3enzo(a)pyrene M 0.22 0.43 4.54 < 0.04 0.21 0.54 0.68 13.95 1.73 1.50 < 0.04 mg/kg TMA/PMB 3enzo(gh)perpere M 0.22 0.43 4.54 < 0.04 0.21 0.54 0.68 13.95 1.73 1.50 < 0.04 mg/kg TMA/PMB 3enzo(gh)perpere M 0.22 0.42 4.37 < 0.04 0.21 0.57 0.64 13.43 1.63 1.45 < 0.04 mg/kg TMA/PMB 3enzo(gh)perplere M 0.22 0.42 4.37 < 0.04 0.21 0.57 0.64 13.43 1.63 1.45 < 0.04 mg/kg TMA/PMB 3enzo(gh)perplere M 0.30 6.2 52.1 < 0.6 2.0 7.3 8.5 248.2 21.2 20.4 < 0.6 mg/kg TMA/PMB 3enzo(bf)fluoranthene 0.37 0.72 7.85 < 0.05 0.32 0.94 1.14 25.60 2.88 2.74 < 0.05 mg/kg TMA/PMB 3enzo(bf)fluoranthene 0.14 0.28 3.05 < 0.02 0.12 0.36 0.45 9.96 1.12 1.06 < 0.02 mg/kg TMA/PMB 3enzo(bf)fluoranthene 0.14 0.28 3.05 < 0.02 0.12 0.36 0.45 9.96 1.12 1.06 < 0.02 mg/kg TMA/PMB 3enzo(bf)fluoranthene 0.34 8.8 8.8 8.3 < 0 % TMA/PMB 3enzo(bf)fluoranthene 0.34 8.8 8.8 8.3 < 0 % TMA/PMB 3enzo(bf)fluoranthene 0.34 5 27.8 15.0 84.0 76.3 68.4 28.9 24.9 36.1 39.2 < 0.1 % PMA/PMB 3enzo(bf)fluoranthene 0.34 5 27.8 15.0 84.0 76.3 68.4 28.9 24.9 36.1 39.2 < 0.1 % PMA/PMB 3enzo(bf)fluoranthene 0.34 5 27.8 15.0 84.0 76.3 68.4 28.9 24.9 36.1 39.2 < 0.1 % PMA/PMB 3enzo(bf)fluoranthene 0.34 5 27.8 15.0 84.0 76.3 68.4 28.9 24.9 36.1 39.2 < 0.1 % TMA/PMB 3enzo(bf)fluoranthene 0.34 5 27.8 15.0 84.0 76.3 68.4 28.9 24.9 36.1 39.2 < 0.1 % TMA/PMB 3enzo(bf)fluoranthene 0.34 5 27.8 15.0 84.0 76.3 68.4 28.9 24.9 36.1 39.2 < 0.1 % TMA/PMB 3enzo(bf)fluoranthene 0.34 5 27.8 15.0 84.0 76.3 68.4 28.9 24.9 36.1 39.2 < 0.1 % TMA/PMB 3enzo(bf)fluoranthene 0.34 5 27.8 15.0 84.0 76.3 68.4 28.9 24.9 36.1 39.2 < 0.1 % TMA/PMB 3enzo(bf)fluoranthene 0.34 5 27.8 15.0 84.0 76.3 68.4 28.9 24.9 36.1 39.2 < 0.1 % TMA/PMB 3enzo(bf)fluoranthene 0.34 5 27.8 15.0 84.0 76.3 68.4 28.9 24.9 36.1 39.2 < 0.1 % TMA/PMB 3enzo(bf)fluoranthen	Pyrene #	0.40	0.82				0.94	1.12		2.99	2.83			
Senzo(bk)fluoranthene	Benzo(a)anthracene#	0.28	0.51	4.29	<0.06	0.23	0.71	0.70	19.62	1.77	1.73	<0.06	mg/kg	TM4/PM8
Sample Type	Chrysene **M	0.27	0.51	4.57	<0.02	0.19	0.69	0.81	19.57	1.96	1.91	<0.02	mg/kg	TM4/PM8
Indeno(123cd)pyrene	Benzo(bk)fluoranthene #M	0.51	1.00	10.90	<0.07	0.44	1.30	1.59	35.56	4.00	3.80	<0.07	mg/kg	TM4/PM8
Comparison Com	Benzo(a)pyrene #	0.30	0.58	6.57	<0.04	0.25	0.72	0.88	20.10	2.19	2.07	<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene	Indeno(123cd)pyrene													
PAH 16 Total 3.0 6.2 52.1 <0.6 2.0 7.3 8.5 248.2 21.2 20.4 <0.6 mg/kg TM4/PM8 3enzo(b)fluoranthene 0.37 0.72 7.85 <0.05 0.32 0.94 1.14 25.60 2.88 2.74 <0.05 mg/kg TM4/PM8 3enzo(k)fluoranthene 0.14 0.28 3.05 <0.02 0.12 0.36 0.45 9.96 1.12 1.06 <0.02 mg/kg TM4/PM8 PAH Surrogate % Recovery 86 84 86 83 83 87 84 86 88 83 <0 % TM4/PM8 PAH Surrogate % Recovery 86 84.0 76.3 68.4 28.9 24.9 36.1 39.2 <0.1 % PM4/PM8 PAH Surrogate Carbon **	Dibenzo(ah)anthracene #													
Senzo(b) fluoranthene 0.37 0.72 7.85 <0.05 0.32 0.94 1.14 25.60 2.88 2.74 <0.05 mg/kg TM4/PM8	10 // /													
Senzo(k)fluoranthene 0.14 0.28 3.05 <0.02 0.12 0.36 0.45 9.96 1.12 1.06 <0.02 mg/kg TM4/PM8														
PAH Surrogate % Recovery 86 84 86 83 83 87 84 86 88 83 <0 % TM4/PM8 Natural Moisture Content 34.5 27.8 15.0 84.0 76.3 68.4 28.9 24.9 36.1 39.2 <0.1 % PM4/PM0 Total Organic Carbon # 26.03 6.55 <0.02 % TM21/PM24 Total Organic Carbon														
Fotal Organic Carbon # 26.03 6.55 <0.02 % TM21/PM24 Fotal Organic Carbon 6.55 <0.02 % TM21/PM24 Fotal Organic Carbon	PAH Surrogate % Recovery													
Fotal Organic Carbon # 26.03 6.55 <0.02 % TM21/PM24 Fotal Organic Carbon 6.55 <0.02 % TM21/PM24 Fotal Organic Carbon														
Total Organic Carbon	Natural Moisture Content	34.5	27.8	15.0	84.0	76.3	68.4	28.9	24.9	36.1	39.2	<0.1	%	PM4/PM0
Sample Type Clayey Loam Clayey Loam Clayey Sand Clayey Loam None PM13/PM0 Medium Brown Medium Br	Total Organic Carbon #	-	-	-	26.03	-	-	-	-	-	6.55	<0.02	%	TM21/PM24
Sample Colour Medium Brown Medi	Total Organic Carbon	-	-	-	-	-	-	-	-	-	-	<0.02	%	TM21/PM89
Sample Colour Medium Brown Medi	Sample Type	Clayey Loam	Clayey Loam	Clayey Sand	Clayey Loam	Clayey Loam	Clayey Loam	Clav	Clav	Clayey Loam	Clayey Loam		None	PM13/PM0
Stones, vegetation stones, veget	Sample Colour							•	•					
	Other Items	stones, vegetation	stones, vegetation	stones, chalk, vegetation	stones, vegetation. wood	stones, vegetation	stones, vegetation	stones	stones, sand, brick	stones, vegetation	stones, vegetation		None	PM13/PM0
														-

Client Name: AECOM

Reference: 60632092

Location: Grenfell Stage 2
Contact: David Dyson
FMT_lob No: 20/14697

Report : Solid

:MI Job No:	20/14697									
EMT Sample No.	2396-2400	2406-2410	2416-2420	2426-2430	2436-2440	2446-2450	2456-2460	2466-2470	2476-2480	2486-249
Sample ID	GTCS2-S274A	GTCS2-S275A	GTCS2-S276A	GTCS2-S277A	GTCS2-S278A	GTCS2-S279A	GTCS2-S280A	GTCS2-S191A	GTCS2-S191A	GTCS2-S19
Depth	0.00-0.02	0.00-0.02	0.00-0.20	0.00-0.20	0.00-0.20	0.00-0.02	0.00-0.05	0.00-0.05	0.00-0.20	0.50-0.6
	EMT Sample No.	EMT Sample No. 2396-2400 Sample ID GTCS2-S274A	EMT Sample No. 2396-2400 2406-2410 Sample ID GTCS2-S274A GTCS2-S275A	EMT Sample No. 2396-2400 2406-2410 2416-2420 Sample ID GTCS2-S274A GTCS2-S275A GTCS2-S276A	EMT Sample No. 2396-2400 2406-2410 2416-2420 2426-2430 Sample ID GTCS2-S274A GTCS2-S275A GTCS2-S276A GTCS2-S277A	EMT Sample No. 2396-2400 2406-2410 2416-2420 2426-2430 2436-2440 Sample ID GTCS2-S274A GTCS2-S275A GTCS2-S276A GTCS2-S277A GTCS2-S278A	EMT Sample No. 2396-2400 2406-2410 2416-2420 2426-2430 2436-2440 2446-2450 Sample ID GTCS2-S274A GTCS2-S275A GTCS2-S276A GTCS2-S277A GTCS2-S278A GTCS2-S279A	EMT Sample No. 2396-2400 2406-2410 2416-2420 2426-2430 2436-2440 2446-2450 2456-2460 Sample ID GTCS2-S274A GTCS2-S275A GTCS2-S276A GTCS2-S277A GTCS2-S278A GTCS2-S279A GTCS2-S280A	EMT Sample No. 2396-2400 2406-2410 2416-2420 2426-2430 2436-2440 2446-2450 2456-2460 2466-2470 Sample ID GTCS2-S274A GTCS2-S275A GTCS2-S276A GTCS2-S277A GTCS2-S278A GTCS2-S279A GTCS2-S280A GTCS2-S191A	EMT Sample No. 2396-2400 2406-2410 2416-2420 2426-2430 2436-2440 2446-2450 2456-2460 2466-2470 2476-2480 Sample ID GTCS2-S274A GTCS2-S275A GTCS2-S276A GTCS2-S277A GTCS2-S278A GTCS2-S278A GTCS2-S279A GTCS2-S280A GTCS2-S191A GTCS2-S191A

Sample ID	GTCS2-S274A	GTCS2-S275A	GTCS2-S276A	GTCS2-S277A	GTCS2-S278A	GTCS2-S279A	GTCS2-S280A	GTCS2-S191A	GTCS2-S191A	GTCS2-S191A			
Donath	0.00-0.02	0.00-0.02	0.00-0.20	0.00-0.20	0.00-0.20	0.00-0.02	0.00-0.05	0.00-0.05	0.00-0.20	0.50-0.60			
Depth	0.00-0.02	0.00-0.02	0.00-0.20	0.00-0.20	0.00-0.20	0.00-0.02	0.00-0.03	0.00-0.05	0.00-0.20	0.50-0.60		e attached n ations and a	
COC No / misc											ass.01.		o. o ,
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Sample Date	05/11/2020	05/11/2020	05/11/2020	05/11/2020	05/11/2020	05/11/2020	05/11/2020	05/11/2020	05/11/2020	05/11/2020			
Sample Type	Clayey Loam	Clayey Loam	Clayey Loam	Clayey Loam	Clayey Loam	Clayey Loam	Clayey Loam	Clayey Loam	Clayey Loam	Clay			
Batch Number	11	11	11	11	11	11	11	11	11	11			Method
Date of Receipt	06/11/2020	06/11/2020	06/11/2020	06/11/2020	06/11/2020	06/11/2020	06/11/2020	06/11/2020	06/11/2020	06/11/2020	LOD/LOR	Units	No.
Antimony	-	-	-	2	-	-	-	-	_	-	<1	mg/kg	TM30/PM15
Lead *M	1168	992	32	65	28	1385	NDP	448	610	NDP	<5	mg/kg	TM30/PM15
Antimony	-	-	-	-	-	-	-	-	-	-	<1	mg/kg	TM30/PM62
Lead	-	-	-	-	-	-	2216	-	-	372	<5	mg/kg	TM30/PM62
PAH MS													
Naphthalene ^{#M}	0.12	0.10	<0.04	<0.04	<0.04	<0.04	0.17	<0.04	<0.04	0.19	<0.04	mg/kg	TM4/PM8
Acenaphthylene	0.24	0.18	<0.03	<0.03	<0.03	0.13	0.17	0.10	0.18	1.53	<0.03	mg/kg	TM4/PM8
Acenaphthene #M	0.12	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	1.08	<0.05	mg/kg	TM4/PM8
Fluorene #M	0.12	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.71	<0.04	mg/kg	TM4/PM8
Phenanthrene #M	2.12	0.97	<0.03	<0.03	<0.03	1.09	0.96	0.53	0.54	12.47	<0.03	mg/kg	TM4/PM8
Anthracene #	0.51	0.26	<0.04	<0.04	<0.04	0.30	0.28	0.17	0.26	4.68	<0.04	mg/kg	TM4/PM8
Fluoranthene #M	4.95	3.04	<0.03	0.06	<0.03	3.82	2.74	1.38	1.86	21.29	<0.03	mg/kg	TM4/PM8
Pyrene#	4.19	2.70	<0.03	0.06	<0.03	3.18	2.35	1.20	1.62	17.63	<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene#	2.31	1.62	<0.06	<0.06	<0.06	1.90	1.65	0.78	0.84	7.90	<0.06	mg/kg	TM4/PM8
Chrysene #M	2.68	1.87	<0.02	0.05	<0.02	2.23	1.73	0.82	1.01	8.21	<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #M	5.29	3.68	0.13	0.13	<0.07	4.62	3.59	1.70	2.03	16.28	<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	2.83	1.98	0.06	0.06	<0.04	2.38	1.87	0.98	1.10	9.52	<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene	2.17	1.59	0.06	0.06	<0.04	1.95	1.59	0.73	0.99	7.63	<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	0.42	0.31	<0.04	<0.04	<0.04	0.40	0.29	0.15	0.20	1.88	<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	2.26	1.52	0.06	0.07	<0.04	2.10	1.64	0.78	1.05	7.73	<0.04	mg/kg	TM4/PM8
PAH 16 Total	30.3	19.8	<0.6	<0.6	<0.6	24.1	19.0	9.3	11.7	118.7	<0.6	mg/kg	TM4/PM8
Benzo(b)fluoranthene	3.81	2.65	0.09	0.09	<0.05	3.33	2.58	1.22	1.46	11.72	<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	1.48	1.03	0.04	0.04	<0.02	1.29	1.01	0.48	0.57	4.56	<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	86	86	88	85	86	86	86	80	110	105	<0	%	TM4/PM8
Natural Moisture Content	69.6	63.6	25.3	21.0	23.6	65.5	52.9	66.7	50.3	29.9	<0.1	%	PM4/PM0
											-		
Total Organic Carbon #	-	-	-	3.40	-	-	-	-	-	-	<0.02	%	TM21/PM24
Total Organic Carbon	-	-	-	-	-	-	-	-	-	-	<0.02	%	TM21/PM89
-													
Sample Type	Clayey Loam	Clayey Loam	Clayey Loam	Clayey Loam	Clayey Loam	Clayey Loam	Clayey Loam	Clayey Loam	Clayey Loam	Clay		None	PM13/PM0
Sample Colour	Dark Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown		None	PM13/PM0
Other Items	stones, vegetation	stones, vegetation	stones, sand, vegetation	stones, vegetation	stones, sand, vegetation	stones, brick, chalk		None	PM13/PM0				

AECOM Client Name:

60632092 Reference: Location: Grenfell Stage 2

David Dyson 20/14697 Contact:

Report : Solid

EMT Job No:	20/14697									
EMT Sample No.	2496-2500	2506-2510	2516-2520	2526-2530	2536-2540	2546-2550	2556-2560	2566-2570	2576-2580	2586-2590
Sample ID	GTCS2-S192A	GTCS2-S193A	GTCS2-S193A	GTCS2-S193A	GTCS2-S194A	GTCS2-S195A	GTCS2-S195A	GTCS2-S195A	GTCS2-S196A	GTCS2-S197A
Depth	0.00-0.02	0.00-0.05	0.00-0.20	0.50-0.60	0.00-0.20	0.00-0.02	0.00-0.20	0.50-0.60	0.00-0.02	0.00-0.02
COC No / misc										
Containers	VJT									

Sample ID	GTCS2-S192A	GTCS2-S193A	GTCS2-S193A	GTCS2-S193A	GTCS2-S194A	GTCS2-S195A	GTCS2-S195A	GTCS2-S195A	GTCS2-S196A	GTCS2-S197A			
Depth	0.00-0.02	0.00-0.05	0.00-0.20	0.50-0.60	0.00-0.20	0.00-0.02	0.00-0.20	0.50-0.60	0.00-0.02	0.00-0.02			
-	0.00-0.02	0.00-0.03	0.00-0.20	0.50-0.60	0.00-0.20	0.00-0.02	0.00-0.20	0.50-0.60	0.00-0.02	0.00-0.02		e attached n ations and a	
COC No / misc											ass.01.		o. o ,
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Sample Date	05/11/2020	05/11/2020	05/11/2020	05/11/2020	05/11/2020	05/11/2020	05/11/2020	05/11/2020	05/11/2020	05/11/2020	ı		
Sample Type	Clay	Clayey Loam	Clay	Clay	Clayey Loam	Clayey Loam	Clayey Loam	Clay	Clayey Loam	Clay			
Batch Number	11	11	11	11	11	11	11	11	11	11			Method
Date of Receipt	06/11/2020	06/11/2020	06/11/2020	06/11/2020	06/11/2020	06/11/2020	06/11/2020	06/11/2020	06/11/2020	06/11/2020	LOD/LOR	Units	No.
Antimony	-	-	-	-	-	3	NDP	4	-	-	<1	mg/kg	TM30/PM15
Lead ^{#M}	308	173	443	NDP	538	155	NDP	404	314	293	<5	mg/kg	TM30/PM15
Antimony	-	-	-	-	-	-	3	-	-	-	<1	mg/kg	TM30/PM62
Lead	-	-	-	500	-	-	206	-	-	-	<5	mg/kg	TM30/PM62
PAH MS													
Naphthalene ^{#M}	<0.04	<0.04	<0.04	0.58	0.07	<0.04	<0.04	0.07	0.08	0.09	<0.04	mg/kg	TM4/PM8
Acenaphthylene	0.16	0.12	0.15	3.06	0.19	0.11	0.08	0.37	0.17	0.32	<0.03	mg/kg	TM4/PM8
Acenaphthene #M	<0.05	<0.05	<0.05	1.00	0.09	<0.05	<0.05	0.10	<0.05	0.09	<0.05	mg/kg	TM4/PM8
Fluorene #M	<0.04	<0.04	<0.04	0.96	0.09	<0.04	<0.04	0.11	0.06	0.12	<0.04	mg/kg	TM4/PM8
Phenanthrene #M	0.43	0.19	0.55	11.77	1.41	0.52	0.43	2.07	1.12	1.71	<0.03	mg/kg	TM4/PM8
Anthracene #	0.21	0.12	0.22	4.78	0.47	0.16	0.13	0.81	0.33	0.72	<0.04	mg/kg	TM4/PM8
Fluoranthene #M	1.48	0.66	1.81	27.69	3.58	1.07	1.12	5.80	3.52	4.87	<0.03	mg/kg	TM4/PM8
Pyrene#	1.35	0.59	1.59	25.58	3.08	0.94	0.99	4.89	2.96	4.07	<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene#	0.65	0.33	0.78	11.52	1.45	0.45	0.50	2.20	1.71	2.28	<0.06	mg/kg	TM4/PM8
Chrysene #M	0.84	0.38	0.92	12.41	1.72	0.55	0.56	2.40	2.06	2.64	<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #M	1.85	0.89	1.77	26.57	3.11	1.07	1.09	4.75	4.17	5.42	<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	0.98	0.49	0.96	15.93	1.66	0.57	0.59	2.65	2.30	2.90	<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene	0.93	0.47	0.84	12.89	1.39	0.53	0.53	2.24	1.82	2.40	<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	0.18	0.12	0.21	2.98	0.34	0.14	0.11	0.51	0.28	0.46	<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	1.04	0.52	0.88	12.82	1.41	0.53	0.48	2.20	1.71	2.62	<0.04	mg/kg	TM4/PM8
PAH 16 Total	10.1	4.9	10.7	170.5	20.1	6.6	6.6	31.2	22.3	30.7	<0.6	mg/kg	TM4/PM8
Benzo(b)fluoranthene	1.33	0.64	1.27	19.13	2.24	0.77	0.78	3.42	3.00	3.90	<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	0.52	0.25	0.50	7.44	0.87	0.30	0.31	1.33	1.17	1.52	<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	106	111	104	104	101	118	104	108	86	92	<0	%	TM4/PM8
Natural Moisture Content	48.0	74.5	21.2	20.5	46.8	78.0	59.8	41.8	57.2	54.1	<0.1	%	PM4/PM0
Total Organic Carbon #	-	-	-	-	-	12.47	NDP	6.15	5.87	-	<0.02	%	TM21/PM24
Total Organic Carbon	-	-	-	-	-	-	9.07	-	-	-	<0.02	%	TM21/PM89
-													
Sample Type	Clay	Clayey Loam	Clay	Clay	Clayey Loam	Clayey Loam	Clayey Loam	Clay	Clayey Loam	Clay		None	PM13/PM0
Sample Colour	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown		None	PM13/PM0
Other Items	stones, vegetation	stones, vegetation	stones, brick	stones, brick	stones, vegetation		None	PM13/PM0					
													4

Client Name: AECOM

Reference: 60632092 Location: Grenfell Stage 2

Contact: David Dyson EMT Job No: 20/14697

Report : Solid

Lead March NDP											
Prisone see alluctime notices for all absorptions and accomprises and accomp	EMT Sample No.	2596-2600	2606-2610	2616-2620	2626-2630	2636-2640					
COC No / misc Container V.J.T	Sample ID	GTCS2-S197A	GTCS2-S197A	GTCS2-S198A	GTCS2-S200A	GTCS2-S273A					
Coctainers VJT	Depth	0.00-0.20	0.50-0.60	0.00-0.02	0.00-0.02	0.00-0.02			Please se	e attached n	otes for all
Container VJT	COC No / misc										
Sample Date OSF11/2020 OS		VIT	VIT	VIT	VIT	VIT					
Sample Type Clay											
Batch Number 11	Sample Date	05/11/2020	05/11/2020								
Date of Receipt 06/11/2020	Sample Type	Clay	Clay	Clayey Loam	Clayey Loam	Clayey Loam					
Company Comp	Batch Number	11	11	11	11	11			LOD/LOR	Unite	Method
Lead March NDP	Date of Receipt	06/11/2020	06/11/2020	06/11/2020	06/11/2020	06/11/2020			LODILOIT	Office	No.
Antimony	Antimony	-	-	-	3	-			<1	mg/kg	TM30/PM15
Lead 428	Lead ^{#M}	NDP	443	194	110	997			<5	mg/kg	TM30/PM15
PAH MS O.18	Antimony	-	-	-	-	-			<1	mg/kg	TM30/PM62
Naphthalene M	Lead	428	-	-	-	-			<5	mg/kg	TM30/PM62
Naphthalene M	D										
Acenaphthylene		0.15	2.5	.00:	2.5	.00:			.00:		TALLE
Acenaphthene M 0.15											
Fluorene M											
Phenanthrene M 2.42 0.78 0.31 0.19 0.66 0 0.08 0.23 0.00 0.08 0.23 0.00 0.08 0.23 0.00 0.08 0.23 0.00 0.08 0.23 0.00 0.08 0.23 0.00 0.08 0.23 0.00 0.08 0.23 0.00 0.08 0.23 0.00 0.08 0.23 0.00 0.08 0.23 0.00 0.08 0.23 0.00 0.08 0.23 0.00 0.08 0.23 0.00 0.08 0.23 0.00 0.08 0.23 0.00 0.08 0.23 0.00 0.08 0.23 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.0	·										
Anthracene * 1.11 0.33 0.20 0.08 0.23											
Fluoranthene	_										
Pyrene * 6.40 2.01 1.26 0.50 1.94 TMA/PMB Benzo(a)anthracene ** 3.58 1.21 0.89 0.31 1.12											TM4/PM8
Benzo(a)anthracene											TM4/PM8
Benzo(bk)fluoranthene Marker Mark		3.58	1.21	0.89	0.31	1.12			<0.06		TM4/PM8
Benzo(a)pyrene	Chrysene #M	4.43	1.23	0.93	0.33	1.12			<0.02	mg/kg	TM4/PM8
Indeno(123cd)pyrene	Benzo(bk)fluoranthene #M	8.96	2.55	2.04	0.67	2.47			<0.07	mg/kg	TM4/PM8
Dibenzo(ah)anthracene	Benzo(a)pyrene #	4.71	1.42	1.15	0.39	1.30			<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene	Indeno(123cd)pyrene	4.34	1.20	0.93	0.31	1.20			<0.04	mg/kg	TM4/PM8
PAH 16 Total 49.9 14.6 10.4 3.8 13.8 <0.6	Dibenzo(ah)anthracene #	0.88	0.24	0.20	0.06	0.23			<0.04	mg/kg	TM4/PM8
Benzo(b)fluoranthene											TM4/PM8
Benzo(k)fluoranthene											
PAH Surrogate % Recovery 98 92 97 100 110 <0											
Natural Moisture Content 28.0 19.6 41.4 55.9 4											
Total Organic Carbon # 4.88 7.50	PAH Surrogate % Recovery	98	92	97	100	110			<0	%	TM4/PM8
Total Organic Carbon	Natural Moisture Content	28.0	19.6	41.4	55.9	45.9			<0.1	%	PM4/PM0
Total Organic Carbon											
Sample Type Clay Clay Clayey Loam Clayey Loam Clayey Loam Medium Brown	-	-	-	-							
Sample Colour Medium Brown Medi	Total Organic Carbon	-	-	-	-	-			<0.02	%	TM21/PM89
Sample Colour Medium Brown Medi	Sample Type	Clay	Clay	Clayey Loam	Clayey Loam	Clayey Loam				None	PM13/PM0
											PM13/PM0
	Other Items	stones, chalk, vegetation	stones, brick	stones, vegetation	stones, vegetation	stones, vegetation				None	PM13/PM0
			<u> </u>	<u> </u>	<u> </u>	<u> </u>					

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level less than 0.1%, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative sampling.

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Date Of Analysis	Analysis	Result
20/14697	11	GTCS2-S385A	0.00-0.02	2300	17/11/2020	General Description (Bulk Analysis)	soil.stones
					17/11/2020	Asbestos Fibres	NAD
					17/11/2020	Asbestos ACM	NAD
					17/11/2020	Asbestos Type	NAD
					17/11/2020	Asbestos Level Screen	NAD
20/14697	11	GTCS2-S385A	0.00-0.20	2310	17/11/2020	General Description (Bulk Analysis)	soil.stones
					17/11/2020	Asbestos Fibres	NAD
					17/11/2020	Asbestos ACM	NAD
					17/11/2020	Asbestos Type	NAD
					17/11/2020	Asbestos Level Screen	NAD
20/14697	11	GTCS2-S385A	0.50-0.60	2320	17/11/2020	General Description (Bulk Analysis)	soil.stones
					17/11/2020	Asbestos Fibres	NAD
					17/11/2020	Asbestos ACM	NAD
					17/11/2020	Asbestos Type	NAD
					17/11/2020	Asbestos Level Screen	NAD
20/14697	11	GTCS2-S316A	0.00-0.02	2330	16/11/2020	General Description (Bulk Analysis)	soil.stones
					16/11/2020	Asbestos Fibres	NAD
					16/11/2020	Asbestos ACM	NAD
					16/11/2020	Asbestos Type	NAD
					16/11/2020	Asbestos Level Screen	NAD
20/14697	11	GTCS2-S312A	0.00-0.02	2340	16/11/2020	General Description (Bulk Analysis)	soil.stones
					16/11/2020	Asbestos Fibres	NAD
					16/11/2020	Asbestos ACM	NAD
					16/11/2020	Asbestos Type	NAD
					16/11/2020	Asbestos Level Screen	NAD
20/14697	11	GTCS2-DUP12A	0.00-0.05	2350	16/11/2020	General Description (Bulk Analysis)	Soil/Stones
					16/11/2020	Asbestos Fibres	NAD
					16/11/2020	Asbestos ACM	NAD
					16/11/2020	Asbestos Type	NAD
					16/11/2020	Asbestos Level Screen	NAD
20/14697	11	GTCS2-DUP12A	0.00-0.20	2360	16/11/2020	General Description (Bulk Analysis)	Soil/Stones
					16/11/2020	Asbestos Fibres	NAD
					16/11/2020	Asbestos ACM	NAD

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Date Of Analysis	Analysis	Result
20/14697	11	GTCS2-DUP12A	0.00-0.20	2360	16/11/2020	Asbestos Type	NAD
					16/11/2020	Asbestos Level Screen	NAD
20/14697	11	GTCS2-DUP12A	0.50-0.60	2370	16/11/2020	General Description (Bulk Analysis)	Soil/Stones
					16/11/2020	Asbestos Fibres	Fibre Bundles
					16/11/2020	Asbestos ACM	NAD
					16/11/2020	Asbestos Type	Chrysotile
					16/11/2020	Asbestos Level Screen	less than 0.1%
20/14697	11	GTCS2-S271A	0.00-0.02	2380	16/11/2020	General Description (Bulk Analysis)	Soil/Stones
					16/11/2020	Asbestos Fibres	NAD
					16/11/2020	Asbestos ACM	NAD
					16/11/2020	Asbestos Type	NAD
					16/11/2020	Asbestos Level Screen	NAD
20/14697	11	GTCS2-S272A	0.00-0.02	2390	16/11/2020	General Description (Bulk Analysis)	Soil/Stone
					16/11/2020	Asbestos Fibres	NAD
					16/11/2020	Asbestos ACM	NAD
					16/11/2020	Asbestos Type	NAD
					16/11/2020	Asbestos Level Screen	NAD
20/14697	11	GTCS2-S274A	0.00-0.02	2400	16/11/2020	General Description (Bulk Analysis)	Soil/Stone
					16/11/2020	Asbestos Fibres	NAD
					16/11/2020	Asbestos ACM	NAD
					16/11/2020	Asbestos Type	NAD
					16/11/2020	Asbestos Level Screen	NAD
20/14697	11	GTCS2-S275A	0.00-0.02	2410	16/11/2020	General Description (Bulk Analysis)	Soil/Stone
					16/11/2020	Asbestos Fibres	NAD
					16/11/2020	Asbestos ACM	NAD
					16/11/2020	Asbestos Type	NAD
					16/11/2020	Asbestos Level Screen	NAD
20/14697	11	GTCS2-S276A	0.00-0.20	2420	16/11/2020	General Description (Bulk Analysis)	Soil/Stone
					16/11/2020	Asbestos Fibres	NAD
					16/11/2020	Asbestos ACM	NAD
					16/11/2020	Asbestos Type	NAD
					16/11/2020	Asbestos Level Screen	NAD
20/14697	11	GTCS2-S277A	0.00-0.20	2430	16/11/2020	General Description (Bulk Analysis)	Soil/Stones
					16/11/2020	Asbestos Fibres	NAD
					16/11/2020	Asbestos ACM	NAD
					16/11/2020	Asbestos Type	NAD
					16/11/2020	Asbestos Level Screen	NAD
20/14697	11	GTCS2-S278A	0.00-0.20	2440	16/11/2020	General Description (Bulk Analysis)	Soil/Stone
					16/11/2020	Asbestos Fibres	NAD
					16/11/2020	Asbestos ACM	NAD
					16/11/2020	Asbestos Type	NAD
					16/11/2020	Asbestos Level Screen	NAD
20/14697	11	GTCS2-S279A	0.00-0.02	2450	16/11/2020	General Description (Bulk Analysis)	Soil/Stone
					16/11/2020	Asbestos Fibres	NAD

						1	
EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Date Of Analysis	Analysis	Result
20/14697	11	GTCS2-S279A	0.00-0.02	2450	16/11/2020	Asbestos ACM	NAD
					16/11/2020	Asbestos Type	NAD
					16/11/2020	Asbestos Level Screen	NAD
					10/11/2020	Assested Level Octobil	וארט
20/14697	11	GTCS2-S280A	0.00-0.05	2460	16/11/2020	General Description (Bulk Analysis)	soil.stones
					16/11/2020	Asbestos Fibres	Fibre Bundles
					16/11/2020	Asbestos ACM	NAD
					16/11/2020	Asbestos Type	Chrysotile
					16/11/2020	Asbestos Level Screen	less than 0.1%
20/14697	11	GTCS2-S191A	0.00-0.05	2470	16/11/2020	General Description (Bulk Analysis)	soil.stones
					16/11/2020	Asbestos Fibres	NAD
					16/11/2020	Asbestos ACM	NAD
					16/11/2020	Asbestos Type	NAD
					16/11/2020	Asbestos Level Screen	NAD
20/14697	11	GTCS2-S191A	0.00-0.20	2480	16/11/2020	General Description (Bulk Analysis)	soil.stones
					16/11/2020	Asbestos Fibres	NAD
					16/11/2020	Asbestos ACM	NAD
					16/11/2020	Asbestos Type	NAD
					16/11/2020	Asbestos Level Screen	NAD
20/14697	11	GTCS2-S191A	0.50-0.60	2490	16/11/2020	General Description (Bulk Analysis)	soil.stones
					16/11/2020	Asbestos Fibres	Fibre Bundles
					16/11/2020	Asbestos Fibres (2)	Fibre Bundles
					16/11/2020	Asbestos ACM	NAD
					16/11/2020	Asbestos ACM (2)	NAD
					16/11/2020	Asbestos Type	Chrysotile
					16/11/2020	Asbestos Type (2)	Crocidolite
					16/11/2020	Asbestos Level Screen	less than 0.1%
					10/11/2020	ASSESTED LEVEL COLCUIT	ioso titali 0.170
20/14697	11	GTCS2-S192A	0.00-0.02	2500	16/11/2020	General Description (Bulk Analysis)	Soil/Stones
20/11001			0.00 0.02	2000	16/11/2020	Asbestos Fibres	NAD
					16/11/2020	Asbestos ACM	NAD
					16/11/2020	Asbestos Type	NAD
					16/11/2020	Asbestos Level Screen	NAD
					10/11/2020	7.000000 =0.00.00000	
20/14697	11	GTCS2-S193A	0.00-0.05	2510	16/11/2020	General Description (Bulk Analysis)	soil.stones
20/11001			0.00 0.00	20.0	16/11/2020	Asbestos Fibres	NAD
					16/11/2020	Asbestos ACM	NAD
					16/11/2020	Asbestos Type	NAD
					16/11/2020	Asbestos Level Screen	NAD
					10/11/2020	ASSESTED LEVEL SCIERTI	
20/14697	11	GTCS2-S193A	0.00-0.20	2520	16/11/2020	General Description (Bulk Analysis)	Soil/Stones
20/1403/		51002-0100A	0.00-0.20	2020	16/11/2020	Asbestos Fibres	NAD
					16/11/2020	Asbestos ACM	NAD
					16/11/2020	Asbestos Type	NAD
					16/11/2020	Asbestos Type Asbestos Level Screen	NAD
					10/11/2020	AND STORES CONTROLL	
20/14697	11	GTCS2-S193A	0.50-0.60	2530	16/11/2020	General Description (Bulk Analysis)	Soil/Stones
20/1403/	1.1	51002-0100A	0.50-0.00	2000			Fibre Bundles
					16/11/2020	Asbestos Fibres	
					16/11/2020	Asbestos ACM	NAD America
					16/11/2020	Asbestos Type	Amosite

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Date Of Analysis	Analysis	Result
20/14697	11	GTCS2-S193A	0.50-0.60	2530	16/11/2020	Asbestos Level Screen	less than 0.1%
20/14697	11	GTCS2-S194A	0.00-0.20	2540	16/11/2020	General Description (Bulk Analysis)	Soil/Stones
					16/11/2020	Asbestos Fibres	NAD
					16/11/2020	Asbestos ACM	NAD
					16/11/2020	Asbestos Type	NAD
					16/11/2020	Asbestos Level Screen	NAD
20/14697	11	GTCS2-S195A	0.00-0.02	2550	16/11/2020	General Description (Bulk Analysis)	soil.stones
					16/11/2020	Asbestos Fibres	NAD
					16/11/2020	Asbestos ACM	NAD
					16/11/2020	Asbestos Type	NAD
					16/11/2020	Asbestos Level Screen	NAD
20/14697	11	GTCS2-S195A	0.00-0.20	2560	16/11/2020	General Description (Bulk Analysis)	Soil/Stone
					16/11/2020	Asbestos Fibres	Fibre Bundles
					16/11/2020	Asbestos ACM	NAD
					16/11/2020	Asbestos Type	Chrysotile
					16/11/2020	Asbestos Level Screen	less than 0.1%
20/14697	11	GTCS2-S195A	0.50-0.60	2570	16/11/2020	General Description (Bulk Analysis)	Soil/Stones
					16/11/2020	Asbestos Fibres	NAD
					16/11/2020	Asbestos ACM	NAD
					16/11/2020	Asbestos Type	NAD
					16/11/2020	Asbestos Level Screen	NAD
20/14697	11	GTCS2-S196A	0.00-0.02	2580	16/11/2020	General Description (Bulk Analysis)	Soil/Stones
					16/11/2020	Asbestos Fibres	NAD
					16/11/2020	Asbestos ACM	NAD
					16/11/2020	Asbestos Type	NAD
					16/11/2020	Asbestos Level Screen	NAD
20/14697	11	GTCS2-S197A	0.00-0.02	2590	16/11/2020	General Description (Bulk Analysis)	soil.stones
					16/11/2020	Asbestos Fibres	NAD
					16/11/2020	Asbestos ACM	NAD
					16/11/2020	Asbestos Type	NAD
					16/11/2020	Asbestos Level Screen	NAD
		07000 04074					2 112
20/14697	11	GTCS2-S197A	0.00-0.20	2600	16/11/2020	General Description (Bulk Analysis)	Soil/Stone
					16/11/2020	Asbestos Fibres	Fibre Bundles
					16/11/2020	Asbestos ACM	NAD
					16/11/2020	Asbestos Type	Amosite
					16/11/2020	Asbestos Level Screen	less than 0.1%
		OTO62 0:==			404:		0.1101
20/14697	11	GTCS2-S197A	0.50-0.60	2610	16/11/2020	General Description (Bulk Analysis)	Soil/Stone
					16/11/2020	Asbestos Fibres	NAD
					16/11/2020	Asbestos ACM	NAD
					16/11/2020	Asbestos Type	NAD
					16/11/2020	Asbestos Level Screen	NAD
		OTO00 0400:					a wa
20/14697	11	GTCS2-S198A	0.00-0.02	2620	16/11/2020	General Description (Bulk Analysis)	Soil/Stones
					16/11/2020	Asbestos Fibres	NAD
					16/11/2020	Asbestos ACM	NAD

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Date Of Analysis	Analysis	Result
20/14697	11	GTCS2-S198A	0.00-0.02	2620	16/11/2020	Asbestos Type	NAD
					16/11/2020		NAD
20/14697	11	GTCS2-S200A	0.00-0.02	2630	16/11/2020	General Description (Bulk Analysis)	Soil/Stones
					16/11/2020	Asbestos Fibres	NAD
					16/11/2020	Asbestos ACM	NAD
					16/11/2020	Asbestos Type	NAD
					16/11/2020	Asbestos Level Screen	NAD
20/14697	11	GTCS2-S273A	0.00-0.02	2640	17/11/2020	General Description (Bulk Analysis)	Soil/Stones
					17/11/2020	Asbestos Fibres	NAD
					17/11/2020	Asbestos ACM	NAD
					17/11/2020	Asbestos Type	NAD
					17/11/2020	Asbestos Level Screen	NAD

NDP Reason Report

Client Name: AECOM Matrix : Solid

Reference: 60632092
Location: Grenfell Stage 2
Contact: David Dyson

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Method No.	NDP Reason
20/14697	11	GTCS2-DUP12A	0.50-0.60	2366-2370	TM30/PM15	Asbestos detected in sample
20/14697	11	GTCS2-S280A	0.00-0.05	2456-2460	TM30/PM15	Asbestos detected in sample
20/14697	11	GTCS2-S191A	0.50-0.60	2486-2490	TM30/PM15	Asbestos detected in sample
20/14697	11	GTCS2-S193A	0.50-0.60	2526-2530	TM30/PM15	Asbestos detected in sample
20/14697	11	GTCS2-S195A	0.00-0.20	2556-2560	TM30/PM15	Asbestos detected in sample
20/14697	11	GTCS2-S195A	0.00-0.20	2556-2560	TM21/PM24	Asbestos detected in sample
20/14697	11	GTCS2-S197A	0.00-0.20	2596-2600	TM30/PM15	Asbestos detected in sample

Client Name: AECOM Reference: 60632092

Location: Grenfell Stage 2 **Contact:** David Dyson

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
					No deviating sample report results for job 20/14697	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 20/14697

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCl (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory.

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

EMT Job No.: 20/14697

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

ISO17025 (UKAS Ref No. 4225) accredited - UK. SA ISO17025 (SANAS Ref No.T0729) accredited - South Africa B Indicates analyte found in associated method blank. DR Dilution required. M MCERTS accredited. NA Not applicable NAD No Asbestos Detected.
B Indicates analyte found in associated method blank. DR Dilution required. M MCERTS accredited. NA Not applicable
DR Dilution required. M MCERTS accredited. NA Not applicable
M MCERTS accredited. NA Not applicable
NA Not applicable
NAD No Asbestos Detected
ND None Detected (usually refers to VOC and/SVOC TICs).
NDP No Determination Possible
SS Calibrated against a single substance
SV Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W Results expressed on as received basis.
+ AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
Results above calibration range, the result should be considered the minimum value. The actual result could be significated higher, this result is not accredited.
* Analysis subcontracted to an Element Materials Technology approved laboratory.
AD Samples are dried at 35°C ±5°C
CO Suspected carry over
LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME Matrix Effect
NFD No Fibres Detected
BS AQC Sample
LB Blank Sample
N Client Sample
TB Trip Blank Sample
OC Outside Calibration Range

EMT Job No: 20/14697

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes	Yes	AR	Yes
PM13	A visual examination of the solid sample is carried out to ascertain sample make up, colour and any other inclusions. This is not a geotechnical description.	PM0	No preparation is required.			AR	No
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.	Yes		AD	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM89	Preparation of positive asbestos samples for Eltra analysis			AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes	Yes	AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM62	Acid digestion of as received solid samples using Aqua Regia refluxed at 112.5 °C.			AR	Yes

EMT Job No: 20/14697

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM65	Asbestos Bulk Identification method based on HSG 248 First edition (2006)	PM42	Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1:2018. Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	

Judd, Emma

From: Paul Boden <paul.boden@element.com>

Sent: 07 January 2022 11:40 **To:** Judd, Emma; Dyson, David

Subject: [EXTERNAL] RE: EMT Job reference 21/18548 Batch 5 - Treadgold House (Stage 2

Grenfell) 60632092 (Interim Report) **Please supply a PO before the due date**

[Scanned]

Follow Up Flag: Follow up Flag Status: Flagged

Hi Emma,

Re the two samples queried on Batch 4: TH108 at 0.1-0.2m depth (18,960mg/kg) and TH108 at 0.3-0.4m depth (20,630 mg/kg). Please see below details of our investigation:

Both samples were prepared by Matt Hewitt on 30/11/21 and were analysed the same day by DH on Alan (ST21 211130-7 A Results).

Both samples required dilutions for their Pb conc. fall within instrument calibration range and were diluted and analysed by DH on 1/12/21 (ST21 211201-1 A Results).

Excellent agreement is seen between neat and dilution data confirming no dilution errors.

All quality control checks are within acceptable limits for the testing - AQC/Ind Cal/Low Cal checks within defined criteria, Process Blank <LOD, Cal R2 > 0.999, peaks on wavelength with no observed inter-element spectral interference.

Nothing to indicate any issues with the testing.

Happy with reported data for these two samples.

Kind regards

Paul

From: Judd, Emma < Emma. Toms@aecom.com>

Sent: 04 January 2022 15:17

To: Paul Boden <paul.boden@element.com>; Dyson, David <david.dyson@aecom.com>

Subject: RE: EMT Job reference 21/18548 Batch 5 - Treadgold House (Stage 2 Grenfell) 60632092 (Interim Report)

Please supply a PO before the due date [Scanned]

Hi Paul,

Happy New Year! I hope you are well. Just wondering if you know if the inorganics manager managed to look into the below before Christmas?

Also, Simon scheduled some additional testing I requested on the 21st December (after I received an out of office from yourself – see attached email) – would it be possible to also get an estimated delivery date for those results? It was lead bioaccessibility testing on a few selected samples.

Thanks, Emma

From: Paul Boden < <u>paul.boden@element.com</u>>

Sent: 21 December 2021 08:42

To: Toms, Emma < Emma.Toms@aecom.com >; Dyson, David < david.dyson@aecom.com >

Subject: [EXTERNAL] RE: EMT Job reference 21/18548 Batch 5 - Treadgold House (Stage 2 Grenfell) 60632092 (Interim Report) **Please supply a PO before the due date** [Scanned]

Hi Emma,

I will pass this over to our inorganics manager to look into.

Kind regards Paul

From: Toms, Emma < Emma.Toms@aecom.com>

Sent: 20 December 2021 17:28

To: Paul Boden <paul.boden@element.com>; Dyson, David <david.dyson@aecom.com>

Subject: RE: EMT Job reference 21/18548 Batch 5 - Treadgold House (Stage 2 Grenfell) 60632092 (Interim Report)

Please supply a PO before the due date [Scanned]

Hi Paul,

Thank you for this.

These results are significantly different to the initial one! Do you have any thoughts for the reason for this difference? Are your team confident about the internal QA/QC that was initially completed on this sample?

There are two further samples which are outside of the typical range of the results: TH108 at 0.1-0.2m depth (18,960mg/kg) and TH108 at 0.3-0.4m depth (20,630 mg/kg) from 21/18548 Batch 4 – given the above retest results, just wanted to check if you are confident that these samples have met the internal QA/QC procedures, as they appear to be outliers considering the dataset as a whole?

Thanks, Emma

From: Paul Boden <paul.boden@element.com>

Sent: 20 December 2021 10:37

To: Dyson, David david.dyson@aecom.com; Toms, Emma <Emma.Toms@aecom.com>

Subject: [EXTERNAL] RE: EMT Job reference 21/18548 Batch 5 - Treadgold House (Stage 2 Grenfell) 60632092

(Interim Report) **Please supply a PO before the due date** [Scanned]

Hi David,

Please find attached the report now with the repeated Lead from both "as received" and dried and crushed.

Kind regards

From: Dyson, David <<u>david.dyson@aecom.com</u>>

Sent: 16 December 2021 10:58

To: Paul Boden paul.boden@element.com; Toms, Emma <</pre>Emma.Toms@aecom.com

Subject: RE: EMT Job reference 21/18548 Batch 5 - Treadgold House (Stage 2 Grenfell) 60632092 (Interim Report)

Please supply a PO before the due date [Scanned]

Hi Paul,

For the repeat analysis are you able to re-do the analysis on the already prepared portion of the sample (if any remains) but also do a full new sample prep from a separate container?

Happy to pay for an extra metals analysis if necessary.

Thanks

David Dyson, CGeol Associate, Remediation Services D +44-(0)20-3043-9672 M +44 (0)7799-647-173 david.dyson@aecom.com

Click here to connect with me on LinkedIn

AECOM

Sunley House 4 Bedford Park Croydon, CR0 2AP, UK T +44 (0)20-8639-3500 aecom.com

Delivering a better world

LinkedIn | Twitter | Facebook | Instagram

From: Paul Boden paul.boden@element.com>

Sent: 16 December 2021 10:47

To: Toms, Emma < Emma.Toms@aecom.com >; Dyson, David < david.dyson@aecom.com >

Subject: [EXTERNAL] RE: EMT Job reference 21/18548 Batch 5 - Treadgold House (Stage 2 Grenfell) 60632092

(Interim Report) **Please supply a PO before the due date** [Scanned]

Hi Emma,

I'm good thank you.

I estimate tomorrow for this report and I apologise for our current delays.

I will have sample TH165 0.1-0.2 repeated for lead.

Kind Regards Paul

From: Toms, Emma < Emma. Toms@aecom.com>

Sent: 16 December 2021 10:43

To: Paul Boden <paul.boden@element.com>; Dyson, David <david.dyson@aecom.com>

Subject: RE: EMT Job reference 21/18548 Batch 5 - Treadgold House (Stage 2 Grenfell) 60632092 (Interim Report)

Please supply a PO before the due date [Scanned]

CAUTION: This email originated from outside of Element Materials Technology. **DO NOT** click links or open attachments unless you recognize the sender and know the content is safe. Please contact IT Service Desk if you are in any doubt about this email.

Hi Paul,

Hope you are well.

Just wondering if you have an updated ETA on the samples for the below interim report?

Also, we have noticed a lead concentration in certificate 21/18548 which is significantly higher than the rest of the samples – would it be possible to reanalyse this one to check that the result is correct? It is sample TH165 at depth 0.1-0.2m – currently reporting a concentration of 384,900mg/kg.

Thanks, Emma

From: Paul Boden paul.boden@element.com>

Sent: 13 December 2021 13:11

To: Dyson, David <<u>david.dyson@aecom.com</u>> **Cc:** Toms, Emma <<u>Emma.Toms@aecom.com</u>>

Subject: [EXTERNAL] EMT Job reference 21/18548 Batch 5 - Treadgold House (Stage 2 Grenfell) 60632092 (Interim

Report) **Please supply a PO before the due date** [Scanned]

Dear David,

Please find attached the interim report for samples recently received from Treadgold House (Stage 2 Grenfell), our reference 21/18548.

We currently have a 1-2 day delay in some organic areas. We will endeavour to have the report completed as quickly as possible.

I apologise for the inconvenience this may cause.

If I can be of any further assistance please don't hesitate to contact me.

Kind regards

To avoid deviation of samples due to temperature please provide a representative sample temperature on your chain of custody.

Note: Where Asbestos analysis is required we require a separate sample (preferably 1kg) in an additional plastic tub or A5 double bag. Where this is not provided turnaround times and/or accreditation status may be affected.

Paul Boden

Senior Project Manager Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA

P: +44 (0)1244 833780 F: +44 (0)1244 833781

<u>paul.boden@element.com</u> <u>www.element.com</u>

Disclaimer

This email is sent on behalf of Element Materials Technology Group Limited or the relevant group company with which you are dealing (together, **Element**). Element Materials Technology Group Limited is a limited company registered in England and Wales with registered number op9915743. Its registered office is at 5Fleet Place, London, England, United Kingdom, EC4M 7RD and its principal place of business is at 10 Lower Grosvenor Place, London, England, United Kingdom, SW1W 0EN.

Element cannot accept responsibility for any loss or damage sustained as a result of viruses or malware and the recipient must ensure that the email and attachments are virus and malware free. Emails and attachments are opened at your own risk.

The information transferred is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material. Transmission of this email is not intended to waive confidentiality and/or privilege.

The contents of this email are subject to contract and do not contain an offer that is capable of acceptance. Unless otherwise agreed in writing with you, the Element Standard Terms of Business for the relevant group company apply in respect of any services provided to you, including advice given to you by email. The Standard Terms of Business are available on request and can be found at https://www.element.com/terms/terms-and-conditions

For information about how we process data and monitor communications please see our Privacy statement at https://www.element.com/terms/privacy-statement at <a href="https://www.element.com/terms/privacy-statement.

Judd, Emma

From: Paul Boden <paul.boden@element.com>

Sent: 06 January 2022 11:47

To: Judd, Emma
Cc: Dyson, David

Subject: [EXTERNAL] RE: EMT Job reference 21/18548 Batch 5 - Treadgold House (Stage 2

Grenfell) 60632092 (Interim Report) **Please supply a PO before the due date**

[Scanned]

Attachments: EMT-21-18548-Batch-2-Schedule-ABC-Crosstab-202201061143.xlsx;

EMT-21-18548-Batch-2-Schedule-ABC-Report-202201061143.pdf; EMT-21-18548-Batch-2-Schedule-ABC-Report-202201061143.xlsx; EMT-21-18548-Batch-2-Sched-

ABC.202201061143.Chemistry2e.csv; EMT-21-18548-Batch-2-Sched-ABC.202201061143.Header.xml; EMT-21-18548-Batch-2-Sched-

ABC.202201061143.Sample2e.csv

Follow Up Flag: Follow up Flag Status: Flagged

Hi Emma,

We have now looked into your query re the Pb data: **TH165 0.1-0.2m.** Please see our Inorganics Managers comments below:

I've had a look over the data and a dilution error appears to be the cause for the initial v. high reported Pb result...a correction factor x10 higher than prepared has been applied to the software for 21/18548-42 Pb.

Reported: 384900 mg/kg Pb Actual result: 38490 mg/kg Pb.

This corrected Pb result is still higher than repeat data sets but now much closer.

All quality checks are within defined criteria for all testing – AQC, Ind. Cal./Low Cal. checks within acceptable limits, Process Blank <LOD, R2>0.999, and peaks are on wavelength with no observed interelement interference. Nothing to indicate any issues with the analysis.

All other analytes measured in Soil Trace suite shows comparable data across all repeats (with exception of Sb which varies as per Pb) confirming no sample mix-up, suggesting therefore initial elevated Pb is possibly the result of a hotspot/sample heterogeneity.

I have attached an amended report and apologise for this error.

Kind regards Paul

From: Judd, Emma < Emma. Toms@aecom.com>

Sent: 04 January 2022 16:04

To: Paul Boden <paul.boden@element.com>

Subject: RE: EMT Job reference 21/18548 Batch 5 - Treadgold House (Stage 2 Grenfell) 60632092 (Interim Report)

Please supply a PO before the due date [Scanned]

Thank you!

From: Paul Boden paul.boden@element.com>

Sent: 04 January 2022 15:32

To: Judd, Emma < Emma.Toms@aecom.com>; Dyson, David < david.dyson@aecom.com>

Subject: [EXTERNAL] RE: EMT Job reference 21/18548 Batch 5 - Treadgold House (Stage 2 Grenfell) 60632092

(Interim Report) **Please supply a PO before the due date** [Scanned]

Hi Emma,

Happy New Year.

I will chase this up for you.

The extra Bio-accessibility testing is due end of this week.

Kind regards

From: Judd, Emma < Emma.Toms@aecom.com>

Sent: 04 January 2022 15:17

To: Paul Boden <paul.boden@element.com>; Dyson, David <david.dyson@aecom.com>

Subject: RE: EMT Job reference 21/18548 Batch 5 - Treadgold House (Stage 2 Grenfell) 60632092 (Interim Report)

Please supply a PO before the due date [Scanned]

Hi Paul,

Happy New Year! I hope you are well. Just wondering if you know if the inorganics manager managed to look into the below before Christmas?

Also, Simon scheduled some additional testing I requested on the 21st December (after I received an out of office from yourself – see attached email) – would it be possible to also get an estimated delivery date for those results? It was lead bioaccessibility testing on a few selected samples.

Thanks, Emma

From: Paul Boden < paul.boden@element.com >

Sent: 21 December 2021 08:42

To: Toms, Emma < Emma. Toms@aecom.com>; Dyson, David < david.dyson@aecom.com>

Subject: [EXTERNAL] RE: EMT Job reference 21/18548 Batch 5 - Treadgold House (Stage 2 Grenfell) 60632092

(Interim Report) **Please supply a PO before the due date** [Scanned]

Hi Emma,

I will pass this over to our inorganics manager to look into.

Kind regards

Paul

From: Toms, Emma < Emma.Toms@aecom.com>

Sent: 20 December 2021 17:28

To: Paul Boden paul.boden@element.com; Dyson, David <</pre><david.dyson@aecom.com</pre>

Subject: RE: EMT Job reference 21/18548 Batch 5 - Treadgold House (Stage 2 Grenfell) 60632092 (Interim Report) **Please supply a PO before the due date** [Scanned]

Hi Paul,

Thank you for this.

These results are significantly different to the initial one! Do you have any thoughts for the reason for this difference? Are your team confident about the internal QA/QC that was initially completed on this sample?

There are two further samples which are outside of the typical range of the results: TH108 at 0.1-0.2m depth (18,960mg/kg) and TH108 at 0.3-0.4m depth (20,630 mg/kg) from 21/18548 Batch 4 – given the above retest results, just wanted to check if you are confident that these samples have met the internal QA/QC procedures, as they appear to be outliers considering the dataset as a whole?

Thanks, Emma

From: Paul Boden <paul.boden@element.com>

Sent: 20 December 2021 10:37

To: Dyson, David <david.dyson@aecom.com>; Toms, Emma <Emma.Toms@aecom.com>

Subject: [EXTERNAL] RE: EMT Job reference 21/18548 Batch 5 - Treadgold House (Stage 2 Grenfell) 60632092

(Interim Report) **Please supply a PO before the due date** [Scanned]

Hi David,

Please find attached the report now with the repeated Lead from both "as received" and dried and crushed.

Kind regards

From: Dyson, David <david.dyson@aecom.com>

Sent: 16 December 2021 10:58

To: Paul Boden <paul.boden@element.com>; Toms, Emma <Emma.Toms@aecom.com>

Subject: RE: EMT Job reference 21/18548 Batch 5 - Treadgold House (Stage 2 Grenfell) 60632092 (Interim Report)

Please supply a PO before the due date [Scanned]

Hi Paul,

For the repeat analysis are you able to re-do the analysis on the already prepared portion of the sample (if any remains) but also do a full new sample prep from a separate container?

Happy to pay for an extra metals analysis if necessary.

Thanks

David Dyson, CGeol Associate, Remediation Services D +44-(0)20-3043-9672 M +44 (0)7799-647-173 david.dyson@aecom.com

Click here to connect with me on LinkedIn

AECOM

Sunley House 4 Bedford Park Croydon, CR0 2AP, UK T +44 (0)20-8639-3500

aecom.com

Delivering a better world

<u>LinkedIn</u> | <u>Twitter</u> | <u>Facebook</u> | <u>Instagram</u>

From: Paul Boden <paul.boden@element.com>

Sent: 16 December 2021 10:47

To: Toms, Emma <Emma.Toms@aecom.com>; Dyson, David <david.dyson@aecom.com>

Subject: [EXTERNAL] RE: EMT Job reference 21/18548 Batch 5 - Treadgold House (Stage 2 Grenfell) 60632092

(Interim Report) **Please supply a PO before the due date** [Scanned]

Hi Emma,

I'm good thank you.

I estimate tomorrow for this report and I apologise for our current delays.

I will have sample TH165 0.1-0.2 repeated for lead.

Kind Regards

Paul

From: Toms, Emma < Emma.Toms@aecom.com >

Sent: 16 December 2021 10:43

To: Paul Boden paul.boden@element.com>; Dyson, David <david.dyson@aecom.com>

Subject: RE: EMT Job reference 21/18548 Batch 5 - Treadgold House (Stage 2 Grenfell) 60632092 (Interim Report)

Please supply a PO before the due date [Scanned]

CAUTION: This email originated from outside of Element Materials Technology. **DO NOT** click links or open attachments unless you recognize the sender and know the content is safe. Please contact IT Service Desk if you are in any doubt about this email.

Hi Paul,

Hope you are well.

Just wondering if you have an updated ETA on the samples for the below interim report?

Also, we have noticed a lead concentration in certificate 21/18548 which is significantly higher than the rest of the samples – would it be possible to reanalyse this one to check that the result is correct? It is sample TH165 at depth 0.1-0.2m – currently reporting a concentration of 384,900mg/kg.

Thanks, Emma

From: Paul Boden <paul.boden@element.com>

Sent: 13 December 2021 13:11

To: Dyson, David <<u>david.dyson@aecom.com</u>> **Cc:** Toms, Emma <Emma.Toms@aecom.com>

Subject: [EXTERNAL] EMT Job reference 21/18548 Batch 5 - Treadgold House (Stage 2 Grenfell) 60632092 (Interim

Report) **Please supply a PO before the due date** [Scanned]

Dear David,
Please find attached the interim report for samples recently received from Treadgold House (Stage 2 Grenfell), our reference 21/18548.
We currently have a 1-2 day delay in some organic areas. We will endeavour to have the report completed as quickly as possible.
I apologise for the inconvenience this may cause.
If I can be of any further assistance please don't hesitate to contact me.
Kind regards
To avoid deviation of samples due to temperature please provide a representative sample temperature on your chain of custody.
Note: Where Asbestos analysis is required we require a separate sample (preferably 1kg) in an additional plastic tub or A5 double bag. Where this is not provided turnaround times and/or accreditation status may be affected.
Paul Boden Senior Project Manager Element Materials Technology Unit 3 Deeside Point Zono 3 Deeside Industrial Park

Zone 3 Deeside Industrial Park Deeside CH5 2UA UK

P: +44 (0)1244 833780 F: +44 (0)1244 833781

paul.boden@element.com www.element.com

Disclaimer

This email is sent on behalf of Element Materials Technology Group Limited or the relevant group company with which you are dealing (together, **Element**). Element Materials Technology Group Limited is a limited company registered in England and Wales with registered number 0.9915743. Its registered office is at 5 Fleet Place, London, England, United Kingdom, EC4M 7RD and its principal place of business is at 10 Lower Grosvenor Place, London, England, United Kingdom, EC4M 7RD and its principal place of business is at 10 Lower Grosvenor Place, London, England, United Kingdom, EC4M 7RD and its principal place of business is at 10 Lower Grosvenor Place, London, England, United Kingdom, EC4M 7RD and its principal place of business is at 10 Lower Grosvenor Place, London, England, United Kingdom, EC4M 7RD and its principal place of business is at 10 Lower Grosvenor Place, London, England, United Kingdom, EC4M 7RD and its principal place of business is at 10 Lower Grosvenor Place, London, England, United Kingdom. But the second in the secon

Element cannot accept responsibility for any loss or damage sustained as a result of viruses or malware and the recipient must ensure that the email and attachments are virus and malware free. Emails and attachments are opened at your own risk.

The information transferred is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material. Transmission of this email is not intended to waive confidentiality and/or privilege.

The contents of this email are subject to contract and do not contain an offer that is capable of acceptance. Unless otherwise agreed in writing with you, the Element Standard Terms of Business for the relevant group company apply in respect of any services provided to you, including advice given to you by email. The Standard Terms of Business are available on request and can be found at https://www.element.com/terms/terms-and-conditions

For information about how we process data and monitor communications please see our Privacy statement at https://www.element.com/terms/privacy-statement at <a href="https://www.element.com/terms/privacy-statement.

Part 2A Investigation

Appendix F Avondale Park Gardens Laboratory Certificates

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

AECOM 9th Floor Reception Sunley House 4 Bedford Park Croydon CR0 2AP

Attention: David Dyson

Date: 21st December, 2021

Your reference : 60632092

Our reference : Test Report 21/18548 Batch 5

Location: Avondale Park Gardens

Date samples received: 7th December, 2021

Status: Final Report

Issue: 2

Forty two samples were received for analysis on 7th December, 2021 of which forty were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Simon Gomery BSc

Project Manager

Please include all sections of this report if it is reproduced

Client Name: AECOM

Reference: 60632092

Location: Avondale Park Gardens

Contact: David Dyson EMT Job No: 21/18548

Report : Solid

EMT Job No:	21/18548												
EMT Sample No.	785-788	789-792	793-796	797-800	801-804	805-808	809-812	813-816	817-820	821-824			
Sample ID	APG101	APG101	APG101	APG101	APG102	APG102	APG103	APG103	APG104	APG104			
Depth	0.00-0.05	0.10-0.20	0.50-0.60	0.90-1.00	0.00-0.05	0.10-0.20	0.00-0.05	0.10-0.20	0.00-0.05	0.10-0.20		e attached n	
COC No / misc											abbievi	ations and a	oromymo
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Sample Date	06/12/2021 09:55	06/12/2021 09:55	06/12/2021 09:55	06/12/2021 09:55	06/12/2021 08:58	06/12/2021 08:58	06/12/2021 09:17	06/12/2021 09:17	06/12/2021 09:45	06/12/2021 09:45			
Sample Type	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clayey Loam	Clayey Loam	Clay			
Batch Number	5	5	5	5	5	5	5	5	5	5	LOD/LOR	Units	Method
Date of Receipt	07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021	202/2011	O I III O	No.
Arsenic #M	-	-	13.5	16.2	22.3	-	-	22.2	-	-	<0.5	mg/kg	TM30/PM15
Barium ^{#M}	-	-	142	157	304	-	-	382	-	-	<1	mg/kg	TM30/PM15
Beryllium	-	-	1.1	1.2	1.8	-	-	1.7	-	-	<0.5	mg/kg	TM30/PM15
Cadmium #M	-	-	<0.1	0.1	0.6	-	-	0.8	-	-	<0.1	mg/kg	TM30/PM15
Chromium ^{#M}	-	-	90.8	72.8	81.0	-	-	75.2	-	-	<0.5	mg/kg	TM30/PM15
Copper #M	-	-	46	42	81	-	-	95	-	-	<1	mg/kg	TM30/PM15
Lead #M	761	668	381	394	1014	624	1052	912	1000	771	<5	mg/kg	TM30/PM15
Mercury #M	-	-	1.1	0.8	1.4	-	-	1.1	-	-	<0.1	mg/kg	TM30/PM15
Nickel #M	-	-	18.7	21.6	28.4	-	-	27.5	-	-	<0.7	mg/kg	TM30/PM15
Selenium ^{#M}	-	-	<1	<1	<1	-	-	1	-	-	<1	mg/kg	TM30/PM15
Vanadium	-	-	59	58	71	-	-	61	-	-	<1	mg/kg	TM30/PM15
Water Soluble Boron ***	-	-	1.5	1.0	3.9	-	-	6.4	-	-	<0.1	mg/kg	TM74/PM32
Zinc ^{#M}	-	-	113	113	360	-	-	392	-	-	<5	mg/kg	TM30/PM15
PAH MS													
Naphthalene ^{#M}	_	_	0.11	0.06	0.23	_	_	0.37	_	_	<0.04	mg/kg	TM4/PM8
Acenaphthylene	_	_	0.24	0.12	1.08	-	-	1.59	-	-	<0.03	mg/kg	TM4/PM8
Acenaphthene #M	_	_	0.07	<0.05	0.23	_	_	0.39	_	_	<0.05	mg/kg	TM4/PM8
Fluorene #M	_	_	0.07	<0.04	0.21	_	_	0.40	_	_	<0.04	mg/kg	TM4/PM8
Phenanthrene *M	_	_	1.32	0.38	3.87	_	_	7.39	_	_	<0.03	mg/kg	TM4/PM8
Anthracene #	_	_	0.41	0.14	1.00	_	_	2.40	_	_	<0.04	mg/kg	TM4/PM8
Fluoranthene #M	_	_	3.09	1.07	10.34	_	_	15.49	_	_	<0.03	mg/kg	TM4/PM8
Pyrene#	_	_	2.78	0.87	8.58	_	_	13.47	_	_	<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene #	_	_	1.56	0.61	5.34	_	_	7.43	_	_	<0.06	mg/kg	TM4/PM8
Chrysene #M	-	-	1.71	0.66	5.73	-	-	7.82	-	-	<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #M	_	_	3.42	1.26	10.66	_	_	14.91	_	_	<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene#	_	_	1.85	0.70	5.73	_	_	8.27	_	_	<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene **M	_	-	1.65	0.57	4.84	_	_	7.27	_	_	<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	_	_	0.36	0.13	0.91	_	_	1.59	_	_	<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	_	_	1.48	0.54	4.00	_	_	6.45	_	-	<0.04	mg/kg	TM4/PM8
PAH 16 Total	-	-	20.1	7.1	62.8	-	-	95.2	-	-	<0.6	mg/kg	TM4/PM8
Benzo(b)fluoranthene	-	-	2.46	0.91	7.68	-	-	10.74	-	-	<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	-	-	0.96	0.35	2.98	-	-	4.17	_	-	<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	-	-	95	87	92	-	-	92	-	-	<0	%	TM4/PM8
, ,													
Natural Moisture Content	-	-	18.5	16.4	46.6	28.6	-	20.8	-	-	<0.1	%	PM4/PM0
Sample Type	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clayey Loam	Clayey Loam	Clay		None	PM13/PM0
Sample Colour	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown		None	PM13/PM0
Other Items	stones, vegetation, loam	stones, vegetation	stones, chalk, vegetation	stones, chalk, vegetation	stones, vegetation, loam	stones, vegetation, glass	stones, vegetation, wood	stones, vegetation, brick	stones, vegetation	stones, vegetation, loam		None	PM13/PM0

Client Name: AECOM

Reference: 60632092

Location: Avondale Park Gardens

Contact: David Dyson EMT Job No: 21/18548

Report : Solid

EWI JOD NO:	21/10040										•				
EMT Sample No.	825-828	829-832	833-836	837-840	841-844	849-852	853-856	857-860	861-864	865-868					
Sample ID	APG105	APG105	APG106	APG106	APG106	APG107	APG107	APG108	APG108	APG109					
Depth	0.00-0.05	0.10-0.20	0.00-0.05	0.10-0.20	0.50-0.60	0.00-0.05	0.10-0.20	0.00-0.05	0.10-0.20	0.00-0.05	Please se	e attached n	otes for all		
COC No / misc												ations and a			
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT					
Sample Date	06/12/2021 09:35	06/12/2021 09:35	06/12/2021 10:30	06/12/2021 10:30	06/12/2021 10:30	06/12/2021 14:00	06/12/2021 14:00	06/12/2021 13:37	06/12/2021 13:37	06/12/2021 13:50					
Sample Type	Clay	Clayey Loam	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clayey Loam					
Batch Number	5	5	5	5	5	5	5	5	5	5			Matter		
Date of Receipt		07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021	LOD/LOR	Units	Method No.		
Arsenic #M	25.2	-	-	-	16.0	-	-	18.6	-	-	<0.5	mg/kg	TM30/PM15		
Barium #M	271	-	-	-	177	-	-	322	-	-	<1	mg/kg	TM30/PM15		
Beryllium	1.8	-	-	-	1.1	-	-	1.5	-	-	<0.5	mg/kg	TM30/PM15		
Cadmium #M	1.1	-	-	-	0.1	-	-	0.7	-	-	<0.1	mg/kg	TM30/PM15		
Chromium #M	78.1	-	-	-	84.1	-	-	74.4	-	-	<0.5	mg/kg	TM30/PM15		
Copper *M	89	-	-	-	45	-	-	70	-	-	<1	mg/kg	TM30/PM15		
Lead #M	763	638	519	543	941	765	698	851	670	1923	<5	mg/kg	TM30/PM15		
Mercury *M	1.9	-	-	-	1.2	-	-	0.9	-	-	<0.1	mg/kg	TM30/PM15		
Nickel #M	28.3	-	-	-	17.7	-	-	29.1	-	-	<0.7	mg/kg	TM30/PM15		
Selenium **M	<1	-	-	-	<1	-	-	<1	-	-	<1	mg/kg	TM30/PM15		
Vanadium	69	-	-	-	60	-	-	57	-	-	<1	mg/kg	TM30/PM15		
Water Soluble Boron #M	4.3	-	-	-	1.6	-	-	4.3	-	-	<0.1	mg/kg	TM74/PM32		
Zinc ^{#M}	301	-	-	-	91	-	-	363	-	-	<5	mg/kg	TM30/PM15		
DALLMO															
PAH MS	0.40				-0.04			0.07			-0.04		T144/D140		
Naphthalene **M	0.43	-	-	-	<0.04	-	-	0.27	-	-	<0.04	mg/kg	TM4/PM8		
Acenaphthylene	1.39	-	-	-	0.08	-	-	1.06	-	-	<0.03	mg/kg	TM4/PM8		
Acenaphthene #M	0.31	-	-	-	<0.05	-	-	0.19	-	-	<0.05	mg/kg	TM4/PM8		
Fluorene #M	0.33	-	-	-	<0.04	-	-	0.19	-	-	<0.04	mg/kg	TM4/PM8		
Phenanthrene #M	5.00	-	-	-	0.33	-	-	2.99	-	-	<0.03	mg/kg	TM4/PM8		
Anthracene #	1.94	-	-	-	0.09	-	-	1.33	-	-	<0.04	mg/kg	TM4/PM8		
Fluoranthene #M	11.87	-	-	-	0.69	-	-	8.46	-	-	<0.03	mg/kg	TM4/PM8		
Pyrene #	10.52	-	-	-	0.61	-	-	7.21	-	-	<0.03	mg/kg	TM4/PM8		
Benzo(a)anthracene#	6.40 6.47	-	-	-	0.41	-	-	4.15 4.49	-	-	<0.06 <0.02	mg/kg	TM4/PM8 TM4/PM8		
Chrysene **M Benzo(bk)fluoranthene **M	13.18	-	-	-	0.47	-	-	7.50	-	-	<0.02	mg/kg	TM4/PM8		
		-	-	-		-	-		-			mg/kg			
Benzo(a)pyrene # Indeno(123cd)pyrene #M	7.51	-	-	-	0.48	-	-	3.98	-	-	<0.04 <0.04	mg/kg	TM4/PM8		
Dibenzo(ah)anthracene#	6.59	-	-			-	-	3.65	-	-		mg/kg	TM4/PM8		
Benzo(ghi)perylene #	1.25 5.83	-	-	-	0.09	-	-	0.55 3.10	-	-	<0.04 <0.04	mg/kg	TM4/PM8 TM4/PM8		
PAH 16 Total	79.0	_	_	-	4.9		-	49.1	-	-	<0.04	mg/kg mg/kg	TM4/PM8		
Benzo(b)fluoranthene	9.49			-	0.62	-	-	5.40	-	-	<0.05	mg/kg	TM4/PM8		
Benzo(k)fluoranthene	3.69	-	-	-	0.62	-	-	2.10	-	-	<0.03	mg/kg	TM4/PM8		
PAH Surrogate % Recovery	92			-	92			94	-	-	<0.02	mg/kg %	TM4/PM8		
Ganogalo / Trecovery	92	-			32	<u> </u>	<u> </u>	34		_	70	/0	TIVIT/TIVIO		
Natural Moisture Content	48.4	-	-	-	16.5	-	-	27.6	-	-	<0.1	%	PM4/PM0		
Sample Type	Clay	Clayey Loam	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clayey Loam		None	PM13/PM0		
Sample Colour	Medium Brown	Medium Brown		Medium Brown			•	Medium Brown				None	PM13/PM0		
Other Items	stones, vegetation	stones, vegetation	stones, vegetation	stones, vegetation	atones, vegetation, chalk, brick	stones, vegetation	stones, vegetation	stones, vegetation	stones, brick, vegetation, loam	stones, vegetation		None	PM13/PM0		

Client Name: AECOM

Reference: 60632092

Location: Avondale Park Gardens

Contact: David Dyson EMT Job No: 21/18548

Report : Solid

EMT Job No:	21/18548															
EMT Sample No.	869-872	873-876	877-880	881-884	885-888	889-892	893-896	897-900	901-904	905-908						
Sample ID	APG109	APG110	APG110	APG111	APG111	APG112	APG112	APG113	APG113	APG113						
Depth	0.10-0.20	0.00-0.05	0.10-0.20	0.00-0.05	0.10-0.20	0.00-0.05	0.10-0.20	0.00-0.05	0.10-0.20	0.50-0.60	Please se	e attached n	otes for all			
COC No / misc												ations and a				
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT						
Sample Date	06/12/2021 13:50	06/12/2021 13:00	06/12/2021 13:00	06/12/2021 13:25	06/12/2021 13:25	06/12/2021 12:50	06/12/2021 12:50	06/12/2021 10:55	06/12/2021 10:55	06/12/2021 10:55						
Sample Type	Clay	Clay	Clay	Clay	Clay	Clayey Loam	Clay	Clay	Clay	Clay						
Batch Number	5	5	5	5	5	5	5	5	5	5			Method			
Date of Receipt	07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021	LOD/LOR	Units	No.			
Arsenic **M	23.5	-	22.9	-	-	20.6	-	-	-	15.9	<0.5	mg/kg	TM30/PM15			
Barium #M	669	-	497	-	-	234	-	-	-	176	<1	mg/kg	TM30/PM15			
Beryllium	1.8	-	1.7	-	-	1.2	-	-	-	1.3	<0.5	mg/kg	TM30/PM15			
Cadmium *M	0.5	-	0.5	-	-	0.5	-	-	-	0.2	<0.1	mg/kg	TM30/PM15			
Chromium #M	87.2	-	63.0	-	-	78.4	-	-	-	84.1	<0.5	mg/kg	TM30/PM15			
Copper ^{#M}	82	-	78	-	-	73	-	-	-	46	<1	mg/kg	TM30/PM15			
Lead #M	2223	1016	1027	849	901	546	506	782	611	468	<5	mg/kg	TM30/PM15			
Mercury #M	1.1	-	8.0	-	-	0.7	-	-	-	0.9	<0.1	mg/kg	TM30/PM15			
Nickel #M	27.8	-	31.2	-	-	22.8	-	-	-	20.6	<0.7	mg/kg	TM30/PM15			
Selenium **M	<1	-	<1	-	-	<1	-	-	-	<1	<1	mg/kg	TM30/PM15			
Vanadium	64	-	79	-	-	58	-	-	-	60	<1	mg/kg	TM30/PM15			
Water Soluble Boron #M	2.4	-	2.6	-	-	3.9	-	-	-	1.6	<0.1	mg/kg	TM74/PM32			
Zinc #M	474	-	514	-	-	267	-	-	-	151	<5	mg/kg	TM30/PM15			
PAH MS																
Naphthalene *M	0.65	-	0.34	-	-	0.22	-	-	-	0.15	<0.04	mg/kg	TM4/PM8			
Acenaphthylene	3.14	-	2.03	-	-	1.14	-	-	-	0.53	<0.03	mg/kg	TM4/PM8			
Acenaphthene #M	0.30	-	0.26	-	-	0.12	-	-	-	0.07	<0.05	mg/kg	TM4/PM8			
Fluorene #M	0.37	-	0.31	-	-	0.12	-	-	-	0.08	<0.04	mg/kg	TM4/PM8			
Phenanthrene **M	4.73	-	4.51	-	-	1.81	-	-	-	1.29	<0.03	mg/kg	TM4/PM8			
Anthracene #	3.17	-	2.64	-	-	1.04	-	-	-	0.66	<0.04	mg/kg	TM4/PM8			
Fluoranthene #M	13.71	-	14.10	-	-	5.99	-	-	-	3.03	<0.03	mg/kg	TM4/PM8			
Pyrene #	12.00	-	12.34	-	-	4.76	-	-	-	2.72	<0.03	mg/kg	TM4/PM8			
Benzo(a)anthracene #	7.96	-	8.10	-	-	3.50	-	-	-	1.60	<0.06	mg/kg	TM4/PM8			
Chrysene #M	8.20	-	8.23	-	-	4.07	-	-	-	1.92	<0.02	mg/kg	TM4/PM8			
Benzo(bk)fluoranthene #M	17.20	-	15.22	-	-	7.88	-	-	-	3.78	<0.07	mg/kg	TM4/PM8			
Benzo(a)pyrene # Indeno(123cd)pyrene #M	9.42	-	8.53	-	-	4.37	-	-	-	2.06	<0.04 <0.04	mg/kg	TM4/PM8 TM4/PM8			
Dibenzo(ah)anthracene #	9.17	-	7.22 1.24	-	-	3.59 0.56	-	-		1.88 0.26	<0.04	mg/kg mg/kg	TM4/PM8			
Benzo(ghi)perylene #	8.17	-	5.95	-		3.48	-	_	-	1.77	<0.04	mg/kg	TM4/PM8			
PAH 16 Total	99.8	_	91.0	_	_	42.7	-	_	-	21.8	<0.6	mg/kg	TM4/PM8			
Benzo(b)fluoranthene	12.38	_	10.96	-	-	5.67	-	_	-	2.72	<0.05	mg/kg	TM4/PM8			
Benzo(k)fluoranthene	4.82	-	4.26	-	_	2.21	_	_	_	1.06	<0.02	mg/kg	TM4/PM8			
PAH Surrogate % Recovery	87	-	86	-	-	93	-	-	-	94	<0	%	TM4/PM8			
Natural Moisture Content	19.5	-	18.9	-	-	28.1	-	-	-	14.2	<0.1	%	PM4/PM0			
Sample Type	Clay	Clay	Clay	Clay	Clay	Clayey Loam	Clay	Clay	Clay	Clay		None	PM13/PM0			
Sample Colour	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown		None	PM13/PM0			
Other Items	stones, vegetation	stones, vegetation, loam	stones, vegetation, loam	stones, vegetation, loam	stones, vegetation	stones, vegetation	stones, vegetation	stones, vegetation, loam	stones, vegetation, loam, tile	atones, brick, chalk, vegetation		None	PM13/PM0			

Client Name: AECOM

Reference: 60632092

Location: Avondale Park Gardens

Contact: David Dyson EMT Job No: 21/18548

Report : Solid

ENT JOB NO.	21/10040														
EMT Sample No.	913-916	917-920	921-924	925-928	929-932	933-936	937-940	941-944	945-948	949-952					
Sample ID	APG114	APG114	APG114	APG114	APG115	APG115	APG116	APG116	DUP10	DUP11					
Depth	0.00-0.05	0.10-0.20	0.50-0.60	0.90-1.00	0.00-0.05	0.10-0.20	0.00-0.05	0.10-0.20	0.10-0.20	0.00-0.05	Please se	e attached n	otes for all		
COC No / misc												ations and a			
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT					
Sample Date	06/12/2021 11:25	06/12/2021 11:25	06/12/2021 11:25	06/12/2021 11:25	06/12/2021 12:35	06/12/2021 12:35	06/12/2021 11:50	06/12/2021 11:50	06/12/2021 09:17	06/12/2021 11:25					
Sample Type		Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clavey Loam	Clayey Loam					
Batch Number	5	5	5	5	5	5	5	5	5	5					
										-	LOD/LOR	Units	Method No.		
Date of Receipt Arsenic **M		07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021 21.4	07/12/2021	-0.F	ma/ka	TM30/PM15		
Barium *M	-	-	11.8 163	13.9 86	-	-	-	19.4 213	550	-	<0.5 <1	mg/kg mg/kg	TM30/PM15		
Beryllium	-	_	1.0	0.6	_	-	-	1.4	1.8	-	<0.5	mg/kg	TM30/PM15		
Cadmium *M	-	-	0.2	0.2	-	-	-	0.3	0.9	-	<0.1	mg/kg	TM30/PM15		
Chromium #M	-	-	68.7	52.9	-	-	-	82.3	76.7	-	<0.5	mg/kg	TM30/PM15		
Copper *M	-	-	55	27	-	-	-	68	87	-	<1	mg/kg	TM30/PM15		
Lead #M	715	599	1038	600	589	673	545	572	1644	912	<5	mg/kg	TM30/PM15		
Mercury #M	-	-	0.4	3.5	-	-	-	0.9	1.0	-	<0.1	mg/kg	TM30/PM15		
Nickel #M	-	-	21.0	11.3	-	-	-	24.5	30.1	-	<0.7	mg/kg	TM30/PM15		
Selenium #M	-	-	<1	<1	-	-	-	<1	<1	-	<1	mg/kg	TM30/PM15		
Vanadium Water Soluble Boron ***	-	-	135 1.1	32 1.0	-	-	-	96 1.7	69 5.7	-	<1 <0.1	mg/kg mg/kg	TM30/PM15 TM74/PM32		
Zinc **M	_	_	111	52	_	_	-	187	418	_	<5	mg/kg	TM30/PM15		
2.110				02								99	111100/1 11110		
PAH MS															
Naphthalene *M	-	-	0.21	0.06	-	-	-	0.41	0.29	-	<0.04	mg/kg	TM4/PM8		
Acenaphthylene	-	-	0.69	0.23	-	-	-	2.58	1.26	-	<0.03	mg/kg	TM4/PM8		
Acenaphthene #M	-	-	0.12	<0.05	-	-	-	0.15	0.23	-	<0.05	mg/kg	TM4/PM8		
Fluorene #M	-	-	0.16	<0.04	-	-	-	0.22	0.20	-	<0.04	mg/kg	TM4/PM8		
Phenanthrene **M	-	-	2.65	0.46	-	-	-	3.47	3.18	-	<0.03	mg/kg	TM4/PM8		
Anthracene #	-	-	1.49	0.25	-	-	-	2.26	1.37	-	<0.04	mg/kg	TM4/PM8		
Fluoranthene #M	-	-	6.98 6.06	1.29 1.19	-	-	-	13.54 12.45	10.11 9.07	-	<0.03 <0.03	mg/kg	TM4/PM8 TM4/PM8		
Pyrene # Benzo(a)anthracene #	-	-	3.39	0.78	-	-	-	8.24	5.02	-	<0.03	mg/kg mg/kg	TM4/PM8		
Chrysene *M	-	-	4.04	0.92	-	-	-	8.44	5.40	-	<0.02	mg/kg	TM4/PM8		
Benzo(bk)fluoranthene #M	-	-	6.15	1.59	-	-	-	17.12	10.00	-	<0.07	mg/kg	TM4/PM8		
Benzo(a)pyrene #	-	-	3.45	0.88	-	-	-	9.70	5.48	-	<0.04	mg/kg	TM4/PM8		
Indeno(123cd)pyrene *M	-	-	3.25	0.77	-	-	-	8.45	4.79	-	<0.04	mg/kg	TM4/PM8		
Dibenzo(ah)anthracene#	-	-	0.48	0.16	-	-	-	1.73	0.84	-	<0.04	mg/kg	TM4/PM8		
Benzo(ghi)perylene #	-	-	2.92	0.70	-	-	-	7.61	4.10	-	<0.04	mg/kg	TM4/PM8		
PAH 16 Total	-	-	42.0	9.3	-	-	-	96.4	61.3	-	<0.6	mg/kg	TM4/PM8		
Benzo(b)fluoranthene	-	-	4.43	1.14	-	-	-	12.33	7.20	-	<0.05	mg/kg	TM4/PM8		
Benzo(k)fluoranthene PAH Surrogate % Recovery	-	-	1.72 95	0.45 93	-	-	-	4.79 91	2.80 91	-	<0.02 <0	mg/kg %	TM4/PM8 TM4/PM8		
1 All ourlogate 76 Necovery	_	-	33	33	_	_	_	31	31	-	10	70	11014/11010		
Natural Moisture Content	-	-	7.4	20.5	-	-	-	16.4	2.8	-	<0.1	%	PM4/PM0		
O	01	0'	0'	01	0:	0:	0'	0:	01	0		N.	D1446/D145		
Sample Type Sample Colour	Clayey Loam Medium Brown	Clay	Clay Medium Brown	Clay Medium Brown	Clay	Clay	Clay Medium Brown	Clay	Clayey Loam Medium Brown	Clayey Loam		None None	PM13/PM0 PM13/PM0		
Other Items	stones, vegetation	stones, vegetation, loam	stones, brick	stones, chalk, vegetation	stones, vegetation, glass	stones, vegetation	stones, vegetation, peat	stones, vegetation, loam, tile, brick	stones, chalk, vegetation	stones, vegetation		None	PM13/PM0		
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,	oo, briok	9	,, gaza	, ,,	,		g	, 3		.10116	3 10/1 IVIO		

Client Name: AECOM Reference: 60632092

Location: Avondale Park Gardens

Contact: David Dyson

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level less than 0.1%, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative sampling.

EMT				EMT			
	Batch	Sample ID	Depth	Sample	Date Of	Analysis	Result
No.				No.	Analysis		
21/18548	5	APG101	0.50-0.60	796	09/12/2021	General Description (Bulk Analysis)	soil/stones
					09/12/2021	Asbestos Fibres	NAD
					09/12/2021	Asbestos ACM	NAD
					09/12/2021	Asbestos Type	NAD
					09/12/2021	Asbestos Level Screen	NAD
21/18548	5	APG101	0.90-1.00	800	09/12/2021	General Description (Bulk Analysis)	soil/stones
					09/12/2021	Asbestos Fibres	NAD
					09/12/2021	Asbestos ACM	NAD
					09/12/2021	Asbestos Type	NAD
					09/12/2021	Asbestos Level Screen	NAD
21/18548	5	APG102	0.00-0.05	804	09/12/2021	General Description (Bulk Analysis)	soil/stones
					09/12/2021	Asbestos Fibres	NAD
					09/12/2021	Asbestos ACM	NAD
					09/12/2021	Asbestos Type	NAD
					09/12/2021	Asbestos Level Screen	NAD
21/18548	5	APG103	0.10-0.20	816	09/12/2021	General Description (Bulk Analysis)	soil
					09/12/2021	Asbestos Fibres	NAD
					09/12/2021	Asbestos ACM	NAD
					09/12/2021	Asbestos Type	NAD
					09/12/2021	Asbestos Level Screen	NAD
21/18548	5	APG105	0.00-0.05	828	09/12/2021	General Description (Bulk Analysis)	soil
					09/12/2021	Asbestos Fibres	NAD
					09/12/2021	Asbestos ACM	NAD
					09/12/2021	Asbestos Type	NAD
					09/12/2021	Asbestos Level Screen	NAD
21/18548	5	APG106	0.50-0.60	844	09/12/2021	General Description (Bulk Analysis)	soil/stones
					09/12/2021	Asbestos Fibres	NAD
					09/12/2021	Asbestos ACM	NAD
					09/12/2021	Asbestos Type	NAD
					09/12/2021	Asbestos Level Screen	NAD
21/18548	5	APG108	0.00-0.05	860	09/12/2021	General Description (Bulk Analysis)	soil
					09/12/2021	Asbestos Fibres	NAD
					09/12/2021	Asbestos ACM	NAD

Client Name: AECOM Reference: 60632092

Location: Avondale Park Gardens

Contact: David Dyson

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Date Of Analysis	Analysis	Result						
21/105/10	-	ADC109	0.00.0.05	000	00/40/2024	Ashastas Tura	NAD						
21/18548	5	APG108	0.00-0.05	860	09/12/2021	Asbestos Type	NAD						
					09/12/2021	Asbestos Level Screen	NAD						
21/18548	5	APG109	0.10-0.20	872	09/12/2021	General Description (Bulk Analysis)	soil						
					09/12/2021	Asbestos Fibres	NAD						
					09/12/2021	Asbestos ACM	NAD						
					09/12/2021	Asbestos Type	NAD						
					09/12/2021	Asbestos Level Screen	NAD						
21/18548	5	APG110	0.10-0.20	880	09/12/2021	General Description (Bulk Analysis)	soil						
					09/12/2021	Asbestos Fibres	NAD						
					09/12/2021	Asbestos ACM	NAD						
					09/12/2021	Asbestos Type	NAD						
					09/12/2021	Asbestos Level Screen	NAD						
21/18548	5	APG112	0.00-0.05	892	08/12/2021	General Description (Bulk Analysis)	soil/stones						
, 10040			5.55 5.05	302	08/12/2021	Asbestos Fibres	NAD						
					08/12/2021	Asbestos ACM	NAD						
					08/12/2021	Asbestos Type	NAD						
					08/12/2021	Asbestos Level Screen	NAD						
21/18548	5	APG113	0.50-0.60	908	09/12/2021	General Description (Bulk Analysis)	soil						
					09/12/2021	Asbestos Fibres	NAD						
					09/12/2021	Asbestos ACM	NAD						
					09/12/2021	Asbestos Type	NAD						
					09/12/2021	Asbestos Level Screen	NAD						
21/18548	5	APG114	0.50-0.60	924	09/12/2021	General Description (Bulk Analysis)	Soil/Stones						
					09/12/2021	Asbestos Fibres	NAD						
					09/12/2021	Asbestos ACM	NAD						
					09/12/2021	Asbestos Type	NAD						
					09/12/2021	Asbestos Level Screen	NAD						
21/18548	5	APG114	0.90-1.00	928	09/12/2021	General Description (Bulk Analysis)	soil/stones						
					09/12/2021	Asbestos Fibres	NAD						
					09/12/2021	Asbestos ACM	NAD						
					09/12/2021	Asbestos Type	NAD						
						Asbestos Level Screen	NAD						
21/18548	5	APG116	0.10-0.20	944	09/12/2021	General Description (Bulk Analysis)	 Soil/Stones						
	-		3.23		09/12/2021	Asbestos Fibres	NAD						
					09/12/2021	Asbestos ACM	NAD						
					09/12/2021	Asbestos Type	NAD						
					09/12/2021	Asbestos Level Screen	NAD						
04/40= :-	-	DUDAG	0.40.000	0.40	00/40/000	Consess Description (D. II. A. J. 1.	Call/Change						
21/18548	5	DUP10	0.10-0.20	948	09/12/2021	General Description (Bulk Analysis)	Soil/Stones						
					09/12/2021	Asbestos Fibres	NAD						
					09/12/2021	Asbestos ACM	NAD						
					09/12/2021	Asbestos Type	NAD						
					09/12/2021	Asbestos Level Screen	NAD						

Client Name: AECOM Reference: 60632092

Location: Avondale Park Gardens

Contact: David Dyson

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
					No deviating sample report results for job 21/18548	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 21/18548

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is guoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

EMT Job No.: 21/18548

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
M	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range

HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

EMT Job No: 21/18548

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes	Yes	AR	Yes
PM13	A visual examination of the solid sample is carried out to ascertain sample make up, colour and any other inclusions. This is not a geotechnical description.	PM0	No preparation is required.			AR	No
ТМ30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
ТМ30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes	Yes	AD	Yes
TM65	Asbestos Bulk Identification method based on HSG 248 First edition (2006)	PM42	Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1:2018. Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM74	Analysis of water soluble boron (20:1 extract) by ICP-OES.	PM32	Hot water soluble boron is extracted from dried and ground samples using a 20:1 ratio.	Yes	Yes	AD	Yes

Client Name: AECOM

Reference: 60595731 Location: Grenfell

Grenfell David Dyson Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Contact: David Dy EMT Job No: 19/9004

EMT Job No:	19/9004										_					
EMT Sample No.	470-477	478-485	486-493	502-509	510-517	518-525	526-533	542-549	558-565	574-581						
Sample ID	GTCS 1-18 FIELD DUPLICATE	GTCS 1-18 LAB FIELD DUPLICATE	GTCS 1-23 PRIMARY SAMPLE	GTCS 1-23 LAB DUPLICATE	GTCS 1-23 FIELD DUPLICATE	GTCS 1-23 LAB FIELD DUPLICATE	GTCS 1-24A	GTCS 1-19A	GTCS 1-20A	GTCS 1-21A						
Depth	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	Please se	e attached n	otes for all			
COC No / misc												ations and a				
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT						
Sample Date	05/06/2019 11:10	05/06/2019 11:10	05/06/2019 08:50	05/06/2019 08:50	05/06/2019 08:50	05/06/2019 08:50	05/06/2019 09:50	05/06/2019 14:45	05/06/2019 15:20	05/06/2019 12:30						
Sample Type	Clayey Loam	Clayey Loam	Clay	Clay	Clay	Clayey Loam	Loam	Clayey Loam	Clayey Loam	Clayey Loam						
Batch Number	2	2	2	2	2	2	2	2	2	2		Method				
Date of Receipt	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019	LOD/LOR	Units	No.			
Aluminium	-	-	12090	11560	-	-	13720	8970	10260	10030	<50	mg/kg	TM30/PM15			
Arsenic *M	-	-	18.4	19.1	-	-	23.1	16.7	19.2	13.9	<0.5	mg/kg	TM30/PM15			
Barium #M	-	-	540	564	-	-	269	171	249	186	<1	mg/kg	TM30/PM15			
Beryllium	-	-	1.3	1.3	-	-	1.6	1.1	1.4	1.1	<0.5	mg/kg	TM30/PM15			
Cadmium #M	-	-	0.9	0.8	-	-	1.0	1.1	0.8	1.1	<0.1	mg/kg	TM30/PM15			
Chromium #M	-	-	71.5	71.1	-	-	68.2	69.3	117.8	66.9	<0.5	mg/kg	TM30/PM15			
Copper #M	-	-	93	88	-	-	76	68	90	81	<1	mg/kg	TM30/PM15			
Lead #M	-	-	2099	2151	-	-	659	290	434	1200	<5	mg/kg	TM30/PM15			
Mercury #M	-	-	0.8	1.8	-	-	1.8	0.8	0.6	0.9	<0.1	mg/kg	TM30/PM15			
Nickel #M	-	-	24.9	24.9	-	-	27.4	25.6	28.3	23.3	<0.7	mg/kg	TM30/PM15			
Selenium *M	-	-	1	1	-	-	2	1	2	<1	<1	mg/kg	TM30/PM15			
Vanadium	-	-	53	53	-	-	62	53	58	44	<1	mg/kg	TM30/PM15			
Water Soluble Boron ***	-	-	6.4	6.1	-	-	2.7	2.0	3.5	4.5	<0.1	mg/kg	TM74/PM32			
Zinc ^{#M}	47400	40000	499	444	40540	-	285	229	292	299	<5	mg/kg	TM30/PM15 TM30/PM62			
Aluminium Arsenic	17423 58.6	19023 61.5	-	-	12510 20.2	11124 19.3	-	-	-	-	<50 <0.5	mg/kg mg/kg	TM30/PM62			
Barium	866	944	-	_	613	560		_	_	_	<1	mg/kg	TM30/PM62			
Beryllium	4.1	4.0	-	_	1.3	1.2	-	_	_	_	<0.5	mg/kg	TM30/PM62			
Cadmium	7.0	2.1	-	-	0.8	0.8	-	-	-	-	<0.1	mg/kg	TM30/PM62			
Chromium	57.8	63.4	-	-	30.6	30.1	-	-	-	-	<0.5	mg/kg	TM30/PM62			
Copper	470 _{AB}	504 _{AB}	-	-	86	92	-	-	-	-	<1	mg/kg	TM30/PM62			
Lead	1459	1519	-	-	2621	2539	-	-	-	-	<5	mg/kg	TM30/PM62			
Mercury	3.5	3.3	-	-	0.9	0.8	-	-	-	-	<0.1	mg/kg	TM30/PM62			
Nickel	73.1	85.3	-	-	23.9	23.1	-	-	-	-	<0.7	mg/kg	TM30/PM62			
Selenium	2	2	-	-	<1	1	-	-	-	-	<1	mg/kg	TM30/PM62			
Vanadium	90	92	-	-	59	59	-	-	-	-	<1	mg/kg	TM30/PM62			
Water Soluble Boron	3.8	3.7	-	-	7.4	6.5	-	-	-	-	<0.1	mg/kg	TM74/PM61			
Zinc	5153 _{AB}	1184	-	-	451	444	-	-	-	-	<5	mg/kg	TM30/PM62			
												_				
Aluminium	18250	16400	-	-	9670	11210	-	-	-	-	<50	mg/kg	TM30/PM42			
Arsenic	50.7	46.6	-	-	17.2	16.3	-	-	-	-	<0.5	mg/kg	TM30/PM42			
Barium Beryllium	945 3.9	883 3.7	-	-	486 1.1	517 1.2	-	-	-	-	<1 <0.5	mg/kg	TM30/PM42 TM30/PM42			
Cadmium	1.9	1.9	-	_	0.6	0.6		_	_	_	<0.1	mg/kg mg/kg	TM30/PM42			
Chromium	57.4	54.1	-	-	28.3	31.0	-	-	-	-	<0.1	mg/kg	TM30/PM42			
Copper	501 _{AB}	539 _{AB}	-	-	79	79	-	-	-	-	<1	mg/kg	TM30/PM42			
Lead	1780	1472	-	-	2092	2371	-	-	-	-	<5	mg/kg	TM30/PM42			
Mercury	3.1	2.6	-	-	0.5	0.4	-	-	-	-	<0.1	mg/kg	TM30/PM42			
Nickel	62.1	55.4	-	-	21.1	21.9	-	-	-	-	<0.7	mg/kg	TM30/PM42			
Selenium	2	2	-	-	<1	<1	-	-	-	-	<1	mg/kg	TM30/PM42			
Vanadium	92	79	-	-	51	53	-	-	-	-	<1	mg/kg	TM30/PM42			
Water Soluble Boron	3.5	3.5	-	-	4.2	4.9	-	-	-	-	<0.1	mg/kg	TM30/PM42			
Zinc	1058	1000	-	-	369	382	-	-	-	-	<5	mg/kg	TM30/PM42			

AECOM Client Name:

60595731 Reference: Location: Grenfell

Contact: David Dyson Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Job No:	19/9004									
EMT Sample No.	470-477	478-485	486-493	502-509	510-517	518-525	526-533	542-549	558-565	574-581
Sample ID	GTCS 1-18 FIELD DUPLICATE	GTCS 1-18 LAB FIELD DUPLICATE	GTCS 1-23 PRIMARY SAMPLE	GTCS 1-23 LAB DUPLICATE	GTCS 1-23 FIELD DUPLICATE	GTCS 1-23 LAB FIELD DUPLICATE	GTCS 1-24A	GTCS 1-19A	GTCS 1-20A	GTCS 1-21A
Depth	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05
COC No / misc										
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT
Sample Date	05/06/2019 11:10	05/06/2019 11:10	05/06/2019 08:50	05/06/2019 08:50	05/06/2019 08:50	05/06/2019 08:50	05/06/2019 09:50	05/06/2019 14:45	05/06/2019 15:20	05/06/2019 12:30
Sample Type	Clayey Loam	Clayey Loam	Clay	Clay	Clay	Clayey Loam	Loam	Clayey Loam	Clayey Loam	Clayey Loam
Batch Number	2	2	2	2	2	2	2	2	2	2
Date of Receipt	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019

Please see attached notes for all

COC No / misc											abbreviations and acronyms			
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT				
Sample Date	05/06/2019 11:10	05/06/2019 11:10	05/06/2019 08:50	05/06/2019 08:50	05/06/2019 08:50	05/06/2019 08:50	05/06/2019 09:50	05/06/2019 14:45	05/06/2019 15:20	05/06/2019 12:30				
Sample Type			Clay	Clay	Clay	Clayey Loam	Loam	Clayey Loam	Clayey Loam	Clayey Loam				
Batch Number	2	2	2	2	2	2	2	2	2	2			Method	
Date of Receipt	06/06/2019	06/06/2019		06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019	LOD/LOR	Units	No.	
PAH MS														
Naphthalene #M	0.07	0.07	0.29	0.38	0.39	0.32	0.28	0.15	0.08	0.05	<0.04	mg/kg	TM4/PM8	
Acenaphthylene	0.23	0.21	1.69	1.76	1.74	1.54	1.04	1.40	0.27	0.17	<0.03	mg/kg	TM4/PM8	
Acenaphthene #M	<0.05	<0.05	0.16	0.19	0.12	0.15	0.16	0.07	0.13	<0.05	<0.05	mg/kg	TM4/PM8	
Fluorene #M	<0.04	<0.04	0.20	0.21	0.19	0.19	0.16	0.10	0.11	<0.04	<0.04	mg/kg	TM4/PM8	
Phenanthrene *M	0.43	0.43	2.85	3.07	3.00	3.15	2.56	1.65	1.65	0.46	<0.03	mg/kg	TM4/PM8	
Anthracene #	0.26	0.24	1.74	1.77	1.72	1.72	1.24	1.12	0.50	0.19	<0.04	mg/kg	TM4/PM8	
Fluoranthene #M	1.20	1.19	9.69	10.15	10.10	9.67	8.11	7.09	3.68	1.37	<0.03	mg/kg	TM4/PM8	
Pyrene #	1.22	1.21	8.80	9.15	9.11	8.90	7.19	6.20	3.13	1.19	<0.03	mg/kg	TM4/PM8	
Benzo(a)anthracene #	0.79	0.79	5.55	5.92	6.03	5.66	4.40	4.03	1.71	0.72	<0.06	mg/kg	TM4/PM8	
Chrysene #M	0.91	0.93	5.77	6.12	6.19	6.08	4.53	3.75	1.82	0.80	<0.02	mg/kg	TM4/PM8	
Benzo(bk)fluoranthene #M	2.26	2.24	12.85	13.77	13.97	12.57	9.96	8.23	3.61	1.68	<0.07	mg/kg	TM4/PM8	
Benzo(a)pyrene #	1.06	1.09	7.43	7.68	7.82	7.05	5.75	4.52	2.04	0.90	<0.04	mg/kg	TM4/PM8	
Indeno(123cd)pyrene #M	1.01	1.01	5.22	5.84	5.84	5.06	4.20	3.20	1.35	0.67	<0.04	mg/kg	TM4/PM8	
Dibenzo(ah)anthracene #	0.19	0.24	1.01	1.25	1.49	1.31	1.06	0.67	0.32	0.18	<0.04	mg/kg	TM4/PM8	
Benzo(ghi)perylene #	1.14	1.12	5.46	6.15	5.95	5.13	4.34	3.26	1.40	0.68	<0.04	mg/kg	TM4/PM8	
Coronene	0.24	0.27	1.23	1.13	1.43	0.91	1.04	0.76	0.25	0.18	<0.04	mg/kg	TM4/PM8	
PAH 16 Total	10.8	10.8	68.7	73.4	73.7	68.5	55.0	45.4	21.8	9.1	<0.6	mg/kg	TM4/PM8	
PAH 17 Total	11.01	11.04	69.94	74.54	75.09	69.41	56.02	46.20	22.05	9.24	<0.64	mg/kg	TM4/PM8	
Benzo(b)fluoranthene	1.63	1.61	9.25	9.91	10.06	9.05	7.17	5.93	2.60	1.21	<0.05	mg/kg	TM4/PM8	
Benzo(k)fluoranthene	0.63	0.63	3.60	3.86	3.91	3.52	2.79	2.30	1.01	0.47	<0.02	mg/kg	TM4/PM8	
PAH Surrogate % Recovery	98	96	100	99	101	92	96	98	101	99	<0	%	TM4/PM8	
V00 TI0														
VOC TICs	ND	ND	ND	ND	ND	ND	See Attached	ND	ND	ND		None	TM15/PM10	
SVOC TICs	See Attached	See Attached	See Attached	See Attached	See Attached	See Attached	See Attached	See Attached	See Attached	See Attached		None	TM16/PM8	
7,12-Dimethyl benzo(a)anthracene	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	ug/kg	TM16/PM8	
PCB 28 #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8	
PCB 52#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8	
PCB 101 #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8	
PCB 118 #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8	
PCB 138 #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8	
PCB 153 #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8	
PCB 180 #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8	
Total 7 PCBs#	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	ug/kg	TM17/PM8	
									_					
Natural Moisture Content	21.5	18.3	15.0	12.5	11.1	12.6	15.2	13.2	21.4	13.8	<0.1	%	PM4/PM0	
Hexavalent Chromium #	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	mg/kg	TM38/PM20	
Chromium III	-	-	71.5	71.1	-	-	68.2	69.3	117.8	66.9	<0.5	mg/kg	NONE/NONE	
Chromium III	57.8	63.4	-	-	30.6	30.1	-	-	-	-	<0.5	mg/kg	NONE/NONE	
Chromium III	57.4	54.1	-	-	28.3	31.0	-	-	-	-	<0.5	mg/kg	NONE/NONE	
Free Cyanide	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	mg/kg	TM89/PM45	
Total Cyanide #M	1.5 _{AA}	1.8 _{AA}	0.8	0.7	<0.5	0.6	0.6	<0.5	<0.5	0.7	<0.5	mg/kg	TM89/PM45	

AECOM Client Name:

60595731 Reference: Grenfell Location:

Contact: David Dyson EMT Job No: 19/9004

Report : Solid

Z.II.1 00D 110.	10/0001									
EMT Sample No.	470-477	478-485	486-493	502-509	510-517	518-525	526-533	542-549	558-565	574-581
Sample ID	GTCS 1-18 FIELD DUPLICATE	GTCS 1-18 LAB FIELD DUPLICATE	GTCS 1-23 PRIMARY SAMPLE	GTCS 1-23 LAB DUPLICATE	GTCS 1-23 FIELD DUPLICATE	GTCS 1-23 LAB FIELD DUPLICATE	GTCS 1-24A	GTCS 1-19A	GTCS 1-20A	GTCS 1-21A
Depth	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05
COC No / misc										
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT
Sample Date	05/06/2019 11:10	05/06/2019 11:10	05/06/2019 08:50	05/06/2019 08:50	05/06/2019 08:50	05/06/2019 08:50	05/06/2019 09:50	05/06/2019 14:45	05/06/2019 15:20	05/06/2019 12:3
Sample Type	Clayey Loam	Clayey Loam	Clay	Clay	Clay	Clayey Loam	Loam	Clayey Loam	Clayey Loam	Clayey Loar
Batch Number	2	2	2	2	2	2	2	2	2	2

Depth	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05		e attached r	
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJT												
Sample Date	05/06/2019 11:10	05/06/2019 11:10	05/06/2019 08:50	05/06/2019 08:50	05/06/2019 08:50	05/06/2019 08:50	05/06/2019 09:50	05/06/2019 14:45	05/06/2019 15:20	05/06/2019 12:30			
Sample Type	Clayey Loam	Clayey Loam	Clay	Clay	Clay	Clayey Loam	Loam	Clayey Loam	Clayey Loam	Clayey Loam			
Batch Number	2	2	2	2	2	2	2	2	2	2			Method
Date of Receipt	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019	LOD/LOR	Units	No.
Total Organic Carbon #	-	-	6.14	5.81	-	-	5.84	5.57	4.88	4.09	<0.02	%	TM21/PM24
Total Organic Carbon	8.57	9.51	-	-	7.08	5.75	-	-	-	-	<0.02	%	TM21/PM89
Thiocyanate	1.2	1.3	1.7	1.5	1.4	1.5	1.8	1.6	0.8	0.8	<0.6	mg/kg	TM107/PM119
Furans (Chlorinated)													
2378-TCDF*	28.1	19.2	7.74	9.95	10.4	9.98	12.8	5.7	6.52	6.49		ng/kg	Subcontracted
12378-PCDF*	26.7	16.6	5.51	5.79	2.02	7.71	9.94	5.06	4.84	4.43		ng/kg	Subcontracted
23478-PCDF*	57.6	27.8	8.98	4.06	7.61	9.49	8.96	6.95	6.15	7.29		ng/kg	Subcontracted
123478-HxCDF*	37.5	21.4	8.85	6.71	5.23	8.58	10.9	6.86	6.81	6.17		ng/kg	Subcontracted
123678-HxCDF*	35	16.8	6.54	7.42	7.3	7.66	9.62	5.63	4.38	4.09		ng/kg	Subcontracted
234678-HxCDF*	56.7	21.4	7.47	7.59	6.44	7.46	9.24	6.1	5.39	4.05		ng/kg	Subcontracted
123789-HxCDF*	2.25	0.939	<0.333	0.88	<0.608	0.877	0.943	0.799	<0.505	0.547		ng/kg	Subcontracted
1234678-HpCDF*	232	155	50.1	45	46.7	57.8	54.7	55	60.2	46		ng/kg	Subcontracted
1234789-HpCDF*	5.65	3.25	2.8	1.67	2.6	1.3	2.64	2.6	2.48	2.17		ng/kg	Subcontracted
OCDF*	88.9	87.6	33.1	31.8	36.8	74.4	40.1	37.4	43.2	42.3		ng/kg	Subcontracted
Diaving (Chlorinated)													
Dioxins (Chlorinated)	4.64	2.16	-0.277	-0.224	-0.220	-0.22E	-0.225	-0.226	-0.219	-0.219		na/ka	Subcontracted
2378-TCDD* 12378-PCDD*	4.61 12.5	3.16 12.2	<0.377 2.05	<0.334 0.918	<0.230	<0.225 2.2	<0.235 2.68	<0.226 0.643	<0.218	<0.218		ng/kg ng/kg	Subcontracted
123478-HxCDD*	12.3	7.8	2.07	1.85	2.01	1.66	2.71	1.36	0.917	1.82		ng/kg	Subcontracted
123678-HxCDD*	20	11.6	3.63	4.91	4.29	5.29	6.17	4.12	3.56	3.09		ng/kg	Subcontracted
123789-HxCDD*	13.9	10	2.13	2.69	3.36	3.68	5.17	2.67	2	2.27		ng/kg	Subcontracted
1234678-HpCDD*	132	86.6	53.2	56.6	57.4	65.5	55.8	58.7	62.3	67.5		ng/kg	Subcontracted
OCDD*	524	489	327	350	354	385	270	381	319	450		ng/kg	Subcontracted
TEQ(1) (NATO)*	65.9	37.9	11.5	8.73	10.5	12.7	13.8	9.18	8.91	9.12		ng/kg	Subcontracted
TEQ(2) (NATO)*	65.9	37.9	11.1	8.39	10.2	12.5	13.5	8.95	8.64	8.9		ng/kg	Subcontracted
Furans (Brominated)													
2378-TBDF*	6.99	4.8	1.98	1.55	1.7	1.58	3.08	2.65	1.97	2.87		ng/kg	Subcontracted
12378-PBDF*	6.14	4.87	1.54	1.17	1.28	1.25	1.66	1.7	1.41	1.75		ng/kg	Subcontracted
23478-PBDF*	2.24	2.59	0.83	0.76	0.88	0.76	1.19	0.98	0.77	0.89		ng/kg	Subcontracted
123478-HxBDF*	3.06	3.81	0.62	1.38	1.6	1.75	1.9	2	2.3	2.1		ng/kg	Subcontracted
123678-HxBDF*	2.29	2	0.79	1.72	2.19	2.6	2.27	2.53	2.21	1.85		ng/kg	Subcontracted
234678-HxBDF*	1.82	2.13	<0.780	<0.800	<0.800	<0.830	<0.880	<0.810	<0.770	<0.750		ng/kg	Subcontracted
123789-HxBDF*	1.48	1.19	<0.820	<0.840	<0.800	<0.820	<0.820	<0.790	<0.800	<0.810		ng/kg	Subcontracted
1234678-HpBDF*	<0.790	<0.770	<0.740	<0.770	<0.790	<0.770	<0.790	<0.840	<0.780	<0.770		ng/kg	Subcontracted
1234789-HpBDF*	<0.810	<0.810	<0.800	<0.800	<0.820	<0.800	<0.830	<0.800	<0.810	<0.790		ng/kg	Subcontracted
OBDF*	<0.780	<0.820	<0.840	<0.790	<0.810	<0.840	<0.850	<0.820	<0.840	<0.850		ng/kg	Subcontracted
]		l	i

Client Name: AECOM

Reference: 60595731 Location: Grenfell

Contact: David Dyson EMT Job No: 19/9004

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Job No:	19/9004									
EMT Sample No	. 470-477	478-485	486-493	502-509	510-517	518-525	526-533	542-549	558-565	574-581
Sample IE	GTCS 1-18 FIELD DUPLICATE	GTCS 1-18 LAB FIELD DUPLICATE	GTCS 1-23 PRIMARY SAMPLE	GTCS 1-23 LAB DUPLICATE	GTCS 1-23 FIELD DUPLICATE	GTCS 1-23 LAB FIELD DUPLICATE	GTCS 1-24A	GTCS 1-19A	GTCS 1-20A	GTCS 1-21A
Depth	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05
COC No / miso	:									
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT
Sample Date	05/06/2019 11:10	05/06/2019 11:10	05/06/2019 08:50	05/06/2019 08:50	05/06/2019 08:50	05/06/2019 08:50	05/06/2019 09:50	05/06/2019 14:45	05/06/2019 15:20	05/06/2019 12:30

Please see attached notes for all

COC No / misc												e attached n ations and a	
Containers	VJT												
Sample Date	05/06/2019 11:10	05/06/2019 11:10	05/06/2019 08:50	05/06/2019 08:50	05/06/2019 08:50	05/06/2019 08:50	05/06/2019 09:50	05/06/2019 14:45	05/06/2019 15:20	05/06/2019 12:30			
Sample Type	Clayey Loam	Clayey Loam	Clay	Clay	Clay	Clayey Loam	Loam	Clayey Loam	Clayey Loam	Clayey Loam			
Batch Number	2	2	2	2	2	2	2	2	2	2	1.00/1.00	11.25	Method
Date of Receipt	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019	LOD/LOR	Units	No.
Dioxins (Brominated)													
2378-TBDD*	<0.770	<0.760	<0.780	<0.790	<0.770	<0.790	<0.800	<0.800	<0.780	<0.800		ng/kg	Subcontracted
12378-PBDD*	<0.800	<0.820	<0.810	<0.840	<0.800	<0.800	<0.810	<0.780	<0.800	<0.780		ng/kg	Subcontracted
123478-HxBDD*	<0.710	<0.760	<0.790	<0.790	<0.770	<0.790	<0.770	<0.760	<0.750	<0.770		ng/kg	Subcontracted
123678-HxBDD*	<0.730	<0.730	<0.760	<0.770	<0.740	<0.780	<0.790	<0.800	<0.780	<0.780		ng/kg	Subcontracted
123789-HxBDD*	<0.690	<0.660	<0.690	<0.750	<0.800	<0.730	<0.730	<0.770	<0.770	<0.710		ng/kg	Subcontracted
1234678-HpBDD*	1.22	0.99	<0.800	<0.800	<0.830	<0.800	<0.780	<0.840	<0.830	<0.800		ng/kg	Subcontracted
OBDD*	<0.780	<0.800	<0.820	<0.840	<0.800	<0.820	<0.820	<0.820	<0.800	<0.820		ng/kg	Subcontracted
PCB-81*	18.3	9.94	2.06	1.84	0.73	0.941	2.66	2.81	4.43	0.997		ng/kg	Subcontracted
PCB-77*	211	73	33.1	36.2	34.1	34.5	33.9	73.1	92.7	57.6		ng/kg	Subcontracted
PCB-123*	63.6	29.8	12.7	15.4	15.1	14.1	17.2	40.2	40	14.9		ng/kg	Subcontracted
PCB-118*	1880	851	512	581	471	480	507	1040	1090	554		ng/kg	Subcontracted
PCB-114*	43.5	12.6	5.77	6.39	5.17	5.49	4.66	9.05	10.6	8.14		ng/kg	Subcontracted
PCB-105*	1060	498	248	281	226	231	228	431	545	269		ng/kg	Subcontracted
PCB-126*	63.3	37.7	6.46	7.59	6.36	11	11.9	19.2	13.3	8.08		ng/kg	Subcontracted
PCB-167*	154	114	60.3	57.4	51.4	52.9	48.1	122	93.1	51.1		ng/kg	Subcontracted
PCB-156*	398	280	128	133	104	111	104	245	214	101		ng/kg	Subcontracted
PCB-157*	92.5	66.5	34.7	39.5	33.2	33.8	30.1	71.4	59.2	34.2		ng/kg	Subcontracted
PCB-169*	18.1	7.36	1.52	1.17	2.68	2.15	2.11	1.87	1.53	0.795		ng/kg	Subcontracted
PCB-189*	43.5	33.2	19.2	16.6	14.9	15.6	14.4	28.1	18.9	18.3		ng/kg	Subcontracted
Isocyanic Acid-d	78	80	71	60	69	70	67	77	79	81	<0	%	TM192/PM0
Methyl Isocyanate-d	97	99	86	76	86	87	79	96	77	99	<0	%	TM192/PM0
Ethyl Isocyanate-d	92	94	83	74	84	82	74	89	77	92	<0	%	TM192/PM0
Propyl Isocyanate-d	104	107	88	75	84	90	86	96	94	101	<0	%	TM192/PM0
Phenyl Isocyanate-d	76	77	60	46	55	50	53	65	73	83	<0	%	TM192/PM0
Hexamethylene Diisocyanate-d	82	83	69	57	64	66	65	77	81	85	<0	%	TM192/PM0
2,4-Toluene Diisocyanate-d	126	119	66	43	59	76	75	100	117	135	<0	%	TM192/PM0
2,6-Toluene Diisocyanate-d	79	84	61	45	57	58	59	74	78	87	<0	%	TM192/PM0
Isophorone Diisocyanate-d	84	86	84	73	78	81	81	87	87	88	<0	%	TM192/PM0
4,4-Methylene-bis(phenyl-isocyanate)-d	87	89	58	44	57	56	65	76	82	96	<0	%	TM192/PM0
Isocyanic Acid	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	ug/kg	TM192/PM0
Methyl Isocyanate	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	ug/kg	TM192/PM0
Ethyl Isocyanate	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	ug/kg	TM192/PM0
Propyl Isocyanate	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	ug/kg	TM192/PM0
Phenyl Isocyanate	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	ug/kg	TM192/PM0
Hexamethylene Diisocyanate	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	ug/kg	TM192/PM0
2,4-Toluene Diisocyanate	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	ug/kg	TM192/PM0
2,6-Toluene Diisocyanate	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	ug/kg	TM192/PM0
Isophorone Diisocyanate	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	ug/kg	TM192/PM0
4,4-Methylene-bis(phenyl-isocyanate)	<250	<250	<250	<250	<250	373	<250	<250	<250	<250	<250	ug/kg	TM192/PM0
pH ^{#M}	7.73	7.82	7.60	7.59	7.57	7.59	7.27	7.13	8.06	7.73	<0.01	pH units	TM73/PM11

Client Name: AECOM

Reference: 60595731 Location: Grenfell

Contact: David Dyson EMT Job No: 19/9004

Report : Solid

Sample Colour Medium Brown Med												_		
Sample Depth Dep	EMT Sample No.	470-477	478-485	486-493	502-509	510-517	518-525	526-533	542-549	558-565	574-581			
Cock No misc. Combines Variable Vari	Sample ID	FIELD	LAB FIELD	PRIMARY	LAB	FIELD	LAB FIELD	GTCS 1-24A	GTCS 1-19A	GTCS 1-20A	GTCS 1-21A			
Containers	Depth	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	Please se	e attached n	otes for all
Sample Date Sample Date Sample Type Clayey Loam	COC No / misc													
Sample Date Sample Date Sample Type Clayey Loam	Containers	V.IT	V.IT	V.IT										
Batch Number 2 2 2 2 2 2 2 2 2														
Batch Number 2 2 2 2 2 2 2 2 2														
Date of Receipt 06/06/2019	Sample Type	Clayey Loam	Clayey Loam	Clay	Clay	Clay	Clayey Loam	Loam	Clayey Loam	Clayey Loam	Clayey Loam			
Date of Receipt 06/06/2019	Batch Number	2	2	2	2	2	2	2	2	2	2	LOD/LOR	Units	
Sample Colour Medium Brown Med	Date of Receipt	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019			NO.
## Deher Hems ##	Sample Type	Clayey Loam	Clayey Loam	Clay	Clay	Clay	Clayey Loam	Loam	Clayey Loam	Clayey Loam	Clayey Loam		None	PM13/PM0
Subcontracted Subcontracte	Sample Colour	Medium Brown		Medium Brown		None								
.4'-dibromobiphenyl (PBB 15)*	Other Items													
2.2.5-tribromobiphenyl (PBB 18)* 2.2.4-dibromobiphenyl (PBB 18)* 3.2.4-dibromobiphenyl (PBB 18)* 3.2.4-dibromobiphenyl (PBB 18)* 3.2.4-4-5-b-inabbomodiphenyl ether (BDE-18)* 3.4.4-5-b-inabbomodiphenyl ether (BDE-18)* 3.4.4-5-b-inabbomodiphe														
2,2-dibromobiphenyl (PBB 4)*														
### stratoromobiphemyl (3,3',5,5') (PBB 80)*	. , , ,													
2.4.4.6-pentabromodiphenyl ether (BDE-130)*														
2.3.4.4.5-heatbromodiphenyl ether (BDE-13)*	2,2',4,4',6-pentabromodiphenyl ether (BDE-100)*													
2.4.4.5.5-heatstromodiphenyl ether (BDE-153)*	2,2',3,4,4',5'-hexabromodiphenyl ether (BDE-138)*													
2.2.4-tribromodiphenyl ether (BDE-17)*	2,2',4,4',5,5'-hexabromodiphenyl ether (BDE-153)*	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		mg/kg	Subcontracted
2.3.4.4.5.6-heptabromodiphenyl ether (BDE-28)* 3.4.4.4-tribromodiphenyl ether (BDE-28)* 3.4.4-tribromodiphenyl ether (BDE-28)* 3.4.4-tetrabromodiphenyl ether (BDE-47)* 3.4.4-tetrabromodiphenyl ether (BDE-66)* 3.4.4-tetrabromodiphenyl ether (B	2,2',4,4',5,6'-hexabromodiphenyl ether (BDE-154)*	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		mg/kg	Subcontracted
.4.4'-tribromodiphenyl ether (BDE-28)*	2,2',4-tribromodiphenyl ether (BDE-17)*	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		mg/kg	Subcontracted
2.2.4.4-tetrabromodiphenyl ether (BDE-47)*	2,2',3,4,4',5',6-heptabromodiphenyl ether (BDE-183)*	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		mg/kg	Subcontracted
3,4,4-tetrahromodiphenyl ether (BDE-66)* 3,4,4-tetrahromodiphenyl ether (BDE-6	2,4,4'-tribromodiphenyl ether (BDE-28)*	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		<0.10	<0.10			mg/kg	Subcontracted
2.3.4.4-pentatromodiphenyl ether (BDE-85)* <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 mg/kg Subcontracted control example of the (BDE-99)* <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 mg/kg Subcontracted control example of the (BDE-99)* <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 mg/kg Subcontracted control example of the (BDE-99)* <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 mg/kg Subcontracted control example of the (BDE-99)* <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 mg/kg Subcontracted control example of the (BDE-99)* <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.50 <0.50 mg/kg Subcontracted control example of the (BDE-99)* <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 mg/kg Subcontracted control example of the (BDE-99)* <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.20 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15	2,2',4,4'-tetrabromodiphenyl ether (BDE-47)*													
2.4.4.5-pentatromodychenyl ether (BDE-99)*														
exabromocyclododecane (1,2,5,6,9,10-)*														
etrabromobisphenol A*														
is(1-chloro-2-propyl)phosphate TCPP* <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15	tetrabromobisphenol A*													
	triphenylphosphate*	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		mg/kg	Subcontracted
ris(2-ethylhexyl) phosphate* 0.23 0.22 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 mg/kg Subcontracted	tris(1-chloro-2-propyl)phosphate TCPP*	<0.15	<0.15	<0.15	<0.15	<0.15	<0.20	<0.15	<0.50	<0.15	<0.15		mg/kg	Subcontracted
	tris(2-ethylhexyl) phosphate*	0.23	0.22	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		mg/kg	Subcontracted

Client Name: AECOM SVOC Report : Solid

Reference: 60595731
Location: Grenfell
Contact: David Dyson
EMT Job No: 19/9004

EMT Job No:	19/9004												
EMT Sample No.	470-477	478-485	486-493	502-509	510-517	518-525	526-533	542-549	558-565	574-581			
Sample ID	GTCS 1-18 FIELD DUPLICATE	GTCS 1-18 LAB FIELD DUPLICATE	GTCS 1-23 PRIMARY SAMPLE	GTCS 1-23 LAB DUPLICATE	GTCS 1-23 FIELD DUPLICATE	GTCS 1-23 LAB FIELD DUPLICATE	GTCS 1-24A	GTCS 1-19A	GTCS 1-20A	GTCS 1-21A			
Depth COC No / misc	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05		e attached n ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Sample Date		05/06/2019 11:10			05/06/2019 08:50	05/06/2019 08:50				05/06/2019 12:30			
Sample Type Batch Number	Clayey Loam 2	Clayey Loam 2	Clay 2	Clay 2	Clay 2	Clayey Loam 2	Loam 2	Clayey Loam 2	Clayey Loam 2	Clayey Loam 2			Method
Date of Receipt	06/06/2019	06/06/2019		06/06/2019	06/06/2019	06/06/2019		06/06/2019	06/06/2019	06/06/2019	LOD/LOR	Units	No.
SVOC MS													
Phenois													
2-Chlorophenol #M	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
2-Methylphenol	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
2-Nitrophenol 2,4-Dichlorophenol **M	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	ug/kg ug/kg	TM16/PM8 TM16/PM8
2,4-Dimethylphenol	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
2,4,5-Trichlorophenol	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
2,4,6-Trichlorophenol	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
4-Chloro-3-methylphenol	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
4-Methylphenol	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
4-Nitrophenol	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
Pentachlorophenol Phenol #M	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	ug/kg ug/kg	TM16/PM8 TM16/PM8
PAHs	110	110	110	710	710	710	710	110	110	~10	~10	~g/ng	10/1 1010
2-Chloronaphthalene #M	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
2-Methylnaphthalene #M	72	195	162	141	126	116	131	87	98	43	<10	ug/kg	TM16/PM8
Phthalates													
Bis(2-ethylhexyl) phthalate	634	731	399	394	307	337	384	418	287	571	<100	ug/kg	TM16/PM8
Butylbenzyl phthalate Di-n-butyl phthalate	<100 453	<100 119	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100	ug/kg	TM16/PM8 TM16/PM8
Di-n-Octyl phthalate	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	ug/kg ug/kg	TM16/PM8
Diethyl phthalate	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	ug/kg	TM16/PM8
Dimethyl phthalate #M	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	ug/kg	TM16/PM8
Other SVOCs													
1,2-Dichlorobenzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
1,2,4-Trichlorobenzene **M	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
1,3-Dichlorobenzene 1,4-Dichlorobenzene	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	ug/kg ug/kg	TM16/PM8 TM16/PM8
2-Nitroaniline	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
2,4-Dinitrotoluene	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
2,6-Dinitrotoluene	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
3-Nitroaniline	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
4-Bromophenylphenylether ***	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
4-Chloroaniline 4-Chlorophenylphenylether	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	ug/kg ug/kg	TM16/PM8 TM16/PM8
4-Nitroaniline	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
Azobenzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
Bis(2-chloroethoxy)methane	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
Bis(2-chloroethyl)ether	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
Carbazole	58	54	329	451	226	291	238	250	296	61	<10	ug/kg	TM16/PM8
Dibenzofuran *** Hexachlorobenzene	36 <10	60 <10	139 <10	164 <10	136 <10	132 <10	107 83	89 <10	142 <10	28 <10	<10 <10	ug/kg	TM16/PM8 TM16/PM8
Hexachlorobutadiene **M	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg ug/kg	TM16/PM8
Hexachlorocyclopentadiene	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
Hexachloroethane	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
Isophorone #M	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
N-nitrosodi-n-propylamine #M	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
Nitrobenzene #M	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
Surrogate Recovery 2-Fluorobiphenyl Surrogate Recovery p-Terphenyl-d14	105 113	105 115	112 127	110 124	119 125	118 130	112 130	107 122	101 114	107 120	<0 <0	%	TM16/PM8 TM16/PM8
Surrogate Necovery p-1 elphenyl-u14	113	113	127	124	123	130	130	122	114	120	ζ0	/0	TIVITO/FIVIO
													-

Client Name: AECOM VOC Report : Solid

Reference: 60595731
Location: Grenfell
Contact: David Dyson
EMT Job No: 19/9004

EMT Job No:	19/9004												
EMT Sample No.	470-477	478-485	486-493	502-509	510-517	518-525	526-533	542-549	558-565	574-581			
Sample ID	GTCS 1-18 FIELD DUPLICATE	GTCS 1-18 LAB FIELD DUPLICATE	GTCS 1-23 PRIMARY SAMPLE	GTCS 1-23 LAB DUPLICATE	GTCS 1-23 FIELD DUPLICATE	GTCS 1-23 LAB FIELD DUPLICATE	GTCS 1-24A	GTCS 1-19A	GTCS 1-20A	GTCS 1-21A			
Depth COC No / misc	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05	0.00-0.05		e attached nations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			,
Sample Date Sample Type	05/06/2019 11:10 Clayey Loam		05/06/2019 08:50 Clay	05/06/2019 08:50 Clay	05/06/2019 08:50 Clay	05/06/2019 08:50 Clayey Loam	05/06/2019 09:50 Loam		05/06/2019 15:20 Clayey Loam				
Batch Number	2	2	2	2	2	2	2	2	2	2	LOD/LOR	Units	Method
Date of Receipt	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019	LOD/LOR	Units	No.
VOC MS													
Dichlorodifluoromethane	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/kg	TM15/PM10 TM15/PM10
Methyl Tertiary Butyl Ether *** Chloromethane **	<6 11	<6 19	<6 16	<6 18	<6 11	<6 34	<6 7	<6 12	<6 21	<6 7	<6 <3	ug/kg ug/kg	TM15/PM10
Vinyl Chloride	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/kg	TM15_A/PM10
Bromomethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ug/kg	TM15/PM10
Chloroethane #M	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	ug/kg	TM15/PM10
Trichlorofluoromethane ***	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
1,1-Dichloroethene (1,1 DCE) **M Dichloromethane (DCM) **	<6 <30	<6 <30	<6 <30	<6 <30	<6 <30	<6 <30	<6 <30	<6 <30	<6 <30	<6 <30	<6 <30	ug/kg ug/kg	TM15/PM10
trans-1-2-Dichloroethene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
1,1-Dichloroethane *M	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	ug/kg	TM15/PM10
cis-1-2-Dichloroethene #M	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	ug/kg	TM15/PM10
2,2-Dichloropropane	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
Bromochloromethane #M Chloroform #M	<4 <5	<4 <5	<4 <5	<4 <5	<4 <5	<4 <5	<4 <5	<4 <5	<4 <5	<4 <5	<4 <5	ug/kg ug/kg	TM15/PM10
1,1,1-Trichloroethane #M	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM15/PM10
1,1-Dichloropropene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
Carbon tetrachloride #M	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
1,2-Dichloroethane #M	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM15/PM10
Benzene **M Trichloroethene (TCE) **M	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	ug/kg ug/kg	TM15/PM10
1,2-Dichloropropane **M	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
Dibromomethane #M	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
Bromodichloromethane #M	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
cis-1-3-Dichloropropene	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
Toluene #M trans-1-3-Dichloropropene	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	ug/kg ug/kg	TM15/PM10
1,1,2-Trichloroethane #M	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
Tetrachloroethene (PCE) #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
1,3-Dichloropropane ***	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
Dibromochloromethane #M	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM15/PM10 TM15/PM10
1,2-Dibromoethane # Chlorobenzene #M	<3 <4	<3 <4	<3 <4	<3 <4	<3 <4	<3 <4	<3 <4	<3 <4	<3 <4	<3 <4	<3 <4	ug/kg ug/kg	TM15/PM10
1,1,1,2-Tetrachloroethane **M	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM15/PM10
Ethylbenzene **M	<3	<3	3	3	<3	3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
m/p-Xylene **M	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
o-Xylene **M Styrene	<4 <3	<4 <3	<4 <3	<4 <3	<4 <3	<4 <3	<4 <3	<4 <3	<4 <3	<4 <3	<4 <3	ug/kg ug/kg	TM15/PM10 TM15_A/PM10
Bromoform	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
Isopropylbenzene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
1,1,2,2-Tetrachloroethane *M	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
Bromobenzene #M	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/kg	TM15/PM10
1,2,3-Trichloropropane **M Propylbenzene **	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4	ug/kg ug/kg	TM15/PM10 TM15/PM10
2-Chlorotoluene	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg ug/kg	TM15/PM10
1,3,5-Trimethylbenzene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
4-Chlorotoluene	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
tert-Butylbenzene#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM15/PM10
1,2,4-Trimethylbenzene # sec-Butylbenzene #	<6 <4	<6 <4	<6 <4	<6 <4	<6 <4	<6 <4	<6 <4	<6 <4	<6 <4	<6 <4	<6 <4	ug/kg ug/kg	TM15/PM10 TM15/PM10
4-Isopropyltoluene #	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
1,3-Dichlorobenzene #M	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
1,4-Dichlorobenzene #	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
n-Butylbenzene #	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
1,2-Dichlorobenzene **M 1,2-Dibromo-3-chloropropane **	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4	ug/kg ug/kg	TM15/PM10 TM15/PM10
1,2,4-Trichlorobenzene #	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	ug/kg	TM15/PM10
Hexachlorobutadiene	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
Naphthalene **	<27	<27	<27	<27	<27	<27	<27	<27	<27	<27	<27	ug/kg	TM15/PM10
1,2,3-Trichlorobenzene #	<7 69	<7 75	<7 70	<7 70	<7 70	<7 71	<7 95	<7	<7 72	<7	<7	ug/kg	TM15/PM10
Surrogate Recovery Toluene D8 Surrogate Recovery 4-Bromofluorobenzene	68 52	75 55	70 52	70 53	78 58	71 53	85 64	82 61	73 50	88 68	<0 <0	%	TM15/PM10 TM15/PM10
, Dromondoroborizerie	52	55	52	55	50	55	5	91	50	50	Ÿ	/0	

Job number: 19/9004 Method: SVOC Sample number: 491 Matrix: Solid

Sample identity: GTCS 1-23 PRIMARY SAMPLE

Sample depth: 0.00-0.05
Sample Type: Clay
Units: ug/kg

CAS No.	Tentative Compound Identification	Retention Time (minutes)	% Match	Concentration
95-13-6	Indene	5.465	80	1027
83-33-0	1H-Inden-1-one, 2,3-dihydro-	7.311	90	368
832-69-9	Phenanthrene, 1-methyl-	10.831	95	849
2531-84-2	Phenanthrene, 2-methyl-	10.850	98	1313
84-65-1	9,10-Anthracenedione	11.077	92	389
612-94-2	Naphthalene, 2-phenyl-	11.124	89	729
5737-13-3	Cyclopenta(def)phenanthrenone	11.436	93	1456
2789-88-0	di-p-Tolylacetylene	11.483	89	576
116196-83-9	4,4'-Bis(tetrahydrothiopyran)	11.644	96	2508
243-42-5	Benzo[b]naphtho[2,3-d]furan	11.937	91	1417
33543-31-6	Fluoranthene, 2-methyl-	12.183	96	4555
2381-21-7	Pyrene, 1-methyl-	12.306	96	1978
64401-21-4	Pyrene, 1,3-dimethyl-	12.845	93	1021
239-35-0	Benzo[b]naphtho[2,1-d]thiophene	12.940	96	2312
217-59-4	Triphenylene	13.299	98	9889
25732-74-5	Cyclopenta(cd)pyrene, 3,4-dihydro-	13.432	91	3954
3351-28-8	Chrysene, 1-methyl-	13.856	97	2567
126848-01-9	3,5,6-Trimethyl-p-quinone, 2-(2,5-dioxotetrahydrofuran-3-yl)thio-	14.784	89	7888
192-97-2	Benzo[e]pyrene	14.954	97	10148
629-94-7	Heneicosane	15.174	95	6918
593-45-3	Octadecane	15.958	92	8766
191-26-4	Dibenzo[def,mno]chrysene	16.775	92	2785

Job number: 19/9004 Method: SVOC Sample number: 507 Matrix: Solid

Sample identity: GTCS 1-23 LAB DUPLICATE

Sample depth: 0.00-0.05
Sample Type: Clay
Units: ug/kg

CAS No.	Tentative Compound Identification	Retention Time (minutes)	% Match	Concentration
132-65-0	Dibenzothiophene	10.151	94	312
832-69-9	Phenanthrene, 1-methyl-	10.850	97	600
203-64-5	4H-Cyclopenta[def]phenanthrene	10.926	87	1061
2531-84-2	Phenanthrene, 2-methyl-	10.954	98	519
84-65-1	9,10-Anthracenedione	11.077	91	289
5737-13-3	Cyclopenta(def)phenanthrenone	11.436	93	492
116196-83-9	4,4'-Bis(tetrahydrothiopyran)	11.644	96	756
243-42-5	Benzo[b]naphtho[2,3-d]furan	11.937	95	659
2381-21-7	Pyrene, 1-methyl-	12.079	95	860
33543-31-6	Fluoranthene, 2-methyl-	12.183	96	1960
243-17-4	11H-Benzo[b]fluorene	12.259	95	718
64401-21-4	Pyrene, 1,3-dimethyl-	12.722	89	668
479-79-8	11H-Benzo[a]fluoren-11-one	12.779	96	540
239-35-0	Benzo[b]naphtho[2,1-d]thiophene	12.940	96	1024
239-01-0	11H-Benzo[a]carbazole	13.224	93	515
25732-74-5	Cyclopenta(cd)pyrene, 3,4-dihydro-	13.432	92	1582
2498-77-3	Benz[a]anthracene, 1-methyl-	13.856	96	1040
3351-28-8	Chrysene, 1-methyl-	13.896	96	685
198-55-0	Perylene	14.954	96	3387
646-31-1	Tetracosane	15.174	91	1911

Job number:19/9004Method:SVOCSample number:515Matrix:Solid

Sample identity: GTCS 1-23 FIELD DUPLICATE

Sample depth: 0.00-0.05
Sample Type: Clay
Units: ug/kg

CAS No.	Tentative Compound Identification	Retention Time (minutes)	% Match	Concentration
2245-38-7	Naphthalene, 1,6,7-trimethyl-	9.392	86	136
613-12-7	Anthracene, 2-methyl-	10.880	95	544
2531-84-2	Phenanthrene, 2-methyl-	10.902	97	499
610-48-0	Anthracene, 1-methyl-	10.957	96	296
84-65-1	9,10-Anthracenedione	11.133	87	419
34373-96-1	9,10-Bis(bromomethyl)anthracene	11.177	83	451
781-43-1	9,10-Dimethylanthracene	11.364	94	232
2789-88-0	di-p-Tolylacetylene	11.416	95	477
5737-13-3	Cyclopenta(def)phenanthrenone	11.492	83	1002
484-11-7	Neocuproine	11.754	81	739
200-23-7	Benzo[kl]xanthene	11.931	93	598
1210-12-4	9-Anthracenecarbonitrile	11.973	91	191
243-42-5	Benzo[b]naphtho[2,3-d]furan	11.998	96	757
33543-31-6	Fluoranthene, 2-methyl-	12.141	97	858
2381-21-7	Pyrene, 1-methyl-	12.243	94	2218
243-17-4	11H-Benzo[b]fluorene	12.327	96	872
479-79-8	11H-Benzo[a]fluoren-11-one	12.841	95	1038
64401-21-4	Pyrene, 1,3-dimethyl-	12.917	83	680
227-86-1	Anthra(1,2-b)thiophene	13.010	98	923
239-35-0	Benzo[b]naphtho[2,1-d]thiophene	13.223	95	1041
34777-33-8	Benzo(c)carbazole	13.296	92	765
6418-47-9	Heneicosane, 3-methyl-	13.558	83	643
1705-84-6	Triphenylene, 2-methyl-	13.936	95	2050
3351-28-8	Chrysene, 1-methyl-	13.968	96	1163
50861-05-7	9H-Cyclopenta[a]pyrene	14.093	93	1942
192-97-2	Benzo[e]pyrene	15.032	96	5869
112-95-8	Eicosane	15.238	95	3426
215-58-7	Benzo[b]triphenylene	16.526	93	1301

Job number:19/9004Method:SVOCSample number:523Matrix:Solid

Sample identity: GTCS 1-23 LAB FIELD DUPLIC

Sample depth: 0.00-0.05 Sample Type: Clayey Loam

Units: ug/kg

CAS No.	Tentative Compound Identification	Retention Time (minutes)	% Match	Concentration
2531-84-2	Phenanthrene, 2-methyl-	10.812	95	386
832-69-9	Phenanthrene, 1-methyl-	10.831	97	692
610-48-0	Anthracene, 1-methyl-	10.878	97	473
203-64-5	4H-Cyclopenta[def]phenanthrene	10.906	93	1286
84-65-1	9,10-Anthracenedione	11.058	89	298
137235-51-9	1,2,4,8-Tetramethylbicyclo[6.3.0]undeca-2,4-diene	11.105	86	574
5737-13-3	Cyclopenta(def)phenanthrenone	11.407	83	696
2789-88-0	di-p-Tolylacetylene	11.464	89	258
77581-11-4	2,9-Dimethyl-2,3,4,5,6,7-hexahydro-1H-2-benzazonine	11.568	90	425
116196-83-9	4,4'-Bis(tetrahydrothiopyran)	11.615	95	1225
2435-53-2	Tetrachloro-o-benzoquinone	11.852	90	595
243-42-5	Benzo[b]naphtho[2,3-d]furan	11.918	90	933
33543-31-6	Fluoranthene, 2-methyl-	12.155	97	2325
243-17-4	11H-Benzo[b]fluorene	12.230	93	821
2381-21-7	Pyrene, 1-methyl-	12.277	96	678
64401-21-4	Pyrene, 1,3-dimethyl-	12.817	91	438
227-86-1	Anthra(1,2-b)thiophene	12.911	96	1213
479-79-8	11H-Benzo[a]fluoren-11-one	13.006	86	900
82979-72-4	8,9-Dihydro-7H-cyclopenta[a]pyrene	13.826	95	1728
198-55-0	Perylene	14.764	90	3330
192-97-2	Benzo[e]pyrene	14.933	98	15183
_				

Job number:19/9004Method:VOCSample number:526Matrix:Solid

Sample identity: GTCS 1-24A
Sample depth: 0.00-0.05
Sample Type: Loam
Units: ug/kg

CAS No.	Tentative Compound Identification	Retention Time (minutes)	% Match	Concentration
1120-21-4	Undecane	7.242	96	386

Job number:19/9004Method:SVOCSample number:531Matrix:Solid

Sample identity: GTCS 1-24A
Sample depth: 0.00-0.05
Sample Type: Loam
Units: ug/kg

CAS No.	Tentative Compound Identification	Retention Time (minutes)	% Match	Concentration
832-69-9	Phenanthrene, 1-methyl-	10.831	92	200
2531-84-2	Phenanthrene, 2-methyl-	10.850	97	308
203-64-5	4H-Cyclopenta[def]phenanthrene	10.926	81	558
84-65-1	9,10-Anthracenedione	11.077	86	217
5737-13-3	Cyclopenta(def)phenanthrenone	11.436	80	303
116196-83-9	4,4'-Bis(tetrahydrothiopyran)	11.644	96	336
243-42-5	Benzo[b]naphtho[2,3-d]furan	11.937	93	412
33543-31-6	Fluoranthene, 2-methyl-	12.183	93	764
243-17-4	11H-Benzo[b]fluorene	12.259	93	316
2381-21-7	Pyrene, 1-methyl-	12.306	96	396
479-79-8	11H-Benzo[a]fluoren-11-one	12.770	95	296
227-86-1	Anthra(1,2-b)thiophene	12.940	96	620
34777-33-8	Benzo(c)carbazole	13.224	86	387
25732-74-5	Cyclopenta(cd)pyrene, 3,4-dihydro-	13.432	90	998
2541-69-7	Benz[a]anthracene, 7-methyl-	13.856	95	804
3351-32-4	2-Methylchrysene	13.896	94	503
191-30-0	1,2,9,10-Dibenzopyrene	14.445	92	1190
203-11-2	Indeno[1,2,3-fg]naphthacene	14.475	92	718
126848-01-9	3,5,6-Trimethyl-p-quinone, 2-(2,5-dioxotetrahydrofuran-3-yl)thio-	14.784	96	1963
198-55-0	Perylene	14.954	95	2798

Client Name: AECOM
Reference: 60595731
Location: Grenfell
Contact: David Dyson

EMT	Botch	Sample ID	Dooth	EMT	Date Of	Analysis	Doguit
Job No.	Batch	Sample ID	Depth	Sample No.	Analysis	Analysis	Result
19/9004	2	GTCS 1-18 LAB DUPLICATE	0.00-0.05	469	07/06/2019	Asbestos Fibres (2)	Fibre Bundles
					07/06/2019	Asbestos ACM	NAD
					07/06/2019	Asbestos ACM (2)	NAD
					07/06/2019	Asbestos Type	Chrysotile
					07/06/2019	Asbestos Type (2)	Amosite
					07/06/2019	Asbestos Level Screen	less than 0.1%
					25/06/2019	Total ACM Gravimetric Quantification (% Asb)	<0.001 (mass %)
					25/06/2019	Total Detailed Gravimetric Quantification (% Asb)	<0.001 (mass %)
					25/06/2019	Total Gravimetric Quantification (ACM + Detailed) (% Asb)	<0.001 (mass %)
					26/06/2019	Potentially Respirable Fibres per gram	0
					26/06/2019	Asbestos PCOM Quantification (Fibres)	<0.001 (mass %)
					26/06/2019	Asbestos Gravimetric & PCOM Total	<0.001 (mass %)
19/9004	2	GTCS 1-18 FIELD DUPLICATE	0.00-0.05	477	07/06/2019	General Description (Bulk Analysis)	soil.stones
					07/06/2019	Synthetic/MMMF	Absent
					07/06/2019	Asbestos Fibres	Fibre Bundles
					07/06/2019	Asbestos Fibres (2)	Fibre Bundles
					07/06/2019	Asbestos ACM	NAD
					07/06/2019	Asbestos ACM (2)	NAD
					07/06/2019	Asbestos Type	Chrysotile
					07/06/2019	Asbestos Type (2)	Crocidolite
					07/06/2019	Asbestos Level Screen	less than 0.1%
					25/06/2019	Total ACM Gravimetric Quantification (% Asb)	<0.001 (mass %)
					25/06/2019	Total Detailed Gravimetric Quantification (% Asb)	<0.001 (mass %)
					25/06/2019	Total Gravimetric Quantification (ACM + Detailed) (% Asb)	<0.001 (mass %)
					26/06/2019	Potentially Respirable Fibres per gram	86822
					26/06/2019	Asbestos PCOM Quantification (Fibres)	<0.001 (mass %)
					26/06/2019	Asbestos Gravimetric & PCOM Total	<0.001 (mass %)
19/9004	2	GTCS 1-18 LAB FIELD DUPLICATE	0.00-0.05	485	07/06/2019	General Description (Bulk Analysis)	soil-stones
					07/06/2019	Synthetic/MMMF	Present
					07/06/2019	Asbestos Fibres	Fibre Bundles
					07/06/2019	Asbestos ACM	NAD
					07/06/2019	Asbestos Type	Chrysotile
					07/06/2019	Asbestos Level Screen	less than 0.1%
					25/06/2019	Total ACM Gravimetric Quantification (% Asb)	<0.001 (mass %)
						Total Detailed Gravimetric Quantification (% Asb)	` '
					25/06/2019	Total Gravimetric Quantification (ACM + Detailed) (% Asb)	
					26/06/2019	Potentially Respirable Fibres per gram	
					26/06/2019	Asbestos PCOM Quantification (Fibres)	<0.001 (mass %)
					26/06/2019	Asbestos Gravimetric & PCOM Total	<0.001 (mass %)
19/9004	2	GTCS 1-23 PRIMARY SAMPLE	0.00-0.05	493	07/06/2019	General Description (Bulk Analysis)	soil-stones
					07/06/2019	Synthetic/MMMF	Absent
					07/06/2019	Asbestos Fibres	NAD
					07/06/2019	Asbestos ACM	NAD
					07/06/2019	Asbestos Type	NAD
					07/06/2019	Asbestos Level Screen	NAD
19/9004	2	GTCS 1-23 LAB DUPLICATE	0.00-0.05	509	07/06/2019	General Description (Bulk Analysis)	soil-stones
					07/06/2019	Synthetic/MMMF	Present
					07/06/2019	Asbestos Fibres	NAD
							NAD
					07/06/2019	Asbestos ACM	INAU

Client Name: AECOM
Reference: 60595731
Location: Grenfell
Contact: David Dyson

						1	
EMT Job	Batch	Sample ID	Depth	EMT Sample	Date Of	Analysis	Result
No.				No.	Analysis	,	
19/9004	2	GTCS 1-23 LAB DUPLICATE	0.00-0.05	509	07/06/2019	Asbestos Type	NAD
					07/06/2019	Asbestos Level Screen	NAD
19/9004	2	GTCS 1-23 FIELD DUPLICATE	0.00-0.05	517	07/06/2019	General Description (Bulk Analysis)	soil-stones
					07/06/2019	Synthetic/MMMF	Absent
					07/06/2019	Asbestos Fibres	Fibre Bundles
					07/06/2019	Asbestos ACM	NAD
					07/06/2019	Asbestos Type	Chrysotile
					07/06/2019	Asbestos Level Screen	less than 0.1%
					25/06/2019	Total ACM Gravimetric Quantification (% Asb)	<0.001 (mass %)
					25/06/2019	Total Detailed Gravimetric Quantification (% Asb)	<0.001 (mass %)
					25/06/2019	Total Gravimetric Quantification (ACM + Detailed) (% Asb)	<0.001 (mass %)
					26/06/2019	Potentially Respirable Fibres per gram	0
					26/06/2019	Asbestos PCOM Quantification (Fibres)	<0.001 (mass %)
					26/06/2019	Asbestos Gravimetric & PCOM Total	<0.001 (mass %)
19/9004	2	GTCS 1-23 LAB FIELD DUPLICATE	0.00-0.05	525	07/06/2019	General Description (Bulk Analysis)	soil-stones
					07/06/2019	Synthetic/MMMF	Absent
					07/06/2019	Asbestos Fibres	Fibre Bundles
					07/06/2019	Asbestos ACM	NAD
					07/06/2019	Asbestos Type	Chrysotile
					07/06/2019	Asbestos Level Screen	less than 0.1%
					25/06/2019	Total ACM Gravimetric Quantification (% Asb)	<0.001 (mass %)
					25/06/2019	Total Detailed Gravimetric Quantification (% Asb)	<0.001 (mass %)
					25/06/2019	Total Gravimetric Quantification (ACM + Detailed) (% Asb)	<0.001 (mass %)
					26/06/2019	Potentially Respirable Fibres per gram	0
					26/06/2019	Asbestos PCOM Quantification (Fibres)	<0.001 (mass %)
					26/06/2019	Asbestos Gravimetric & PCOM Total	<0.001 (mass %)
19/9004	2	GTCS 1-24A	0.00-0.05	533	07/06/2019	General Description (Bulk Analysis)	soil-stones
					07/06/2019	Synthetic/MMMF	Absent
					07/06/2019	Asbestos Fibres	NAD
					07/06/2019	Asbestos ACM	NAD
					07/06/2019	Asbestos Type	NAD
					07/06/2019	Asbestos Level Screen	NAD
19/9004	2	GTCS 1-19A	0.00-0.05	549	07/06/2019	General Description (Bulk Analysis)	soil-stones
					07/06/2019	Synthetic/MMMF	Absent
					07/06/2019	Asbestos Fibres	NAD
					07/06/2019	Asbestos ACM	NAD
					07/06/2019	Asbestos Type	NAD
					07/06/2019	Asbestos Level Screen	NAD
		0.70.					
19/9004	2	GTCS 1-20A	0.00-0.05	565	07/06/2019	General Description (Bulk Analysis)	soil.stones
					07/06/2019	Synthetic/MMMF	Absent
					07/06/2019	Asbestos Fibres	NAD
					07/06/2019	Asbestos ACM	NAD
					07/06/2019	Asbestos Type	NAD
					07/06/2019	Asbestos Level Screen	NAD
19/9004	2	GTCS 1-21A	0.00-0.05	581	07/06/2019	General Description (Bulk Analysis)	soil.stones
					07/06/2019	Synthetic/MMMF	Absent
					07/06/2019	Asbestos Fibres	NAD

Appendix G Generic Quantitative Risk Assessment Data Tables

							Location Code	GTCS2-S274A	GTCS2-S275A	GTCS2-S279A	GTCS2-S280A	TH101	TH101	TH101	TH102	TH102	TH102	TH102	TH103	TH103	TH103
							Depth Range	0-0.02	0-0.02	0-0.02	0-0.05	0-0.05	0.1-0.2	0.3-0.4	0-0.05	0.1-0.2	0.3-0.4	0.6-0.7	0-0.05	0.1-0.2	0.3-0.4
							Date	05/11/2020	05/11/2020	05/11/2020	05/11/2020	26/11/2021	26/11/2021	26/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021	26/11/2021	26/11/2021	26/11/2021
							Monitoring Zone	28. Treadgold House	28. Treadgold House	28. Treadgold House	28. Treadgold House	28. Treadgold House	28. Treadgold House	28. Treadgold House	28. Treadgold House	28. Treadgold House	28. Treadgold House	28. Treadgold House	28. Treadgold House	28. Treadgold House	28. Treadgold House
							Soil Cover	turf	turf	turf	bare soil - disturbed	Partial turf	Partial turf	Partial turf	Bare soil	Bare soil	Bare soil	Bare soil	Partial turf	Partial turf	Partial turf
					GAC_HH_RES-	EN_AECOM_RBKCGrenf	EN_AECOM_RBKCGr														
				GAC_HH_POS_RES_SLO	PL_SLOAM_>3.48%TOC	ell_GSC_TH_POSresi_le	enfell_GSC_TH_Resi-														
				AM_>3.48%TOC		ad	HP_lead														
	To.	1	_																		
Chem_Group	ChemName	output unit	0.03	*				0.12		<0.04	0.17										
PAH	Naphthalene			4900 ⁸²	13 ⁸² 6000 ⁸²			0.12	0.1	0.13	0.17	-	-	-			-			-	
	Acenaphthylene Acenaphthene	mg/kg	0.03	15000°	6000°2			0.12	<0.05	<0.05	<0.05	- :			- :		- :				
	Fluorene	mg/kg mg/kg	0.03	9900*2	4500 ^{#2}			0.12	<0.04	<0.04	<0.04	- :		- :	- :				- :		
	Phenanthrene		0.04	3100 ¹⁰	4500 1500*2			2.12	0.97	1.09	0.96	-	-		-		-	-	- :	- :	
	Anthracene		0.04	7400010	37000*2			0.51	0.26	0.3	0.28										
	Fluoranthene		0.03	3100 12	1600*2			4.95	3.04	3.82	2.74										
	Pyrene		0.03	7400*2	3800*2			4.19	2.7	3.18	2.35										
	Benz(a)anthracene		0.06	2982	15"2			2.31	1.62	1.9	1.65	-					-				-
	Chrysene	mg/kg	0.02	57 ⁸²	3212			2.68	1.87	2.23	1.73										
	Benzo(a) pyrene		0.04	5.712	3.212			2.83	1.98	2.38	1.87					-					
	Indeno(1,2,3-c,d)pyrene		0.04	87 ⁸²	45'2			2.17	1.59	1.95	1.59		-			-			-		
	Dibenz(a,h)anthracene	mg/kg	0.04	0.58*2	0.32*2			0.42	0.31	0.4	0.29										
	Benzo(g,h,i)perylene		0.04	640 ⁸²	36012			2.26	1.52	2.1	1.64										
	Benzo(b)fluoranthene		0.05	7 7 102	A ¹²			3.81	2.65	3.33	2.58										
	Benzo(k)fluoranthene		0.02	190*2	11062			1.48	1.03	1.29	1.01										
	Benzo(b)&(k)fluoranthene		0.07					5.29	3.68	4.62	3.59										
	PAH 16 Total		0.6					30.3	19.8	24.1	19										
	Benzo(a)ovrene (surrogate marker for PAH mixture)	mg/kg				10	5.6	2.83	1.98	2.38	1.87										
Metals	Arsenic		0.5	7982	40*2							28			25.8				68.9		
	Barium	mg/kg	1		1300 ⁸³										495						
	Beryllium		0.5	2 2 12	1.7 ⁶²										2.6						
	Boron		0.1	21000 ⁸²	11000*2										4.9						
	Cadmium	mg/kg	0.1	120 12	85 ⁸²							0.5			0.7				3.2		
	Chromium (III+VI)	mg/kg	0.5	910*2	910*2							89			75.9				88.2		
	Copper	mg/kg	1	12000	7100*2							128			158				872		
	Lead	mg/kg	5		310 ⁶⁵	630	310	1168	992	1385	2216	650	441	559	668	676	309	153	2748	609	453
	Mercury		0.1	120 82	23 56 ⁸²							0.7			1.3				6.9		
	Nickel	mg/kg	0.7	230"2	180*2							44			42.6				100.5		
	Selenium	mg/kg	1	1100*2	430*2							<1			2				2		
	Vanadium		1	2000*2	1200*2										81						
	Zinc	mg/kg	5	81000 ⁸²	40000*2							360			446				2183		
Bioaccessible Metals	Bioaccessible Fraction (BAF) - Lead	percent	0					62		57											
	Bioaccessible Lead – stomach	mg/kg	5					808		925											
	Bioaccessible Lead – stomach and intestine	mg/kg	5					276		330											
	Lead - total (BARGE method)	mg/kg	5					1296		1626											
Asbestos	Asbestos Type	None						No Asbestos Detected	No Asbestos Detectes	No Asbestos Detected	Chrysotile	No Asbestos Detected			No Asbestos Detected					No Asbestos Detected	
	Asbestos Level	None													-		-	-			
	General Description (Bulk Analysis)	None	_					Soil/Stone	Soil/Stone	Soil/Stone	soil/stones	soil/stone			soil		_	_		brick/soil	
	Asbestos Containing Material	None				1	1	No Asbestos Detected	No Asbestos Detecter	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected			No Asbestos Detected					No Asbestos Detected	
	Total Datalled Conference Occasillation (W. Anh)	mass %									<0.001										
	Total Detailed Gravimetric Quantification (% Asb) Asbestos Gravimetric & PCDM Total	mass %	0					- :	- :	- :	<0.001	- :	- :	- :	- :		- :	- :	- :	- :	
	Asbestos PCOM Quantification (Fibres)	mass %	0								<0.001				- :						
	Total ACM Gravimetric Quantification (% Asb)	mass %	0						· ·		<0.001	- :	- :	- :			-	- :	- :	-	
	Asbestos Gravimetric Quantification (% ASD)	mass %	ŏ						- :		10.001				- :	- :				- :	
	Asbestos fibres		~					No Ashestos Detector	No Ashestos Detector	No Asbestos Detected	Fibre bundles	No Asbestos Detected	- :	- :	No Asbestos Detected				- :	No Asbestos Detected	
	ADDISON TO US	l' l						THE PROPERTY OF THE PROPERTY OF	NO PARCENCES DELECTES	NO ASSESSED DETECTED	racie dundres	THE PROPERTY OF THE PARTY OF TH			NO PARAMENTAL DETECTION					no racestos Detected	

					-	Location Code	TH104	TH104	TH104	TH104	TH105	TH105	TH106	TH106	TH107	TH107	TH108	TH108	TH108	TH109
					-	Depth Range	0-0.05	0.3-0.4	0.6-0.7	1.1-1.2	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0.3-0.4	0-0.05
					-	Date	23/11/2021	23/11/2021	23/11/2021	23/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021
					-	Monitoring Zone							e 28. Treadgold House							
						Soil Cover	Turf	Turf	Turf	Turf	Turf	Turf	Turf	Turf	Turf	Turf	Turf	Turf	Turf	Bare soil
				GAC_HH_RES	EN_AECOM_RBKCGrenf		1													
			GAC_HH_POS_RES_SL	O PL_SLOAM_>3.48%TOO	ell_GSC_TH_POSresi_le	enfell_GSC_TH_Resi-														
			AM_>3.48%TOC		ad	HP_lead	1													
Chem Group	ChemName	output unit EC	N .																	
PAH	Naphthalene	mg/kg 0.0		1362			0.11	0.14	<0.04	<0.04										
	Acenaphthylene	mg/kg 0.0		6000#2			0.4	0.26	<0.03	<0.03										
	Acenaphthene	mg/kg 0.0	05 15000 ⁸²	6000 ⁸²			0.16	0.1	<0.05	<0.05									-	
	Fluorene	mg/kg 0.0		4500 ^{#2}			0.14	0.11	<0.04	<0.04										
	Phenanthrene	mg/kg 0.0		1500*2			2.47	2.46	0.26	<0.03										
	Anthracene	mg/kg 0.0		37000*2			0.83	0.41	0.1	<0.04										
	Fluoranthene	mg/kg 0.0		1600*2			6.75	3.57	0.51	0.06						-			-	
	Pyrene	mg/kg 0.0		3800*2			5.8	2.85	0.43	0.06										
	Benz(a)anthracene	mg/kg 0.0		15*2			3.26	1.16	0.26	<0.06										
	Chrysene	mg/kg 0.0		3212			3.37	1.62	0.26	0.04										
	Benzo(a) pyrene	mg/kg 0.0		3.742			3.17	1.36	0.2	<0.04										
	Indeno(1,2,3-c,d)pyrene	mg/kg 0.0	04 82*2	45*2			2.77	1.2	0.15	<0.04										
	Dibenz(a,h)anthracene	mg/kg 0.0		0.32*2			0.49	0.24	<0.04	<0.04										
	Benzo(g,h,i)perylene	mg/kg 0.0		360*2			2.51	1.06	0.14	<0.04										
	Benzo(b)fluoranthene	mg/kg 0.0		412			4.48	1.88	0.27	<0.05										
	Benzo(k)fluoranthene	mg/kg 0.0		110*2			1.74	0.73	0.1	<0.02										
	Benzo(b)&(k)fluoranthene	mg/kg 0.0					6.22	2.61	0.37	<0.07										
	PAH 16 Total	mg/kg 0.6					38.5	19.2	2.7	<0.6										
	Benzo(a)ovrene (surrogate marker for PAH mixture)	mg/kg			10	5.6			-											
Metals	Arsenic	mg/kg 0.5	5 7982	40*2			33.2	30.7	14.2	16.9								29		47.2
	Barium	mg/kg 1		1300*2			760	411	125	119								974		
	Beryllium	mg/kg 0.5	5 2 2 2 2 2	1.742			2.9	2.3	2.3	2.5								2.3		
	Boron	mg/kg 0.:		11000*2			4.5	2.5	2.7	4.7								2.3		
	Cadmium	mg/kg 0.:		85 ⁶²			1.1	0.4	0.1	<0.1								0.8		1
	Chromium (III+VI)	mg/kg 0.5		910*2			104.9	61.1	63.4	75.6								93.5		64.5
	Copper	mg/kg 1	12000*2	7100*2			230	167	45	38								192		402
	Lead	mg/kg 5		310 15	630	310	1071	630	150	507	1326	2412	1381	1488	1307	1122	2871	18,960	20.630	1576
	Mercury	mg/kg 0.:	1 12082	23156 ⁸²			1.8	1.2	3.3	<0.1						-		1.5		2.3
	Nickel	mg/kg 0.3		180*2			44.1	31.5	40.4	51.6								38		55.4
	Selenium	mg/kg 1	1100*2	430*2			2	1	1	<1								<1		<1
	Vanadium	mg/kg 1	2000*2	1200*2			82	82	106	131								70		
	Zinc	mg/kg 5	81000 ⁸²	40000*2			771	413	187	105								783		804
Bioaccessible Metals	Bioaccessible Fraction (BAF) - Lead	percent 0																		80
	Bioaccessible Lead – stomach	mg/kg 5																		
	Bioaccessible Lead – stomach and intestine	mg/kg 5																		
	Lead - total (BARGE method)	mg/kg 5																		
Asbestos	Asbestos Type	None					No Asbestos Detected			No Asbestos Detected	No Asbestos Detected		No Asbestos Detected		No Asbestos Detected		No Asbestos Detected			No Asbestos Detecte
1	Asbestos Level	None																		
	General Description (Bulk Analysis)	None					Soil/Stones			Soil/Stones	Soil/Stone		Soil/Stones		soil/stones		Soil/Stone			soil
	Asbestos Containing Material	None					No Asbestos Detected				No Asbestos Detected		No Asbestos Detected		No Asbestos Detected		No Asbestos Detected			No Asbestos Detecto
	Total Detailed Gravimetric Quantification (% Asb)	mass % 0																		
	Asbestos Gravimetric & PCOM Total	mass % 0																		
	Asbestos PCOM Quantification (Fibres)	mass % 0																		
	Total ACM Gravimetric Quantification (% Asb)	mass % 0																		
	Asbestos Gravimetric Quantification (ACMs)	mass % 0																		
	Asbestos fibres						No Asbestos Detected			No Asbestos Detectes	No Asbestos Detected		No Asbestos Detected		No Asbestos Detected		No Asbestos Detected			No Asbestos Detecte
1	1				1				1											

Part	TH112 0.1-0.2 26/11/2021 use 28 Treadgold House	TH113 0-0.05	TH113	TH114	
Part	26/11/2021	0-0.05			TH114
Marchante Marc			0.1-0.2	0-0.05	0.1-0.2
Content of the cont	ise 28 Treadgold House	26/11/2021	26/11/2021	25/11/2021	25/11/2021
Communication Communicatio					
Comparison Com	Turf	Turf	Turf	Partial turf	Partial turf
Control Cont					
Deem Group					
Communication Communicatio					
Republisher					
Respiration					
Accordatifysice					
Acceptableme					
Fluorence					
Presentative mg/kg 0.01 xxxxx xxxxx xxxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxx					
Architecture					
Florentehnee					
Pyrese					
Rend profession Rend Ren					
Chrysme					
Remobility process					
Technology 2.5 - Collegence mg/kg 0.04 mg s s s s s s s s s s s s s s s s s s				-	
Debrots of hybridinacence	- :	- :	-	-	- :
	-			-	-
Remotive	-	-	-	-	- :
				-	
Bennib A flucranthene					
PANE 15 logical marker m					
Remail between European marker for PAH minuted may har 10 5.6					
Metals					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-		
Beryllum mg/kg 0.5 2.7 ¹² 1.7 ⁴¹				59.5	
				1005	
				5.1	
Boron mg/kg 0.1 21000 ⁶² 11000 ⁶² · · · · · · · · · · · · · · · · · · ·				3.8	-
Cadmium mg/kg 0.1 12n ¹² 8x ⁻¹² 0.5				1.5	
Chromium (III+VI) mg/kg 0.5 910 ¹² 910 ¹² - 87.4				88.3	
Copper mg/kg 1 12000 ⁴² 7100 ⁴² . 139				368	
Lead mg/kg 5 210 ⁶⁶ 630 310 8259 2870 670 1418 991 483 1027 1273 1009	935	1270	3930	1556	1606
Mercury mg/kg 0.1 130 ⁶² 72166 ⁶²				2.6	
Nickel mg/kg 0.7 230 ¹² 180 ⁴⁴ 29.5				68.3	
Selenium mg/kg 1 1100°2 430°2 . 1				2	
Vanadum mg/kg 1 2000 ⁰⁰ 1200 ⁰⁰				95	
Zinc ms/hs 5 81000° 40000° 547				1086	
Bloaccessible Metals Bloaccessible Fraction (BAF) - Lead percent 0 74					
Bioccessible lead -stomach mg/kg 5					-
Bioccessible lead -stomach and intestine mg/kg 5					
	ted .		ed .		-
Acbestos Adbestos Type None No Asbestos Detected No	ted -	No Asbestos Detected	a .	No Asbestos Detected	
Arbeitos Level None					
				Call/Cana	-
		soil/stones		Soil/Stone	
Addestor Containing Material None No Addestor Detected No Addestor Detec	ted -	No Asbestos Detected	ed -	No Asbestos Detected	-
Total Detailed Gravimetric Quantification (% Asb) mass % 0			-		
Asbestos Gravimetric & PCDM Total mass % 0					
Asbestos PCOM Quantification (Fibres) mass % 0					
Total ACM Gravimetric Quantification (% Asb) mass % 0					
Abbettos Gravimetric Quantification (ACMs) mass % 0					
Adbestos fibres No Adbestos Detected			ed .	No Asbestos Detected	
	ted -	No Asbestos Detected			

						Location Code	TH114	TH115	TH115	TH115	TH116	TH116	TH116	TH116	TH117	TH117	TH117	TH118	TH118	TH118
						Depth Range	0.3-0.4	0-0.05	0.1-0.2	0.3-0.4	0-0.05	0.1-0.2	0.3-0.4	0.6-0.7	0-0.05	0.1-0.2	0.3-0.4	0-0.05	0.1-0.2	0.3-0.4
						Date	25/11/2021	25/11/2021	25/11/2021	25/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021
						Monitoring Zone	28. Treadgold House	28. Treadgold House 2	8. Treadgold House	28. Treadgold House	28. Treadgold House	28. Treadgold House	28. Treadgold House	28. Treadgold House	28. Treadgold House	28. Treadgold House	28. Treadgold House	28. Treadgold House	28. Treadgold House	2 28. Treadgold House
						Soil Cover	Partial turf	Turf	Turf	Turf	Turf	Turf	Turf	Turf	Partial turf	Partial turf	Partial turf	Bare soil	Bare soil	Bare soil
				GAC_HH_RES-	EN_AECOM_RBKCGrenf	EN_AECOM_RBKCGr														
			GAC HH POS RES !	LO PL_SLOAM_>3.48%TO	c ell GSC TH POSresi le	enfell GSC TH Resi-														
			AM >3.48%TOC		ad	HP lead														
						_														
Chem_Group	ChemName	output unit E																		
PAH	Naphthalene	mg/kg 0		13 ⁶²			-	-					-							-
	Acenaphthylene		.03 1500012	6000*2			-						-							
	Acenaphthene		.05 15000 ⁸²	6000*2			-	-												
	Fluorene		.04 9900*2	4500 ^{#2}				-												
	Phenanthrene		.03 31.00*2	1500*2				-												
	Anthracene		.04 74000 12	37000*2																
	Fluoranthene		.03 31nn ^{#2}	1600*2																
	Pyrene		.03 74nn ^{#2}	3800*2			-													
	Benz(a)anthracene		.06 2982	15 ⁶²																
	Chrysene		.02 5782	3212			-													
	Benzo(a) pyrene	mg/kg 0	.04 5 7 82	3.752																
	Indeno(1,2,3-c,d)pyrene	mg/kg 0	.04 9.7 82	Δ6 ¹²																
	Dibenz(a,h)anthracene		.04 0.58*2	0.32*2																
	Benzo(g,h,i)perylene	mg/kg 0	.04 640*2	36012																
	Benzo(b)fluoranthene	mg/kg 0	.05 7 2 12	4*2																
	Benzo(k)fluoranthene	mg/kg 0	.02 19n ^{#2}	110*2																
	Benzo(b)&(k)fluoranthene		.07																	
	PAH 16 Total	mg/kg 0	.6																	
	Benzo(a)pyrene (surrogate marker for PAH mixture)	mg/kg			10	5.6														
Metals	Arsenic	mg/kg 0	.5 79 ⁸²	40°2				69										16.3		
	Barium	mg/kg 1		1300*2																
	Beryllium	mg/kg 0	5 2 2 102	1.742																
	Boron	mg/kg 0		11000*2																
	Cadmium	mg/kg 0		85 ⁸²				1.5										2.3		
	Chromium (III+VI)	mg/kg 0		910*2				84.7										62.2		
	Copper	mg/kg 1	12000 12	7100*2				533										72		
	Lead	mg/kg 5		310 15	630	310	1612	1951	4102	1240	2103	1473	1407	1233	2148	3693	1253	342	192	550
	Mercury	mg/kg 0		23156*2			-	2.7					-		-			0.3	-	
	Nickel	mg/kg 0		180*2				81.9										21.4		
	Selenium	mg/kg 1	1100*2	430*2				<1										1		
	Vanadium	mg/kg 1	2000 82	1200*2																
	7inc	mg/kg 5	81000*2	40000*2				974		- :								258		
Bioaccessible Metals	Bioaccessible Fraction (BAF) - Lead	percent 0																		
	Bioaccessible Lead – stomach	mg/kg 5																		
	Bioaccessible Lead – stomach and intestine	mg/kg 5																		
	Lead - total (BARGE method)	mg/kg 5																		
Asbestos	Asbestos Type	None					-	No Asbestos Detected			No Asbestos Detected				No Asbestos Detected			No Asbestos Detected		
Addition	Added to 1 type	I TOUR						NO ASSESSOS DESECTED			NO ADESIOS DECECCO				NO PODESTOS DETECTED			NO ASSESSOS DESECTED		
	Asbestos Level	None																		
	General Description (Bulk Analysis)	None						Soil/Stones			Soil/Stone				Soil/Stones			soil		
	Asbestos Containing Material	None						No Asbestos Detected			No Asbestos Detected				No Asbestos Detected			No Asbestos Detected		
		1			1			Detected							Detected			Detected		
	Total Detailed Gravimetric Quantification (% Asb)	mass % 0																		
	Asbestos Gravimetric & PCOM Total	mass % 0																		
	Asbestos PCOM Quantification (Fibres)	mass % 0													-		-		-	
	Total ACM Gravimetric Quantification (% Asb)	mass % 0																		
	Asbestos Gravimetric Quantification (ACMs)	mass % 0										- :			- :	- :	-		- :	
	Asbestos fibres						- :	No Asbestos Detected	- :		No Asbestos Detected	- :	-	- :	No Asbestos Detected		-	No Asbestos Detected	- :	-
1		T			1	1		isbesios Detected			Assessor selected				sousios peretteu		1	Assessos sedected		1 '

							Location Code	TH118	TH119	TH119	TH119	TH120	TH120	TH120	TH121	TH121	TH121	TH121	TH122	TH122	TH122
							Depth Range	0.6-0.7	0-0.05	0.1-0.2	0.3-0.4	0-0.05	0.1-0.2	0.3-0.4	0-0.05	0.1-0.2	0.3-0.4	0.6-0.7	0-0.05	0.1-0.2	0.3-0.4
							Date	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021
							Monitoring Zone					28. Treadgold House	28. Treadgold House						28. Treadgold House		
							Soil Cover	Bare soil	Turf	Turf	Turf	Turf	Turf	Turf	Partial turf	Partial turf	Partial turf	Partial turf	Partial turf	Partial turf	Partial turf
			- 1		GAC HH RES-	EN AECOM RBKCGrenf															
				CAC IIII DOC DEC CLO		ell GSC TH POSresi le															
				AM >3.48%TOC	TE SEGNAL PS NO STOC	ad	HP lead														
				AM_23.40.VIOC																	
Chem_Group	ChemName	output unit	EOL																		
PAH	Naphthalene	mg/kg	0.03	4900 82	1362																
	Acenaphthylene		0.03	1500012	6000 ⁸²																
	Acenaphthene	mg/kg	0.05	1500012	6000 ⁸²																
	Fluorene	mg/kg	0.04	9900*2	4500 ^{#2}																
	Phenanthrene	mg/kg	0.03	3100*2	1500*2														-		
	Anthracene	mg/kg	0.04	74000*2	37000*2				-	_				-	_			-			
			0.04	3100	1600*2				-	-	-			· ·	-		-	-			· ·
	Fluoranthene	mg/kg			3800*2						- :		- :	- :	- :		- :	- :			
1	Pyrene	mg/kg	0.03	7400 82		_			_	_				-	-				-		
	Benz(a)anthracene	mg/kg	0.06	29 ⁸²	1562															-	
	Chrysene	mg/kg	0.02	5782	32 12																
	Benzo(a) pyrene		0.04	5.7 ⁸²	3.752																-
	Indeno(1,2,3-c,d)pyrene	mg/kg	0.04	R7 ⁸²	46,62																
	Dibenz(a,h)anthracene	mg/kg	0.04	0.58*2	0.32*2																
	Benzo(g,h,i)perylene	mg/kg	0.04	640 ⁸²	36012																
	Benzo(b)fluoranthene	mg/kg	0.05	7 2 22	4*2																
	Benzo(k)fluoranthene	mg/kg	0.02	190*2	11012																
	Benzo(b)&(k)fluoranthene	mg/kg	0.07																		
	PAH 16 Total	mg/kg	0.6																		
	Benzo(a)ovrene (surrogate marker for PAH mixture)	mg/kg				10	5.6														
Metals	Arsenic	mg/kg	0.5	7982	40*2					64.5					40.9				53.9		
	Barium	mg/kg	1		1300*2					1361											
	Beryllium	mg/kg	0.5	2 2 12	1.752					4.9											
	Boron	mg/kg	0.1	2100012	11000*2					4.1											
	Cadmium	mg/kg	0.1	12082	85 ⁶²					1.6					1.1				1.2	-	
	Chromium (III+VI)		0.5						- :	120.7	- :			- :	76.1				79.1		-
		mg/kg mg/kg	0.5	91082	910 ⁸²					594	-				295	-		-	466		-
	Copper		1	1200012																	
	Lead	mg/kg	5	45	310 5	630	310	456	1843	2174	2069	1065	2763	1204	1214	818	660	1027	1549	1346	638
	Mercury	mg/kg	0.1	12082	23156*2					2.6		-		-	1.7			-	3		
	Nickel	mg/kg	0.7	230*2	180 ⁴²					85.1					52.9				64.2		
	Selenium	mg/kg	1	1100*2	43012					1					2				<1		
	Vanadium	mg/kg	1	2000 12	1200*2					97											
	Zinc	mg/kg	5	81000*2	40000*2					1163					739				880		
Bioaccessible Metals	Bioaccessible Fraction (BAF) - Lead	percent	0									72									
	Bioaccessible Lead – stomach	mg/kg	5																		
	Bioaccessible Lead – stomach and intestine	mg/kg	5																		
	Lead - total (BARGE method)	mg/kg	5																		
Asbestos	Asbestos Type	None							No Asbestos Detected					No Asbestos Detected	No Asbestos Detectes	1 .			No Asbestos Detected		
	Asbestos Level	None																			
	General Description (Bulk Analysis)	None							Soil/Stone					Soil/Stones	Soil/Stones				soil		
	Asbestos Containing Material	None							No Asbestos Detected					No Asbestos Detected					No Asbestos Detected		
		1							Detected		1			Detected	Detector		1		Detected		1
1	Total Detailed Gravimetric Quantification (% Asb)	mass %	0																		
	Asbestos Gravimetric & PCOM Total	mass %	0					-				-		- 1		-			-		-
	Asbestos PCOM Quantification (Fibres)	mass %	0							-						-		-			
			l																		
	Total ACM Gravimetric Quantification (% Asb)	mass %	0						-	-		-			-			-			-
1	Asbestos Gravimetric Quantification (ACMs) Asbestos fibres	mass %	0						No Asbestos Detected		- :	- :		No Asbestos Detected			-	- :	No Asbestos Detected		-

							Location Code	TH123	TH123	TH124	TH124	TH125	TH125	TH125	TH126	TH126	TH127	TH127	TH128	TH128	TH129
							Depth Range	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0.3-0.4	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0-0.05
							Date	24/11/2021	24/11/2021	26/11/2021	26/11/2021	25/11/2021	25/11/2021	25/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	24/11/2021	24/11/2021	26/11/2021
							Monitoring Zone	28. Treadgold House	28. Treadgold Hous	28. Treadgold House	28. Treadgold House	28. Treadgold House	28. Treadgold House	28. Treadgold House	28. Treadgold House	28. Treadgold House	e 28. Treadgold House	28. Treadgold House	28. Treadgold House	28. Treadgold Hous	e 28. Treadgold House
							Soil Cover	Partial turf	Partial turf	Bare soil	Bare soil	Turf	Turf	Turf	Bare soil	Bare soil	Turf	Turf	Bare soil	Bare soil	Partial turf
					GAC HH RES	EN AECOM RBKCGrenf	EN AECOM RBKCGr														
				GAC HH POS RES SIO		ell GSC TH POSresi le															
				AM >3.48%TOC		ad	HP lead														
Chem_Group	ChemName	output unit	EQL																		
PAH	Naphthalene	mg/kg	0.03	4900*2	13 ⁶²																
	Acenaphthylene	mg/kg	0.03	1500012	6000*2																
	Acenaphthene	mg/kg	0.05	1500012	6000 ⁸²																
	Fluorene	mg/kg	0.04	9900 ⁸²	4500 ⁸²																
	Phenanthrene	mg/kg	0.03	3100 82	1500*2																
	Anthracene	mg/kg	0.04	74000 82	37000*2																
	Fluoranthene	mg/kg	0.03	3100 82	1600*2																
	Pyrene	mg/kg	0.03	7400 82	3800*2																
	Benz(a)anthracene	mg/kg	0.06	2982	15'2																
	Chrysene	mg/kg	0.02	5782	37'2																
	Benzo(a) pyrene	mg/kg	0.04	5.710	3.212										-					-	
	Indeno(1,2,3-c,d)pyrene	mg/kg	0.04	82 82	45*2			- :	- :				- :	- :	- :	-	- :	- :		- :	
			0.04	0.58*2					- :		-	-	- :	-	-	-	-	- :	-	-	
	Dibenz(a,h)anthracene	mg/kg	0.04	640 ⁶²	0.32 ⁸²				- :		-	-		-	-	-	-	-	-	-	
	Benzo(g,h,i)perylene	mg/kg							-	-			-	-		-		-		-	
	Benzo(b)fluoranthene	mg/kg	0.05	7.7 ⁸²	412			-	-				-	-			-	-	-	-	+
	Benzo(k)fluoranthene	mg/kg	0.02	190*2	11042				-					-	-					-	
	Benzo(b)&(k)fluoranthene	mg/kg	0.07											-		-				-	
	PAH 16 Total	mg/kg	0.6											-	-	-				-	-
	Benzo(a)pyrene (surrogate marker for PAH mixture)	mg/kg	-			10	5.6		-					-							
Metals	Arsenic	mg/kg	0.5	7982	∆n*2														28.3		
	Barium	mg/kg	1		1300*2														440		
	Beryllium	mg/kg	0.5	2 2 12	1.7 ⁶²														2.4		
	Boron	mg/kg	0.1	21000	11000*2														10.9		
	Cadmium	mg/kg	0.1	12082	25 E2														1.2		
	Chromium (III+VI)	mg/kg	0.5	910*2	910*2														84.3		
	Copper	mg/kg	1	12000 12	7100*2														292		
	Lead	mg/kg	5		310 ⁶⁵	630	310	999	1100	1399	1508	6230	1535	854	2136	1722	1754	1212	758	661	1557
	Mercury	mg/kg	0.1	12082	2315612														5		
	Nickel	mg/kg	0.7	230*2	180*2														38.7		
	Selenium	mg/kg	1	1100 82	430*2														1		
	Vanadium	mg/kg	1	2000 82	1200*2														58		
	Zinc	mg/kg	5	81000 ⁸²	40000*2														635		
Bioaccessible Metals	Bioaccessible Fraction (BAF) - Lead	percent	0	AUGU	20000																
Diouccessione metals	Bioaccessible Lead – stomach	mg/kg	6																		-
	Bioaccessible Lead – stomach and intestine	mg/kg	5								-										
	Lead - total (BARGE method)	mg/kg	-					-					-		-					-	
Asbestos	Asbestos Type	None None	13					No Asbestos Detected	- :	No Asbestos Detected		No Asbestos Detected	-	-	No Asbestos Detecter	1 .	No Asbestos Detected	- :	No Asbestos Detected	-	No Asbestos Detected
Asbesius	Assestos Type	None	1 1					NO ASDESIOS DETECTED		NO ASDESIOS DETECTED	,	NO ASDESIOS DETECTED			NO Aspestos Detecter		NO ASDESIOS DETECTED		NO ASDESIOS DETECTION		NO ASDESIOS DETECTED
	Asbestos Level	None	+																		
	General Description (Bulk Analysis)	None	-					soil	- :	soil	-	Soil/Stones			soil	-	Soil/Stones		soil	-	soil
			-											_							
	Asbestos Containing Material	None	1 1					No Asbestos Detected		No Asbestos Detected	-	No Asbestos Detected			No Asbestos Detecter	d -	No Asbestos Detected		No Asbestos Detected		No Asbestos Detected
	Total Detailed Gravimetric Quantification (% Asb)	mass %	0																		
	Asbestos Gravimetric & PCOM Total	mass %	0																		
	Asbestos PCOM Quantification (Fibres)	mass %	0																		
	Total ACM Gravimetric Quantification (% Asb)	mass %	0																		
	Asbestos Gravimetric Quantification (ACMs)	mass %	0																		1
	Asbestos fibres	1.	11					No Asbestos Detected		No Asbestos Detected		No Asbestos Detected			No Asbestos Detecter	d -	No Asbestos Detected		No Asbestos Detected		No Asbestos Detected
1		1			I	1		Detected		Detected	1	Detected			Detected		Describer		Decision Detection		delected

							Location Code	TH129	TH130	TH130	TH130	TH130	TH131	TH131	TH132	TH132	TH133	TH133	TH134	TH134	TH134
							Depth Range	0.1-0.2	0-0.05	0.1-0.2	0.3-0.4	0.6-0.7	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0.3-0.4
							Date	26/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	24/11/2021	24/11/2021	24/11/2021	24/11/2021	24/11/2021	24/11/2021	25/11/2021	25/11/2021	25/11/2021
							Monitoring Zone					28. Treadgold House									
						EN AECOM RBKCGrenf	Soil Cover	Partial turf	Turf	Turf	Turf	Turf	Turf	Turf	Turf	Turf	Turf	Turf	Bare soil	Bare soil	Bare soil
			١,	- AC 1111 BOS BES 51.0	GAC_HH_RES- PL SLOAM >3.48%TOC																
			١,	AM >3.48%TOC	PL_SLUAMI_75.46%TOC	ad ad	HP lead														
				AM_73.40.NTOC																	
Chem_Group	ChemName	output unit																			
PAH	Naphthalene		0.03	4900*2	1312				-			-			-					-	-
	Acenaphthylene		0.03	15000 12	6000 ⁸²								- :			- :				- :	
	Acenaphthene Fluorene		0.05	15000 12					-	- :	-			-	-				- :		
	Phenanthrene		0.04	9900 ⁸²	4500 ⁸²				-			-	-	-	-		-		-	-	-
	Anthracene		0.04	74000 ⁶²	37000*2																
	Fluoranthene	mg/kg	0.03	3100*2	1600*2			-													
	Pyrene		0.03	7400 82	3800*2																
	Benz(a)anthracene	mg/kg	0.06	79 ⁸²	15*2																
	Chrysene	mg/kg	0.02	5782	32.62																
	Benzo(a) pyrene		0.04	5 7 ⁸²	3.752																
	Indeno(1,2,3-c,d)pyrene		0.04	87 ⁸²	4F ¹²																
	Dibenz(a,h)anthracene		0.04	0.58*2	0.32*2																
	Benzo(g,h,i)perylene		0.04	640 12	36012				-											-	
	Benzo(b)fluoranthene		0.05	7.782	4*2				-					-	-					-	-
	Benzo(k)fluoranthene		0.02	190*2	11012																-
	Benzo(b)&(k)fluoranthene PAH 16 Total		0.07						-	- :	-	-	- :	- :	- :	- :	- :	-	- :	- :	- : -
	Benzo(a)pyrene (surrogate marker for PAH mixture)	mg/kg mg/kg	0.6			10	5.6		-					-	-		-				
Metals	Arsenic		0.5	7982	40.62	10	3.0		81.3			-	-	-	-	-	-	-	-	-	
	Barium	mg/kg	1		1300*2																
	Beryllium		0.5	2 2 12	1.752																
	Boron		0.1	21000 ⁸²	11000#2																
	Cadmium	mg/kg	0.1	12082	2C 42				1.5												
	Chromium (III+VI)		0.5	910*2	91012				93.9												
	Copper	mg/kg	1	1200012	7100*2				594												
	Lead	mg/kg	5		310 ⁶	630	310	4405	1774	2307	526	575	1893	1831	1692	4638	1736	1876	717	1081	1649
	Mercury		0.1	12012	23156*2				3.1					-			-			-	-
	Nickel		0.7	230*2	180*2				77.8	- :	-	-	-	- :	- :	- :	-	-	- :	-	-
	Selenium	mg/kg	1	1100 ⁸²	430*2				4			-								-	-
	Vanadium	mg/kg mg/kg	i	2000°° 81000°°	1200 ⁸²				1358	-	-	-		-	-	-	-			-	
Bioaccessible Metals	Bioaccessible Fraction (BAF) - Lead	percent	o l	Augu					1330				-		-	-		-	-		
	Bioaccessible Lead – stomach	mg/kg	5																		
	Bioaccessible Lead – stomach and intestine	mg/kg	5																		
	Lead - total (BARGE method)	mg/kg	5																		
Asbestos	Asbestos Type	None									-	Chrysotile	No Asbestos Detected		No Asbestos Detected		No Asbestos Detected	-	No Asbestos Detected		
	Asbestos Level	None																			
	General Description (Bulk Analysis)	None										Soil/Stones	soil		soil		Soil/Stones		soil		
	Asbestos Containing Material	None	ш							-	-	No Asbestos Detected	No Asbestos Detected		No Asbestos Detected		No Asbestos Detected	-	No Asbestos Detected		
	Total Detailed Gravimetric Quantification (% Asb)	mass %	0									< 0.001									
	Asbestos Gravimetric & PCOM Total	mass %	0									< 0.001									
	Asbestos PCOM Quantification (Fibres)	mass %	0									< 0.001									
	Total ACM Gravimetric Quantification (% Asb)	mass %	0									<0.001									-
	Asbestos Gravimetric Quantification (ACMs)	mass %	0									<0.001									
	Asbestos fibres							-			-	Fibre Bundles	No Asbestos Detected		No Asbestos Detected		No Asbestos Detected	-	No Asbestos Detected		

Comments
GAC Generic Assessment Criteria
SAC-Sie Specific Assessment Criteria
(Salaci): No assessment criteria available
(Halaci): No assessment criteria available
Halacid Criteria (Salacida Halacida H

														1						
						Location Code	TH134	TH135	TH135	TH136	TH136	TH137	TH137	TH138	TH138	TH139	TH139	TH140	TH140	TH141
						Depth Range	0.6-0.7	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0-0.05
						Date	25/11/2021	24/11/2021	24/11/2021	24/11/2021	24/11/2021	24/11/2021	24/11/2021	24/11/2021	24/11/2021	24/11/2021	24/11/2021	24/11/2021	24/11/2021	24/11/2021
						Monitoring Zone								e 28. Treadgold House						
				1	T	Soil Cover	Bare soil	Bare soil	Bare soil	Turf	Turf	Turf	Turf	Turf	Turf	Turf	Turf	Turf	Turf	Bare soil
				GAC_HH_RES	EN_AECOM_RBKCGrenf		1													
			GAC_HH_POS_RES	SLO PL_SLOAM_>3.48%TO		enfell_GSC_TH_Resi-	1													
			AM_>3.48%TO	:	ad	HP_lead	4													
Chem Group	ChemName	output unit E	01																	
DAN GROUP	Naphthalene	mg/kg 0		13 ⁶²																
1770	Acenaphthylene		.03 15000 ⁶²	6000 ⁸²																
	Acenaphthene	mg/kg 0	.05 15000 ⁸²	600045											- :				- :	
	Fluorene		.04 9900*2	4500 ^{#2}									- 1						-	
	Phenanthrene		.03 3100*2	1500*2																
	Anthracene		.04 74000*2	37000*2																
	Fluoranthene	mg/kg 0	.03 31nn ⁸²	1600*2																
	Pyrene		.03 74nn ⁸²	3800*2																
	Benz(a)anthracene		.06 2982	15'2																
	Chrysene	mg/kg 0	02 5782	3212								-	-						-	
	Benzo(a) pyrene		.04 5 7*2	3.742								1			-				-	
	Indeno(1,2,3-c,d)pyrene	mg/kg 0	.04 87*2	4612									- 1					- 1		
	Dibenz(a,h)anthracene		.04 0.58*2	0.32*2									- 1						-	-
	Benzo(g.h.i)perylene	mg/kg 0	.04 640 ⁶²	36012					-	-									-	
	Benzo(b)fluoranthene		.05 7 7 7 12	4 ⁶²				_	-					_			-	-		
	Benzo(k)fluoranthene	mg/kg 0	.02 190*2	11012			· ·			- :		-	- :				-			-
	Benzo(b)&(k)fluoranthene		.07	110			· ·	-		-	- :	-	- :	-		-				-
	PAH 16 Total	mg/kg 0					-		-			-	-			-	-			- :
	Benzo(a)pyrene (surrogate marker for PAH mixture)	mg/kg			10	5.6		_	-					_			-	-		
Metals	Arsenic		.5 7982	40*2	10	3.0	<u> </u>			-	- :	-	109.8			-	- :	- :		32.9
Metalis	Barium	mg/kg 0 mg/kg 1	.5 /4	1300*2			· ·	-			-	-	2009				-			389
	Beryllium	mg/kg 0	.5 2 2 12				-				- :	-	9.8			- :	-			2
				1.7 ⁸²			-				-	-	5.6	-			-			5.7
	Boron			11000°- 85°2			-					-		-			-			0.7
	Cadmium Chromium (III+VI)						· ·			-	- :	- :	1.7 94.3	-						60
	Copper			910 ⁶²			-		-		-	-	1061				-			198
		mg/kg 1	1200012																	
	Lead	mg/kg 5		310 ⁶⁵	630	310	541	947	994	1615	3644	2766	3774	1834	5942	1353	1135	1398	3172	584
	Mercury	mg/kg 0		23156*2			-	-			-	-	4.8							0.9
	Nickel Selenium	mg/kg 0		180*2			-				- :	-	120.4				- :	- :	-	32.6
		mg/kg 1	1100 12	430*2			-						- 1							1
	Vanadium	mg/kg 1	2000*2	1200*2			-				-	-	125		-					47
	Zinc	mg/kg 5	81000 ⁸²	40000*2			-				-	-	1648	-				-		440
Bioaccessible Metals	Bioaccessible Fraction (BAF) - Lead	percent 0					-			-				-						- :
	Bioaccessible Lead – stomach	mg/kg 5					- :	-	- :	- :	- :	-	- :	- :		- :	- :	- :		-
	Bioaccessible Lead – stomach and intestine	mg/kg 5					-						-	-						
-	Lead - total (BARGE method)	mg/kg 5					-		-		-		-				-			+
Asbestos	Asbestos Type	None						No Asbestos Detected		No Asbestos Detected		No Asbestos Detected		No Asbestos Detected		No Asbestos Detected		No Asbestos Detected		Amosite
	Asbestos Level											_								
		None					-	-				4 1100	-	41.						-
	General Description (Bulk Analysis)	None			+			soil		soil/stones		Soil/Stone	-	soil/stones		Soil/Stones		soil/stones		soil
	Asbestos Containing Material	None						No Asbestos Detected	-	No Asbestos Detected		No Asbestos Detected		No Asbestos Detected		No Asbestos Detected		No Asbestos Detected		No Asbestos Detected
	Total Detailed Gravimetric Quantification (% Asb)	mass % 0																		<0.001
	Asbestos Gravimetric & PCOM Total	mass % 0																		<0.001
	Asbestos PCOM Quantification (Fibres)	mass % 0																		<0.001
	Total ACM Gravimetric Quantification (% Asb)	mass % 0																		<0.001
	Asbestos Gravimetric Quantification (ACMs)	mass % 0																		<0.001
	Asbestos fibres	1.						No Asbestos Detected		No Asbestos Detected		No Asbestos Detected		No Asbestos Detected		No Asbestos Detected		No Asbestos Detected		Fibre Bundles
1		1 1					1													

							Location Code	TH141	TH142	TH142	TH142	TH143	TH143	TH144	TH144	TH145	TH145	TH145	TH146	TH146	TH147
							Depth Range	0.1-0.2	0.0.05	0.3-0.4	0.6-0.7	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0.3-0.4	0-0.05	0.1-0.2	0-0.05
							Date	24/11/2021	23/11/2021	23/11/2021	23/11/2021	24/11/2021	24/11/2021	24/11/2021	24/11/2021	25/11/2021	25/11/2021	25/11/2021	24/11/2021	24/11/2021	24/11/2021
							Monitoring Zone		28. Treadgold Hou	se 28. Treadgold House											
							Soil Cover	Bare soil	Turf	Turf	Turf	Turf	Turf	Turf	Turf	Bare soil	Bare soil	Bare soil	Bare soil	Bare soil	Bare soil
					GAC HH RES-	EN AECOM RBKCGrenf															
				GAC HILL BOX DEC C	LO PL SLOAM >3.48%TO																
				AM >3.48%TOC		ad	HP lead														
Chem_Group	ChemName	output unit	t EQL																		
PAH	Naphthalene	mg/kg	0.03	4900*2	13 ⁶²				0.21	0.07	0.35										
	Acenaphthylene	mg/kg	0.03		6000 ⁸²				0.49	0.18	0.33										
	Acenaphthene	mg/kg	0.05	15000 12	6000*2				< 0.05	0.2	0.62										
	Fluorene	mg/kg	0.04	9900 ⁸²	4500 ⁸²				0.07	0.14	0.46										
	Phenanthrene	mg/kg	0.03	3100*2	1500*2				1.29	2.25	4.84										
	Anthracene	mg/kg	0.04		37000*2				0.62	0.69	1.39										
	Fluoranthene	mg/kg	0.03	3100 82	1600*2				3.05	4.37	7.06										
	Pyrene	mg/kg	0.03	7400*2	380082				2.59	3.48	5.6										
	Benz(a)anthracene	mg/kg	0.06	2982	15 ⁶²				1.66	1.99	3.18										
	Chrysene	mg/kg	0.02		3212				1.89	2.07	3.18					-	-				
	Benzo(a) pyrene	mg/kg	0.02		3.212				1.96	1.79	2.85										-
	Indeno(1,2,3-c,d)pyrene	mg/kg	0.04	87 ⁸²	4512				2.18	1.54	2.29									-	
	Dibenz(a,h)anthracene	mg/kg	0.04	0.58*2	0.32*2				0.49	0.33	0.45			-	- :		-	-	-	-	-
			0.04		360 82				2.25	1.32	1.96				- :	-		-	-		-
	Benzo(g,h,i)perylene	mg/kg			360 4*2										-						
	Benzo(b)fluoranthene	mg/kg	0.05						2.79	2.47	3.85				-	-					-
	Benzo(k)fluoranthene	mg/kg	0.02		11012				1.09	0.96	1.5						-		-	-	
	Benzo(b)&(k)fluoranthene	mg/kg	0.07						3.88	3.43	5.35			-					-	-	
	PAH 16 Total	mg/kg	0.6						22.6	23.9	39.9			-	-				-	-	
	Benzo(a)ovrene (surrogate marker for PAH mixture)	mg/kg	+-			10	5.6		-			-		-	-	-	-	-	+		
Metals	Arsenic	mg/kg	0.5	7982	40 ⁴²				89.8	32.9	30					49.7			-	-	
	Barium	mg/kg	1		1300*2				1654	484	320	-									
	Beryllium	mg/kg	0.5	2 2 12	1.712				8.2	2.4	2.3										
	Boron	mg/kg	0.1	2100012	11000*2				5.9	2.4	2.4									-	-
	Cadmium	mg/kg	0.1	120*2	85 ⁸²				2	0.4	0.6					1.3					
	Chromium (III+VI)	mg/kg	0.5	910*2	910*2				135	64.7	40.6					74.5					
	Copper	mg/kg	1	12000*2	7100*2				934	169	272					484					
	Lead	mg/kg	5		310 15	630	310	649	3996	634	685	1357	1616	1059	596	1476	1766	2841	1358	1751	1432
	Mercury	mg/kg	0.1	120*2	23156 ⁸²				5.1	0.7	0.9					2.2					
	Nickel	mg/kg	0.7	230*2	180*2				99.6	39.9	30.5					62.6					
	Selenium	mg/kg	1	1100*2	430*2				2	2	<1					3					
	Vanadium	mg/kg	1	2000*2	1200*2				112	65	64										
	Zinc	mg/kg	5	81000 ⁸²	40000*2				1668	483	387					1177					
Bioaccessible Metals	Bioaccessible Fraction (BAF) - Lead	percent	0																		
	Bioaccessible Lead – stomach	mg/kg	5																		
	Bioaccessible Lead - stomach and intestine	mg/kg	5																		
	Lead - total (BARGE method)	mg/kg	5																		
Asbestos	Asbestos Type	None								No Asbestos Detected		No Asbestos Detected		No Asbestos Detected		Chrysotile			No Asbestos Detected	4 .	No Asbestos Detected
		1.10																			
	Asbestos Level	None																			
	General Description (Bulk Analysis)	None								Soil/Stone		Soil/Stone		soil		Soil/Stone			soil		Soil/Stones
	Asbestos Containing Material	None								No Asbestos Detected		No Asbestos Detected		No Asbestos Detected		No Asbestos Detected	-	-	No Asbestos Detected	-	No Asbestos Detected
	Total Detailed Gravimetric Quantification (% Asb)	mass %	0													<0.001					
	Asbestos Gravimetric & PCDM Total	mass %	0													<0.001		-			
	Asbestos PCOM Quantification (Fibres)	mass %	0						-							<0.001	-				
	Total ACM Gravimetric Quantification (% Asb)	mass %	0								-					<0.001					
	Asbestos Gravimetric Quantification (ACMs)	mass %	lo lo													<0.001		-			1
	Asbestos fibres		ľ						-	No Asbestos Detected		No Asbestos Detected		No Asbestos Detected	- :	Fibre Bundles	- :	-	No Asbestos Detected		No Asbestos Detected
	Autorita indica	Ι΄								NO ASSESSED DESECTED		THE PROPERTY DESCRIED		NO ASSESSED DETECTED		none bulldies			no Assessos Detected		NO POLICEO DETECTION

Comments
GAC: Generic Assessment Criteria
SAC: Site Specific Assessment Criteria
(blank): No assessment Criteria
(blank): No assessment Criteria
valiable
Hell Christian Chapitate
Hell Christian
Hell Ch

							Location Code	TH147	TH148	TH148	TH149	TH149	TH150	TH150	TH151	TH151	TH152	TH152	TH153	TH153	TH154
							Depth Range	0.1-0.2	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0-0.05
							Date	24/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021	22/11/2021	22/11/2021	23/11/2021
							Monitoring Zone	28. Treadgold Hous	e 28. Treadgold House	28. Treadgold House	e 28. Treadgold House	28. Treadgold House	28. Treadgold House	28. Treadgold House	28. Treadgold House	28. Treadgold House	28. Treadgold House	28. Treadgold House	28. Treadgold House	28. Treadgold House	e 28. Treadgold House
							Soil Cover	Bare soil	Bare soil	Bare soil	Bare soil	Bare soil	Bare soil	Bare soil	Bare soil	Bare soil	Bare soil	Bare soil	Turf	Turf	Turf
					GAC HH RES	EN AECOM RBKCGrenf	EN AECOM RBKCGr														
				GAC HH POS RES SLO		ell_GSC_TH_POSresi_le															
				AM >3.48%TOC		ad	HP lead														
Chem_Group	ChemName	output unit	t EQL																		
РАН	Naphthalene	mg/kg	0.03	4900*2	1312																
	Acenaphthylene	mg/kg	0.03	1500012	6000*2																
	Acenaphthene	mg/kg	0.05	15000 ⁸²	6000*2																
	Fluorene	mg/kg	0.04	9900*2	4500 ^{#2}																
	Phenanthrene	mg/kg	0.03	3100 12	1500*2																
	Anthracene	mg/kg	0.04	7400012	37000*2																
	Fluoranthene	mg/kg	0.03	3100 82	1600*2																
	Pyrene	mg/kg	0.03	7400 ⁸²	3800*2																
	Benz(a)anthracene	mg/kg	0.06	2982	15*2																
	Chrysene	mg/kg	0.02	5712	3212																
		mg/kg	0.04	5 7 ⁸²	3.782							-	-								
	Benzo(a) pyrene		0.04	82*2	4612				- :		- :			- :	- :				- :	- :	
	Indeno(1,2,3-c,d)pyrene	mg/kg	0.04								- :			-		- :					
	Dibenz(a,h)anthracene	mg/kg		0.58*2	0.32*2				-		- :	- :	- :	- :			- :	-	-	-	-
	Benzo(g,h,i)perylene	mg/kg	0.04	640 ⁶²	36012				-					-						-	
	Benzo(b)fluoranthene	mg/kg	0.05	7 2 12	4"2				-	-	-		-	-	-	-			-	-	-
	Benzo(k)fluoranthene	mg/kg	0.02	190*2	11012																
	Benzo(b)&(k)fluoranthene	mg/kg	0.07															-			
	PAH 16 Total	mg/kg	0.6															-			
	Benzo(a)ovrene (surrogate marker for PAH mixture)	mg/kg	-			10	5.6											-			-
Metals	Arsenic	mg/kg	0.5	79 ⁸²	an ^{e2}																
	Barium	mg/kg	1		1300*2													-			
	Beryllium	mg/kg	0.5	2 2 102	1.752																
	Boron	mg/kg	0.1	21000*2	11000*2																
	Cadmium	mg/kg	0.1	120*2	85.83																
	Chromium (III+VI)	mg/kg	0.5	910*2	910*2																
	Copper	mg/kg	1	1200012	7100*2																
	Lead	mg/kg	5		310 6	630	310	2107	1678	2031	1327	1920	1921	2434	1001	1239	926	3101	1693	3752	1415
	Mercury	mg/kg	0.1	120*2	23 56 82			-													
	Nickel	mg/kg	0.7	230"2	180*2																
	Selenium	mg/kg	1	1100 12	43012																
	Vanadium	mg/kg	1	2000 82	1200*2																
	Zinc	mg/kg	i c	81000 12	40000*2																
Bioaccessible Metals	Bioaccessible Fraction (BAF) - Lead	percent	0	AURE	20000																
	Bioaccessible Lead – stomach	mg/kg	l c						-		-		- : - ·	-	-				-	-	
	Bioaccessible Lead – stomach and intestine	mg/kg	-																		
		mg/kg	-									-	-								
	Lead - total (BARGE method)	None None	15									-		-							
Asbestos	Asbestos Type	None							No Asbestos Detected		Chrysotile		No Asbestos Detected		No Asbestos Detectes		No Asbestos Detected		No Asbestos Detected		No Asbestos Detected
	Asbestos Level	None							_												
		None	-						Soil/Stones	- :	Soil/Stone		Soil/Stones	-	soil	-	soil		Soil/Stones	- :	Soil/Stones
	General Description (Bulk Analysis)																				
	Asbestos Containing Material	None						-	No Asbestos Detected		No Asbestos Detected	-	No Asbestos Detected	-	No Asbestos Detecter		No Asbestos Detected	-	No Asbestos Detected		No Asbestos Detecter
	Total Detailed Gravimetric Quantification (% Asb)	mass %	0								<0.001										
	Asbestos Gravimetric & PCOM Total	mass %	0								<0.001										
	Asbestos PCOM Quantification (Fibres)	mass %	0								<0.001										
	Total ACM Gravimetric Quantification (% Asb)	mass %	0								<0.001										
	Asbestos Gravimetric Quantification (ACMs)	mass %	0					-			<0.001										1
	Asbestos fibres	1.	1						No Asbestos Detected		Fibre Bundles		No Asbestos Detected		No Asbestos Detecter		No Asbestos Detected		No Asbestos Detected		No Asbestos Detected
									Detected		bulliones				Detected		Detected		Detected		Detected

							Location Code	TH154	TH155	TH155	TH156	TH156	TH156	TH156	TH157	TH157	TH158	TH158	TH159	TH159	TH160
							Depth Range	0.1-0.2	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0.3-0.4	0.6-0.7	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0-0.05
							Date	23/11/2021	22/11/2021	22/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021	22/11/2021	22/11/2021	22/11/2021	22/11/2021	22/11/2021	22/11/2021	22/11/2021
							Monitoring Zone		28. Treadgold House Turf							28. Treadgold House Turf					e 28. Treadgold House
			- 1		GAC HH RES-	EN AECOM RBKCGrenf	Soil Cover	Turf	Turt	Turf	Bare soil	Bare soil	Bare soil	Bare soil	Turf	Turt	Turf	Turf	Partial turf	Partial turf	Turf
				CAC IIII DOC DEC CLO	PL SLOAM >3.48%TOC																
				AM >3.48%TOC	PL_SLUANI_/S.A6%TOL	ad ad	HP lead														
				AM_F3.40XIOC																	
Chem_Group	ChemName	output unit	EQL																		
PAH	Naphthalene		0.03	4900 ⁸²	1362																
	Acenaphthylene		0.03	1500012	6000*2																
	Acenaphthene		0.05	1500012	6000 12																
	Fluorene		0.04	9900"2	4500*2									-					-		-
	Phenanthrene		0.03	3100 12	1500*2			-						-	-					-	-
	Anthracene		0.04	74000*2	37000*2			-		-	-	-	-	-	-	-		-	-	-	-
	Fluoranthene Pyrene		0.03	3100 ⁸² 7400 ⁸²	1600 ⁸²					-				-	-		-	-	-		-
	Benz(a)anthracene		0.03	74111 79 ⁸²	1512				-	-				-	-	-	-				
	Chrysene		0.00	57 ⁸²	3212			- :												- :	
	Benzo(a) pyrene		0.04	5.782	3.212									-						-	
	Indeno(1,2,3-c,d)pyrene		0.04	82*2	4512			-												-	
	Dibenz(a,h)anthracene	mg/kg	0.04	0.58*2	0.32*2																
	Benzo(g,h,i)perylene		0.04	640 ⁸²	36012																
	Benzo(b)fluoranthene		0.05	7 7 7 2 2	4*2																
	Benzo(k)fluoranthene	mg/kg	0.02	190 12	110*2																
	Benzo(b)&(k)fluoranthene		0.07																		
	PAH 16 Total	mg/kg	0.6																		
	Benzo(a)pyrene (surrogate marker for PAH mixture)	mg/kg				10	5.6														
Metals	Arsenic		0.5	79 ⁸²	40 62					77									40.6		
	Barium	mg/kg	1		1300*2					1500									1215		
	Beryllium	mg/kg	0.5	2 2 12	1.7 ⁶²					7.4									4		
	Boron		0.1	2100012	11000*2					4.8									11.5		-
	Cadmium		0.1	12082	82,85					1.7									1.6		
	Chromium (III+VI)		0.5	910*2	910*2					95.4									171		
	Copper	mg/kg	1	1200012	7100*2					751				-					351		-
	Lead	mg/kg	5		310 ⁶⁵	630	310	2119	1485	3623	6029	2049	1095	903	1271	995	1785	1738	1591	1700	1580
	Mercury		0.1	12082	23 SA ¹²					3.2				-	-	-			1.9		-
	Nickel		0.7	230 ⁶²	180*2				- :	88.3		-	- :	- :	-	-	-	- :	57.3		-
	Selenium	mg/kg	1	1100 ⁸² 2000 ⁸²	430 ⁸²					1				-	-	-	-				
	Vanadium	mg/kg mg/kg	1	2000°- 81000°2	40000*2					105 1350									77 944		-
Bioaccessible Metals	Bioaccessible Fraction (BAF) - Lead	percent	2	×1000	20000				80	60			· ·	-	-	-	· ·	-	244		-
bioaccessible wietars	Bioaccessible Lead – stomach	mg/kg	-						- 00		-	-	- :	-	-	-					-
	Bioaccessible Lead – stomach and intestine	mg/kg	5												-						
	Lead - total (BARGE method)	mg/kg																			
Asbestos	Asbestos Type	None	1					-	No Asbestos Detected			No Asbestos Detected			No Asbestos Detected		No Asbestos Detected		No Asbestos Detected	-	No Asbestos Detected
		1.0																			
	Asbestos Level	None																			
	General Description (Bulk Analysis)	None							Soil/Stones			Soil/Stone			Soil/Stones		soil		Soil/Stones		soil
	Asbestos Containing Material	None							No Asbestos Detected		-	No Asbestos Detected			No Asbestos Detected		No Asbestos Detected		No Asbestos Detected		No Asbestos Detected
	Total Detailed Gravimetric Quantification (% Asb)	mass %	0																		
1	Asbestos Gravimetric & PCOM Total	mass %	0																		
	Asbestos PCOM Quantification (Fibres)	mass %	0																		
	Total ACM Gravimetric Quantification (% Asb)	mass %	0																		
	Asbestos Gravimetric Quantification (ACMs)	mass %	0																		
	Asbestos fibres	1-							No Asbestos Detected			No Asbestos Detected			No Asbestos Detected		No Asbestos Detected		No Asbestos Detected		No Asbestos Detected
1																					

Comments
GAC: Generic Assessment Criteria
GAC: Generic Assessment Criteria
(blank): No assessment Criteria
(blank): No assessment Criteria
volta blank): No ass

							Location Code	TH160	TH161	TH161	TH161	TH162	TH162	TH162	TH163	TH163	TH164	TH164	TH165	TH165	TH166
							Depth Range	0.1-0.2	0-0.05	0.3-0.4	0.6-0.7	0-0.05	0.1-0.2	0.3-0.4	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0-0.05
							Date	22/11/2021	23/11/2021	23/11/2021	23/11/2021	25/11/2021	25/11/2021	25/11/2021	22/11/2021	22/11/2021	22/11/2021	22/11/2021	22/11/2021	22/11/2021	22/11/2021
							Monitoring Zone		se 28. Treadgold House												
							Soil Cover	Turf	Turf	Turf	Turf	Bare soil	Bare soil	Bare soil	Bare soil	Bare soil	Bare soil	Bare soil	Turf	Turf	Turf
			- 1		GAC HH RES-	EN AECOM RBKCGrenf															
				CAC HIL BOX DES SIO		ell GSC TH POSresi le															
				AM >3.48%TOC	7 L_3LONIN_73.4071100	ad	HP lead														
				AM_23.407010C																	
Chem_Group	ChemName	output unit	EOL																		
PAH	Naphthalene	mg/kg		4900 82	13 ⁶²				0.16	0.05	0.11										
	Acenaphthylene		0.03	15000	6000 ⁸²				0.27	0.29	0.4										
	Acenaphthene		0.05	1500012	6000 ⁸²				<0.05	0.06	0.16										
	Fluorene	mg/kg	0.04	9900*2	4500 ⁸²				<0.04	0.05	0.21										
	Phenanthrene	mg/kg	0.03	3100 12	1500*2				0.93	0.9	3.02										
	Anthracene		0.04	74000 ⁸²	37000*2				0.37	0.44	0.93										
	Fluoranthene		0.03	3100 12	1600*2				2.96	3.17	5.1									-	
		mg/kg	0.03	7400 12	3800*2				2.68	2.84	4.19										
	Pyrene Benz(a)anthracene	mg/kg	0.03	74FE	1512				1.66	2.43	2.47	- :		-			-				- :
	Chrysene	mg/kg	0.02	57 ⁸²	3212				1.74	2.42	2.29			-							-
				5.7 ¹⁰	37"				1.92		2.18	- :		- :					- :		-
	Benzo(a) pyrene		0.04	87 ⁸²	4612					2.32				- :	- :	- :			- :	- :	
	Indeno(1,2,3-c,d)pyrene	mg/kg	0.04						1.89	2.19	1.83								-		-
	Dibenz(a,h)anthracene	mg/kg	0.04	0.58*2	0.32*2				0.3	0.48	0.35			-					-		-
	Benzo(g,h,i)perylene	mg/kg	0.04	640 ⁸²	36012				1.54	1.68	1.48										
	Benzo(b)fluoranthene	mg/kg	0.05	7 2 12	412				2.62	3.33	2.89		-	-					-		-
	Benzo(k)fluoranthene	mg/kg	0.02	190 12	11012				1.02	1.29	1.12										
	Benzo(b)&(k)fluoranthene	mg/kg	0.07						3.64	4.62	4.01										-
	PAH 16 Total	mg/kg	0.6						20.1	23.9	28.7										
	Benzo(a)ovrene (surrogate marker for PAH mixture)	mg/kg				10	5.6														
Metals	Arsenic	mg/kg	0.5	7982	∆n ^{e2}				52.9	39.9	31.3	42.5						39.5			
	Barium	mg/kg	1		1300 ⁸²				1149	681	452							676			
	Beryllium	mg/kg	0.5	2 2 12	1.752				5.1	3.7	2.9							3.5			
	Boron		0.1	21000	11000*2				5.9	2.7	2.1							6.4			
	Cadmium		0.1	12082	25 KZ				1.4	0.8	0.5	1.3						0.9			
	Chromium (III+VI)		0.5	910*2	91010				58.3	67.8	45.4	73.4						69.5			
	Copper	mg/kg	1	1200082	7100*2				471	287	196	390						334			
	Lead	mg/kg	i	12000	310 15	630	310	3168	1941	1189	715	1411	6245	1090	1068	1329	925	1005	1489	38,490	1311
	Mercury		0.1	12082	23156*2	0.50			2.4	1.4	1.1	1.6	22.5		-			1.6		-	-
	Nickel	mg/kg	0.7	230*2	180*2			-	67.1	53.8	39.2	58.9						47.5		-	
	Selenium	mg/kg	1	1100*2	430*2				<1	1	<1	<1						77.3			
			1.							84		- 1		-				70			-
	Vanadium	mg/kg	1	2000*2	1200 ⁸²				85		70			-		-					
	Zinc	mg/kg	5	81000 ⁶²	40000**				1141	777	421	840		-	-	-		646			
Bioaccessible Metals	Bioaccessible Fraction (BAF) - Lead	percent	0					-						- :							
	Bioaccessible Lead – stomach	mg/kg	5																-		-
	Bioaccessible Lead – stomach and intestine	mg/kg	5							-				-					-		-
	Lead - total (BARGE method)	mg/kg	5																		-
Asbestos	Asbestos Type	None	1 1		l .				No Asbestos Detected			Chrysotile			No Asbestos Detected						
	Asbestos Level	None	\vdash						-	-		-		-							
	General Description (Bulk Analysis)	None	-						Soil/Stones			Soil/Stones			Soil/Stones		soil		Soil/Stones		soil
	Asbestos Containing Material	None						•	No Asbestos Detected			No Asbestos Detected			No Asbestos Detected		No Asbestos Detected		No Asbestos Detected	•	No Asbestos Detected
	Total Detailed Gravimetric Quantification (% Asb)	mass %	0									<0.001									
	Asbestos Gravimetric & PCOM Total	mass %	0									<0.001									
	Asbestos PCOM Quantification (Fibres)	mass %	0									< 0.001									
	Total ACM Gravimetric Quantification (% Asb)	mass %	0									<0.001									
	Asbestos Gravimetric Quantification (ACMs)	mass %	0									<0.001									
	Asbestos fibres								No Asbestos Detected			Fibre Bundles			No Asbestos Detected						
1		1	1 1		l .	1	1				1										

Comments
GAC: Generic Assessment Criteria
GAC: Generic Assessment Criteria
(blank): No assessment Criteria
(blank): No assessment Criteria
volta blank): No ass

							Location Code	TH166	TH167	TH167	TH167	TH167	TH168	TH168	TH169	TH169	TH169	TH170	TH170	TH170	TH171
							Depth Range	0.1-0.2	0-0.05	0.1-0.2	0.3-0.4	0.6-0.7	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0.3-0.4	0-0.05	0.3-0.4	0.6-0.7	0-0.05
							Date	22/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	22/11/2021	22/11/2021	25/11/2021	25/11/2021	25/11/2021	23/11/2021	23/11/2021	23/11/2021	26/11/2021
							Monitoring Zone					28. Treadgold House									
							Soil Cover	Turf	Turf	Turf	Turf	Turf	Bare soil	Bare soil	Partial turf	Partial turf	Partial turf	Bare soil	Bare soil	Bare soil	Turf
						EN_AECOM_RBKCGrenf															
					PL_SLOAM_>3.48%TOC																
				AM_>3.48%TOC		ad	HP_lead														
Chem_Group	ChemName	output unit	t EOL																		
PAH	Naphthalene	mg/kg	0.03	4900*2	13 ⁶²													0.12	0.09	0.26	
	Acenaphthylene		0.03	15000 ⁸²	6000 ⁸²													0.24	0.19	0.9	
	Acenaphthene	mg/kg	0.05	15000 ⁸²	6000 ⁸²													<0.05	0.06	0.31	
	Fluorene	mg/kg	0.04	9900"2	4500 ⁸²													<0.04	0.06	0.34	
	Phenanthrene	mg/kg	0.03	31.00*2	1500*2													0.5	1.21	5.39	
	Anthracene	mg/kg	0.04	74000 12	37000*2													0.28	0.42	2.06	
	Fluoranthene		0.03	3100 12	1600*2				-	-				-	-	-	-	1.49	3.31	11.84	
	Pyrene	mg/kg	0.03	7400 02	3800 ⁸²				- :	- :	- :	-	- :	- :	- :		-	1.34	2.79	9.79	- :
	Benz(a)anthracene	mg/kg	0.06	29 ⁸²	15*2				- :	-	-	-	- :	- :	- :	-	-	0.86	1.56		- :
	Chrysene	mg/kg mg/kg	0.02	57 ⁸² 5.7 ⁸²	3212				- :	- :				- :	- :			1.06	1.51	5.53	
	Benzo(a) pyrene Indeno(1,2,3-c,d)pyrene	mg/kg	0.04	87 ⁸²	4512				- :		-		- :	- :	- :		- :	1.16	1.29	4.37	
	Dibenz(a,h)anthracene	mg/kg	0.04	0.58*2	0.32*2					-	-			- 1		-	-	0.19	0.25	0.88	
	Benzo(g,h,i)perylene	mg/kg	0.04	640 ⁸²	360*2					-	-					-	-	1.08	1.14	4.01	
	Benzo(b)fluoranthene	mg/kg	0.05	7.282	A ⁶²													1.53	2.04	6.93	
	Benzo(k)fluoranthene	mg/kg	0.02	190*2	110*2													0.59	0.79	2.69	
	Benzo(b)&(k)fluoranthene	mg/kg	0.07															2.12	2.83	9.62	
	PAH 16 Total	mg/kg	0.6															11.5	18.4	66	
	Benzo(a)pyrene (surrogate marker for PAH mixture)	mg/kg				10	5.6														
Metals	Arsenic	mg/kg	0.5	79 ⁸²	an ^{e2}				21.8						48.5			44.6	35.2	21	
	Barium	mg/kg	1		1300 ⁶³													803	490	442	
	Beryllium	mg/kg	0.5	2 2 102	1.7 ¹²													3.5	2.6	4.8	
	Boron	mg/kg	0.1	2100012	11000*2													3	1.7	2.4	-
	Cadmium		0.1	12012	85 ⁸²				0.8					-	1.5			1	1.2	0.3	
	Chromium (III+VI)	mg/kg	0.5	910*2	910*2				82.1					-	85.2			58.9	58.1	51.3	
	Copper	mg/kg	1	12000*2	7100*2			-	189					-	548			318	187	60	-
	Lead	mg/kg	5	120*2	310 5	630	310	1997	677	2229	451	469	233	148	3649	1643	1200	1315	785	364	1169
	Mercury	mg/kg	0.1		23156*2				0.6 47.5		- :	-	- :	- :	5.5 64.7	-		2.7 53.3	1.2	0.9	
	Selenium	mg/kg	0.7	230*2	180*2				4/-5 <1		-	-	- :	- :	9	-	-	55.5	39.5 <1	14.8 <1	-
	Vanadium	mg/kg	1.	1100 ⁸²	430 ⁶²				- 1					-	- 4			71	72	111	
	Valiacioni	mg/kg mg/kg	i i	81000 ⁸²	40000*2				630				· ·		1130			821	471	230	
Bioaccessible Metals	Bioaccessible Fraction (BAF) - Lead	percent	0	X1000	2000										68						
Diouccessione metals	Bioaccessible Lead – stomach	mg/kg	5							-	-			- 1			-				-
	Bioaccessible Lead – stomach and intestine	mg/kg	5																		
	Lead - total (BARGE method)	mg/kg	5																		
Asbestos	Asbestos Type	None										No Asbestos Detected	No Asbestos Detected				No Asbestos Detected	Chrysotile			
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,																	. ,			
	Asbestos Level	None	\perp															-			
	General Description (Bulk Analysis)	None	-									Soil/Stone	Soil/Stones				Soil/Stone	Soil/Stone			
	Asbestos Containing Material	None										No Asbestos Detected	No Asbestos Detected				No Asbestos Detected	No Asbestos Detected			
	Total Detailed Gravimetric Quantification (% Asb)	mass %	0															<0.001			
	Asbestos Gravimetric & PCOM Total	mass %	0															<0.001			
	Asbestos PCOM Quantification (Fibres)	mass %	0															<0.001			
	Total ACM Gravimetric Quantification (% Asb)	mass %	0															<0.001			-
	Asbestos Gravimetric Quantification (ACMs)	mass %	0															<0.001		-	-
	Asbestos fibres	1										No Asbestos Detected	No Asbestos Detected				No Asbestos Detected	Fibre Bundles			
1												1									

Comments
GAC Generic Assessment Criteria
SAC-Sies Specific Assessment Criteria
(Salaci): No assessment criteria available
(Halaci): No assessment criteria available
Held Criteria (Salaci): No assessment criteria available
Held Criteria (Salaci): Held Criteria (Salaci):

							Location Code	TH172	TH173	TH174	TH175	TH176	TH177	TH178	TH179	TH180	TH181	TH182	TH183	TH184	TH185
							Depth Range	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05
							Date	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021
							Monitoring Zone	28. Treadgold House Turf	28. Treadgold House Turf	28. Treadgold House Partial turf	28. Treadgold House Turf	28. Treadgold House Partial turf	28. Treadgold House Turf	28. Treadgold House Turf	28. Treadgold House Turf	28. Treadgold House Turf	28. Treadgold House Partial turf				
					GAC HH RES	EN AECOM RBKCGrenf	Soil Cover		Turr	Partial turr	lum	Partial turr	lun	Turr	Turr	lun	Partial turr	Partial turf	Partial turf	Partial turf	Partial turf
				GAC HILL BUG BEE SLO	PL_SLOAM_>3.48%TOC																
				AM >3.48%TOC	1	ad	HP lead														
	To the second se		- I	-			_														
Chem_Group	ChemName	output unit	0.03	0									T .								
FAR	Naphthalene Acenaphthylene	mg/kg mg/kg	0.03	4900 ⁸²	13 ⁸² 6000 ⁸²				-						-	· ·	-	-		-	
	Acenaphthene	mg/kg	0.05	15000	6000 ⁸²			- :	-	-	-		-	-	- :	-		-	-	- :	
	Fluorene	mg/kg	0.04	9900*2	4500*2			- 1	-	-	-										
	Phenanthrene	mg/kg	0.03	3100 ⁶²	1500*2																
	Anthracene	mg/kg	0.04	74000 ⁸²	37000*2																
	Fluoranthene	mg/kg	0.03	3100*2	1600*2																
	Pyrene	mg/kg	0.03	7400*2	3800*2																
	Benz(a)anthracene	mg/kg	0.06	29 ⁸²	15 ⁶²																
	Chrysene	mg/kg	0.02	5782	32 12																
	Benzo(a) pyrene	mg/kg	0.04	5 7 ⁸²	3.762																
	Indeno(1,2,3-c,d)pyrene	mg/kg	0.04	87 ⁸²	46 ¹²																
	Dibenz(a,h)anthracene	mg/kg	0.04	0.58*2	0.32*2																
	Benzo(g,h,i)perylene	mg/kg	0.04	640 ⁸²	36012																
	Benzo(b)fluoranthene	mg/kg	0.05	7.782	412			-													
	Benzo(k)fluoranthene	mg/kg	0.02	190*2	11012																
	Benzo(b)&(k)fluoranthene	mg/kg	0.07					-				-	-	-			-	-			
	PAH 16 Total	mg/kg	0.6					-					-								
	Benzo(a)ovrene (surrogate marker for PAH mixture)	mg/kg		7982	40*2	10	5.6		-	-		-	-	-	-		-	-		-	
Metals	Arsenic Barium	mg/kg mg/kg	0.5	79**	1300*2			- :	- :	-	-	-	-	- :	- :	- :	- :	- :	- :	- :	- :
	Beryllium	mg/kg	0.5	2 2 12	1.7*2			- :	-	-		-	-	-	- :	-	-	-	-		
	Boron	mg/kg	0.1	2100082	11000*2										-			_		_	-
	Cadmium	mg/kg	0.1	120'52	85 ⁶²			- :	-				-	-		- :			-	- :	
	Chromium (III+VI)	mg/kg	0.5	910*2	91012			- 1	-	-	-										
	Copper	mg/kg	1	12000 82	7100*2																
	Lead	mg/kg	5	12000	310 15	630	310	1260	1515	1422	1883	1525	1752	754	1394	1349	426	481	460	1042	1099
	Mercury	mg/kg	0.1	12082	23156*2			-	-	-					-						
	Nickel	mg/kg	0.7	230*2	180*2																
	Selenium	mg/kg	1	1100*2	430*2																
	Vanadium	mg/kg	1	2000*2	1200*2																
	Zinc	mg/kg	5	81000 12	40000*2																
Bioaccessible Metals	Bioaccessible Fraction (BAF) - Lead	percent	0																		
	Bioaccessible Lead – stomach	mg/kg	5																		
	Bioaccessible Lead – stomach and intestine	mg/kg	5					-				-	-	-			-	-			
	Lead - total (BARGE method)	mg/kg	5		_			-													
Asbestos	Asbestos Type	None																			
	Asbestos Level	None	_																		
	General Description (Bulk Analysis)	None	_					- :	-	-		-	-	-	- :	-	-	-	-		
	Asbestos Containing Material	None	_					-					-	-	-		- :				
	Carriera Containing Material	None	1			1	1						1 .								
	Total Detailed Gravimetric Quantification (% Asb)	mass %	0																		
	Asbestos Gravimetric & PCOM Total	mass %	0																		
	Asbestos PCOM Quantification (Fibres)	mass %	0																		
	Total ACM Gravimetric Quantification (% Asb)	mass %	0																		
	Asbestos Gravimetric Quantification (ACMs)	mass %	0																		
	Asbestos fibres	1-																			
1											1			1		1			1		

Comments
GAC: Generic Assessment Criteria
GAC: Generic Assessment Criteria
(blank): No assessment Criteria
(blank): No assessment Criteria
volta blank): No ass

Acenag Acenag Fluorer Phenar Anthra	shalene aphthylene aphthene ene anthrene accene anthrene	output unii mg/kg mg/kg mg/kg mg/kg mg/kg	t EQL 0.03 0.03 0.05	GAC_HH_POS_RES_SLO AM_>3.48%TOC	GAC_HH_RES- PL_SLOAM_>3.48%TOC	EN_AECOM_RBKCGrenf ell_GSC_TH_POSresi_le ad		0-0.05 26/11/2021 28. Treadgold House Partial turf	0-0.05 26/11/2021 28. Treadgold House Partial turf	0-0.05 26/11/2021 28. Treadgold House Turf	0-0.05 26/11/2021 28. Treadgold House Turf	0-0.05 26/11/2021 28. Treadgold House Turf
PAH Naphti Asenag Asenag Fluorer Phenar Anthra Fluorar	shalene aphthylene aphthene ene anthrene accene anthrene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.03 0.03 0.05	AM_>3.48%TOC	PL_SLOAM_>3.48%TOC	ell_GSC_TH_POSresi_le	Monitoring Zone Soil Cover EN_AECOM_RBKCGr enfell_GSC_TH_Resi-	28. Treadgold House	28. Treadgold House	28. Treadgold House	28. Treadgold House	28. Treadgold House
PAH Naphti Asenag Asenag Fluorer Phenar Antha Fluorar	shalene aphthylene aphthene ene anthrene accene anthrene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.03 0.03 0.05	AM_>3.48%TOC	PL_SLOAM_>3.48%TOC	ell_GSC_TH_POSresi_le	Soil Cover EN_AECOM_RBKCGr enfell_GSC_TH_Resi-					
PAH Naphti Asenag Asenag Fluorer Phenar Antha Fluorar	shalene aphthylene aphthene ene anthrene accene anthrene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.03 0.03 0.05	AM_>3.48%TOC	PL_SLOAM_>3.48%TOC	ell_GSC_TH_POSresi_le	Soil Cover EN_AECOM_RBKCGr enfell_GSC_TH_Resi-					
PAH Naphti Asenag Asenag Fluorer Phenar Antha Fluorar	shalene aphthylene aphthene ene anthrene accene anthrene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.03 0.03 0.05	AM_>3.48%TOC	PL_SLOAM_>3.48%TOC	ell_GSC_TH_POSresi_le	enfell_GSC_TH_Resi-					
PAH Naphti Asenag Asenag Fluorer Phenar Antha Fluorar	shalene aphthylene aphthene ene anthrene accene anthrene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.03 0.03 0.05	AM_>3.48%TOC	PL_SLOAM_>3.48%TOC	ell_GSC_TH_POSresi_le	enfell_GSC_TH_Resi-					
PAH Naphti Asenag Asenag Fluorer Phenar Antha Fluorar	shalene aphthylene aphthene ene anthrene accene anthrene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.03 0.03 0.05	AM_>3.48%TOC								
PAH Naphti Asenag Asenag Fluorer Phenar Antha Fluorar	shalene aphthylene aphthene ene anthrene accene anthrene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.03 0.03 0.05	4900*2	170							
PAH Naphti Asenag Asenag Fluorer Phenar Antha Fluorar	shalene aphthylene aphthene ene anthrene accene anthrene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.03 0.03 0.05		1262	1						
Acenar Acenar Fluorer Phenar Anthra Fluorar	aphthylene aphthene ene anthrene acene	mg/kg mg/kg mg/kg mg/kg	0.03		13/2							
Acenap Fluorer Phenar Anthra Fluorar	aphthene ene anthrene cacene anthene	mg/kg mg/kg mg/kg	0.05	15000*2								
Fluorer Phenar Anthra Fluorar	ene anthrene racene anthene	mg/kg mg/kg			6000 ⁸²							
Phenar Anthra Fluorar	anthrene racene anthene	mg/kg	0.04	1500012	6000°2							
Anthra Fluorar	racene anthene			9900*2	4500 ^{#2}							
Fluoran	anthene	mg/kg	0.03	3100 12	1500*2							
			0.04	74000*2	37000*2							
Pyrene		mg/kg	0.03	3100 12	1600*2							
		mg/kg	0.03	7400 ⁸²	3800 ⁸²							
	(a)anthracene	mg/kg	0.06	29 ⁸²	15 ⁶²							
Chryse		mg/kg	0.02	57*2	3212							
	o(a) pyrene	mg/kg	0.04	5.782	3.250							
	no(1,2,3-c,d)pyrene	mg/kg	0.04	87 ⁸²	ΔE ¹²							
	nz(a,h)anthracene	mg/kg	0.04	0.58*2	0.32*2							
	o(g,h,i)perylene	mg/kg	0.04	640 ⁸²	360 12							
	o(b)fluoranthene	mg/kg	0.05	7 7 2 2 2	4*2							
	o(k)fluoranthene	mg/kg	0.02	190*2	11012							
	o(b)&(k)fluoranthene	mg/kg	0.07									
	16 Total	mg/kg	0.6									
	o(a)ovrene (surrogate marker for PAH mixture)	mg/kg	-			10	5.6					
Metals Arsenio		mg/kg	0.5	79 ⁸²	∆n ¹²							
Barium		mg/kg	1		1300*2							
Beryllic		mg/kg	0.5	2 2 12	1.742							
Boron		mg/kg	0.1	2100012	11000*2							
Cadmic		mg/kg	0.1	12012	8C 82							
	mium (III+VI)	mg/kg	0.5	910 ⁸²	910*2							
Copper		mg/kg	1	1200012	7100*2							
Lead		mg/kg	5		310 ⁶⁵	630	310	1651	1283	1414	1556	340
Mercu		mg/kg	0.1	120 12	2315612							
Nickel		mg/kg	0.7	230"2	180*2							
Seleniu		mg/kg	1	1100*2	430 12							
Vanadi	dium	mg/kg	1	2000 12	1200*2						-	
Zinc		mg/kg	5	81000 ¹²	40000*2							
	cessible Fraction (BAF) - Lead	percent	0									-
	cessible Lead – stomach	mg/kg	5									-
	cessible Lead – stomach and intestine	mg/kg	5									
	- total (BARGE method)	mg/kg	5					-		-		
Asbestos Asbest	stos Type	None										
	stos Level	None										
Genera	ral Description (Bulk Analysis)	None										
Asbest	stos Containing Material	None										
Total F	Detailed Gravimetric Quantification (% Asb)	mass %	0									
	stos Gravimetric & PCOM Total	mass %	0								-	
	stos PCOM Quantification (Fibres)	mass %	0									
	ACM Gravimetric Quantification (% Asb)	mass %	0									
	stos Gravimetric Quantification (ACMs)	mass %	0									
	stos fibres		1									
I Assess		1	1		I	1	1					

Comments
GAC Generic Assessment Criteria
SAC-Sies Specific Assessment Criteria
(Salaci): No assessment criteria available
(Halaci): No assessment criteria available
Held Criteria (Salaci): No assessment criteria available
Held Criteria (Salaci): Held Criteria (Salaci):

AECOM

							Location Code]					
							Depth Range						
							Date						
							Monitoring Zone						
							Soil Cover						
					GAC_HH_RES	EN_AECOM_RBKCGrenf	EN_AECOM_RBKCGr						
				GAC HH POS RES SLO	PL SLOAM >3.48%TOC	ell GSC TH POSresi le	enfell GSC TH Resi-						
				AM_>3.48%TOC		ad	HP_lead						
	1			-								_	
Chem Group PAH	ChemName	output unit	0.03					Minimum <0.04	Minimum	Maximum 0.35	Maximum 0.35		Median 0.11
PAH	Naphthalene	mg/kg		4900 12	1362				0.05			0.12	
	Acenaphthylene	mg/kg	0.03	1500012	6000 ⁸²			<0.03	0.13	0.9	0.9	0.28	0.24
	Acenaphthene	mg/kg	0.05	1500012				<0.05	0.06	0.62	0.62	0.12	0.06
	Fluorene	mg/kg	0.04	9900*2	4500*2			<0.04	0.05		0.46	1.8	0.06 1.21
	Phenanthrene	mg/kg	0.03	31.00 12	1500*2			<0.03	0.26	5.39	5.39		
	Anthracene	mg/kg	0.04	74000 12	37000*2			<0.04	0.1	2.06	2.06	0.58	0.42
	Fluoranthene	mg/kg	0.03	3100*2	1600 ⁶²			0.06	0.06	9.79	11.84	3.3	3.31 2.84
	Pyrene	mg/kg		7400 (2				0.06	0.06		9.79		
	Benz(a)anthracene	mg/kg	0.06	29 ⁸²	1512			<0.06	0.26	5.68	5.68	2.1	1.66
	Chrysene	mg/kg		5782	3262								
	Benzo(a) pyrene	mg/kg	0.04	5 7 ⁸² 82 ⁸²	3.7 ⁸² 46 ⁸²			<0.04	0.2	5	5	2	1.96
	Indeno(1,2,3-c,d)pyrene	mg/kg	0.04					<0.04	0.15	0.88	4.37	1.8	0.33
	Dibenz(a,h)anthracene	mg/kg mg/kg	0.04	0.58 ⁶² 640 ⁶²	0.32*2			<0.04	0.19	4.01	4.01	1.6	1.54
	Benzo(g,h,i)perylene				360 ⁶²								
	Benzo(b)fluoranthene	mg/kg	0.05	7 7 ⁸² 190 ⁸²	11052			<0.05	0.27	6.93	6.93	2.8	2.65
	Benzo(k)fluoranthene	mg/kg	0.02	190**	110**			<0.02	0.1	9.62	9.62	3.9	1.03
	Benzo(b)&(k)fluoranthene	mg/kg										24	22.6
	PAH 16 Total	mg/kg	0.6					<0.6	2.7	66	66		
	Benzo(a)ovrene (surrogate marker for PAH mixture)	mg/kg				10	5.6	1.87	1.87	2.83	2.83	2.3	2.18
fetals	Arsenic	mg/kg	0.5	79 ⁸²	40 ⁶²			14.2	14.2	109.8	109.8	44	39.7
	Barium	mg/kg	1	-	1300*2			119	119	2009	2009	781	676 2.9
	Beryllium	mg/kg	0.5	2 2 2 2	1.752					9.8			
	Boron	mg/kg	0.1	2100012	11000*2			1.7	1.7	11.5	11.5	4.5	4.1
	Cadmium	mg/kg	0.1	120 12	2 K K K K K K K K K K K K K K K K K K K			<0.1	0.1	3.2	3.2	1.1	1.1
	Chromium (III+VI)	mg/kg	0.5	910*2	910*2			40.6	40.6	171	171	80	76
	Copper	mg/kg	1	1200012	7100*2			38	38	1061	1061	355	293.5
	Lead	mg/kg	5		310 5	630	310	148	148	38490	38490	1959	1381
	Mercury	mg/kg	0.1	12012	23156*2			<0.1	0.3	6.9	6.9	2.2	1.75
	Nickel	mg/kg	0.7	230*2	180*2			14.8	14.8	120.4	120.4	55	52.25
	Selenium	mg/kg	1	110012	430 12			<1	1	4	4	1.3	1
	Vanadium	mg/kg	1	200012	1200*2			47	47	131	131	85	82
	Zinc	mg/kg	5	81000 ⁸²	40000*2			105	105	2183	2183	803	774
ioaccessible Metals	Bioaccessible Fraction (BAF) - Lead	percent	0					57	57	80	80	69	70
	Bioaccessible Lead – stomach	mg/kg	5					808 276	808 276	925 330	925	-	866.5
	Bioaccessible Lead – stomach and intestine	mg/kg	5									-	303
	Lead - total (BARGE method)	mg/kg	5					1296	1296	1626	1626	_	1461
sbestos	Asbestos Type	None						99999	ND	U	ND		
	Asbestos Level	None						99999	ND	0	ND	_	
	General Description (Bulk Analysis)	None						99999	ND	0	ND		
	Asbestos Containing Material	None						99999	ND	0	ND		
	Assessos containing material	MORIE						22223	ND	0	NO		
	Total Detailed Gravimetric Quantification (% Asb)	mass %	0					<0.001	ND	<0.001	ND	0.0005	0.0005
	Asbestos Gravimetric & PCOM Total	mass %	0					<0.001	ND	<0.001	ND	0.0005	0.0005
	Asbestos PCOM Quantification (Fibres)	mass %	0					<0.001	ND	<0.001	ND	0.0005	0.0005
	Total ACM Gravimetric Quantification (% Asb)	mass %	0					<0.001	ND	<0.001	ND	0.0005	0.0005
	Asbestos Gravimetric Quantification (ACMs)	mass %	0					<0.001	ND	<0.001	ND	0.0005	0.0005
	Asbestos fibres		- T					99999	ND	0	ND	0.0003	0.0003
	Patricia i i i i i i i i i i i i i i i i i i	I.			l	I	I	,,,,,,	140		140		

Comments
GGC. Generic Assessment Criteria
GGC. Generic Assessment Criteria
(balnal): No assessment Criteria
(balnal): No assessment Criteria available
Field. D. Field Duplicate
Field: D. Field Duplicate
Field: D. Field Duplicate
Field: D. Field Sulpicate
Field: D. Field: Field

L					Location Code	APG101	APG101	APG101	APG101	APG102	APG102	APG103	APG103	APG104	APG104
					Depth Range	0-0.05	0.1-0.2	0.5-0.6	0.9-1	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0-0.05	0.1-0.2
					Date	06/12/2021	06/12/2021	06/12/2021	06/12/2021	06/12/2021	06/12/2021	06/12/2021	06/12/2021	06/12/2021	06/12/2021
					Monitoring Zone	43. Avondale Park Gardens	43. Avondale Park Gardens	43. Avondale Park Gardens	43. Avondale Park Gardens	43. Avondale Park Gardens	43. Avondale Park Gardens	43. Avondale Park Gardens	43. Avondale Park Gardens	43. Avondale Park Gardens	43. Avondale Park Gardens
					Soil cover	Turf	Turf	Turf	Turf	Turf	Turf	Bare soil	Bare soil	Turf	Turf
					EN AECOM RBKCGrenfell G										
				GAC HH POS RES SLOAM	SC_APG_Lead										
				>3.48%TOC											
Chem_Group	ChemName	output unit													
	Natural Moisture Content	%	0.1				-	18.5	16.4	46.6	28.6	-	20.8	-	
PAH	Naphthalene	mg/kg	0.03	4900*2		-	-	0.11	0.06	0.23		-	0.37	-	-
	Acenaphthylene	mg/kg	0.03	15000*2		-		0.24	0.12	1.08	-	-	1.59	-	-
	Acenaphthene	mg/kg	0.05	15000*2				0.07	<0.05	0.23	-	-	0.39	-	-
	Fluorene	mg/kg	0.04	9900*2		-		0.07	<0.04	0.21	-		0.4	-	
	Phenanthrene	mg/kg	0.03	3100*2				1.32	0.38	3.87			7.39		
	Anthracene	mg/kg	0.04	74000*2				0.41	0.14	1			2.4		
	Fluoranthene	mg/kg	0.03	3100*2				3.09	1.07	10.34	-	-	15.49	-	-
	Pyrene	mg/kg	0.03	7400*2				2.78	0.87	8.58	-	-	13.47	-	-
	Benz(a)anthracene	mg/kg	0.06	29 ^{#2}				1.56	0.61	5.34	-		7.43	-	-
	Chrysene	mg/kg	0.02	57 ^{#2}				1.71	0.66	5.73			7.82		
	Benzo(a) pyrene	mg/kg	0.04	5 7 ⁸²				1.85	0.7	5.73			8.27		-
	Indeno(1,2,3-c,d)pyrene	mg/kg	0.04	82 ⁸²		-		1.65	0.57	4.84			7.27	-	
	Dibenz(a,h)anthracene	mg/kg	0.04	0.58*2				0.36	0.13	0.91			1.59		
	Benzo(g,h,i)perylene	mg/kg	0.04	640 ⁸²				1.48	0.54	4			6.45		
	Benzo(b)fluoranthene	mg/kg	0.05	7 2*2				2.46	0.91	7.68			10.74		
	Benzo(k)fluoranthene	mg/kg	0.02	190*2		-		0.96	0.35	2.98	-		4.17		
	Benzo(b)&(k)fluoranthene	mg/kg	0.07					3.42	1.26	10.66	-		14.91	-	
	PAH 16 Total	mg/kg	0.6					20.1	7.1	62.8			95.2		
	Benzo(a)ovrene (surrogate marker for PAH mixture)	mg/kg	0.0	10	10	-		1.85	0.7	5.73			8.27		
Metals	Arsenic	mg/kg	0.5	79 82		-		13.5	16.2	22.3	-		22.2	-	
	Barium	mg/kg	1	1300#3				142	157	304			382		
	Beryllium	mg/kg	0.5	2 2#2				1.1	1.2	1.8			1.7		
	Boron	mg/kg	0.1	21000*2				1.5	1	3.9			6.4		
	Cadmium	mg/kg	0.1	120#2				<0.1	0.1	0.6			0.8		
	Chromium (III+VI)	mg/kg	0.5	910"2				90.8	72.8	81			75.2	-	-
	Copper	mg/kg	1	12000*2		-	-	46	42	81			95		
	Lead	mg/kg	· ·	12000	630	761	668	381	394	1014	624	1052	912	1000	771
	Mercury		0.1	120*2	630		- 000	1.1	0.8	1.4	- 024		1.1	1000	
	Nickel	mg/kg mg/kg	0.1	230*2		- :	- :	18.7	21.6	28.4	· :	-	27.5	1	
	Selenium	mg/kg mg/kg	0.7	1100*2			-	18.7	<1	28.4 <1	· :	-	27.5	-	
			1				-	59	58		· :	-	61		
	Vanadium Zinc	mg/kg mg/kg	1	2000*2			· :	113	113	71 360	· :	- :	392	1	
0	TOC	96 96	0.02	81000 ⁶²			-	113	113	360		· ·	392		
Organics			0.02									· ·			-
Asbestos	Asbestos Type	None	+					No Asbestos Detected	No Asbestos Detected	No Asbestos Detected	-	-	No Asbestos Detected		
	Asbestos Level	None	_					-	-				-		
	General Description (Bulk Analysis)	None	-					soil/stones	soil/stones	soil/stones	-		soil	-	
	Asbestos Containing Material	None	_					No Asbestos Detected	No Asbestos Detected	No Asbestos Detected		-	No Asbestos Detected	-	-
	Total Detailed Gravimetric Quantification (% Asb)	mass %	0												
	Asbestos Gravimetric & PCOM Total	mass %	0			· · · · · · · · · · · · · · · · · · ·	-		-	-		-	-	-	
	Asbestos PCOM Quantification (Fibres)	mass %	0					-						-	-
	Total ACM Gravimetric Quantification (% Asb)	mass %	0			-		-	-	-	-	-	-	-	-
	Asbestos fibres	-				-		No Asbestos Detected	No Asbestos Detected	No Asbestos Detected	-	-	No Asbestos Detected	-	-

Env Stds Comments #2:LQM/CIEH S4ULs 2015 #3:EIC/AGS/CL:AIRE

AECOM

G2 - APG GQRA.xism , 07/04/2022 (Monitoring_Zone = '43. Avondale Park Gardens') Page 1 of 4

L					Location Code	APG105	APG105	APG106	APG106	APG106	APG107	APG107	APG108	APG108	APG109
					Depth Range	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0.5-0.6	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0-0.05
					Date	06/12/2021	06/12/2021	06/12/2021	06/12/2021	06/12/2021	06/12/2021	06/12/2021	06/12/2021	06/12/2021	06/12/2021
					Monitoring Zone	43. Avondale Park Gardens									
					Soil cover	Bare soil	Turf	Turf	Bare soil	Bare soil	Bare soil				
				GAC_HH_POS_RES_SLOAM _>3.48%TOC	EN_AECOM_RBKCGrenfell_G										
Chem_Group	ChemName	output uni		1											
	Natural Moisture Content	%	0.1			48.4			-	16.5	-	-	27.6	-	-
PAH	Naphthalene	mg/kg	0.03	4900*2		0.43			-	<0.04	-		0.27	-	-
	Acenaphthylene	mg/kg	0.03	15000 ⁴²		1.39			-	0.08	-		1.06	-	-
	Acenaphthene	mg/kg	0.05	15000*2		0.31				< 0.05			0.19	-	
	Fluorene	mg/kg	0.04			0.33			-	< 0.04			0.19	-	
	Phenanthrene	mg/kg	0.03	3100*2		5				0.33			2.99		
	Anthracene	mg/kg	0.04			1.94				0.09			1.33		
	Fluoranthene	mg/kg	0.03			11.87		-	-	0.69	-	-	8.46	-	-
	Pyrene	mg/kg	0.03	7400*2		10.52			-	0.61	-		7.21	-	-
	Benz(a)anthracene	mg/kg	0.06	29"2		6.4			-	0.41	-		4.15	-	-
	Chrysene	mg/kg	0.02			6.47		-	-	0.47	-	-	4.49	-	-
	Benzo(a) pyrene	mg/kg	0.04			7.51			-	0.48			3.98	-	
	Indeno(1,2,3-c,d)pyrene	mg/kg	0.04			6.59			-	0.42			3.65	-	
	Dibenz(a,h)anthracene	mg/kg	0.04	0.58*2		1.25				0.09			0.55		
	Benzo(g,h,i)perylene	mg/kg	0.04			5.83				0.38			3.1		
	Benzo(b)fluoranthene	mg/kg	0.05			9.49			-	0.62			5.4	-	-
	Benzo(k)fluoranthene	mg/kg	0.02			3.69			-	0.24			2.1	-	
	Benzo(b)&(k)fluoranthene	mg/kg	0.07	140		13.18				0.86			7.5		
	PAH 16 Total	mg/kg	0.6			79				4.9			49.1		
	Benzo(a)pyrene (surrogate marker for PAH mixture)	mg/kg	0.0	10	10	7.51				0.48			3.98		
Metals	Arsenic	mg/kg	0.5	79 ⁸²	10	25.2	-		-	16			18.6		
metals	Barium	mg/kg	1	1300*3		271		1		177		-	322		· :
			0.5	2 2 12		1.8			-	1.1			1.5	-	
	Beryllium	mg/kg					-							-	
	Boron	mg/kg	0.1	21000*2		4.3 1.1	:	-		1.6 0.1	:	-	4.3 0.7		
	Cadmium	mg/kg	0.1	120 12			-	-					74.4		
	Chromium (III+VI)	mg/kg	0.5	910 12		78.1	- :		-	84.1		-		-	-
	Copper	mg/kg	1	12000*2		89				45			70		
	Lead	mg/kg	5	_	630	763	638	519	543	941	765	698	851	670	1923
	Mercury	mg/kg	0.1	12012		1.9	-	-		1.2			0.9		
	Nickel	mg/kg	0.7	230*2		28.3		-		17.7		-	29.1		
	Selenium	mg/kg	1	1100*2		<1			-	<1	-		<1	-	
	Vanadium	mg/kg	1	2000*2		69			-	60	-		57	-	-
	Zinc	mg/kg	5	81000*2		301			-	91	-		363	-	-
Organics	TOC	%	0.02					-		-		-		-	
Asbestos	Asbestos Type	None	_			No Asbestos Detected		-		No Asbestos Detected		-	No Asbestos Detected		
	Asbestos Level	None	_					-		-		-			
1	General Description (Bulk Analysis)	None				soil	-	-	-	soil/stones	-	-	soil	-	-
	Asbestos Containing Material	None				No Asbestos Detected		-		No Asbestos Detected		-	No Asbestos Detected		
1	Total Detailed Gravimetric Quantification (% Asb)	mass %	0												
	Asbestos Gravimetric & PCOM Total	mass %	0												
	Asbestos PCOM Quantification (Fibres)	mass %	0					-		-		-			
	Total ACM Gravimetric Quantification (% Asb)	mass %	0					-		-		-			
1	Asbestos fibres	-				No Asbestos Detected			-	No Asbestos Detected	-		No Asbestos Detected	-	

Env Stds Comments #2:LQM/CIEH S4ULs 2015 #3:EIC/AGS/CL:AIRE

L				Location Code	APG109	APG110	APG110	APG111	APG111	APG112	APG112	APG113	APG113
				Depth Range	0.1-0.2	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0-0.05	0.1-0.2
				Date	06/12/2021	06/12/2021	06/12/2021	06/12/2021	06/12/2021	06/12/2021	06/12/2021	06/12/2021	06/12/2021
												43. Avondale Park Gardens	
				Soil cover	Bare soil	Turf	Turf	Turf	Turf	Turf	Turf	Turf	Turf
				EN AECOM RBKCGrenfell G	Duit Juli				190	1911			- 1011
			GAC HH POS RES SLOA										
			>3.48%TOC										
			_23.46%100										
Chem_Group	ChemName	output unit EQI											
	Natural Moisture Content	% 0.1			19.5	-	18.9	-	-	28.1		-	
PAH	Naphthalene	mg/kg 0.0	3 4900*2		0.65		0.34		-	0.22		-	-
	Acenaphthylene	mg/kg 0.0	3 15000 ⁸²		3.14	-	2.03	-	-	1.14		-	
	Acenaphthene	mg/kg 0.0	5 15000 ⁸²		0.3		0.26	-	-	0.12			-
	Fluorene	mg/kg 0.0			0.37		0.31			0.12			
	Phenanthrene	mg/kg 0.0	3 3100*2		4.73		4.51			1.81			
	Anthracene	mg/kg 0.0	4 74000°2		3.17		2.64			1.04			
	Fluoranthene	mg/kg 0.0	3 3100*2		13.71		14.1		-	5.99			-
	Pyrene	mg/kg 0.0			12		12.34		-	4.76			
	Benz(a)anthracene	mg/kg 0.0	6 29*2		7.96		8.1			3.5			
	Chrysene	mg/kg 0.0	2 57*2		8.2		8.23		-	4.07			
	Benzo(a) pyrene	mg/kg 0.0			9.42		8.53		-	4.37			
	Indeno(1,2,3-c,d)pyrene	mg/kg 0.0	4 82"2		9.17	-	7.22			3.59	- :	- :	-
					1.61		1.24			0.56	- i		
	Dibenz(a,h)anthracene	mg/kg 0.0	4 640*2					-	-		-	-	· ·
	Benzo(g,h,i)perylene	mg/kg 0.0 mg/kg 0.0	Kan		8.17 12.38	- 1	5.95 10.96	- 1		3.48 5.67	- :	- :	- :
	Benzo(b)fluoranthene				4.82	- :	4.26			2.21	<u> </u>	- :	
	Benzo(k)fluoranthene							· :			<u> </u>		
	Benzo(b)&(k)fluoranthene	mg/kg 0.0			17.2		15.22			7.88			
	PAH 16 Total	mg/kg 0.6			99.8		91			42.7		-	
	Benzo(a)ovrene (surrogate marker for PAH mixture)	me/ke	10	10	9.42	-	8.53	-	-	4.37	-	-	
Metals	Arsenic	mg/kg 0.5			23.5	-	22.9	-	-	20.6	-	-	
	Barium	mg/kg 1	1300*3		669		497	-		234			-
	Beryllium	mg/kg 0.5	2 2*2		1.8		1.7	-		1.2	-	-	-
	Boron	mg/kg 0.1			2.4		2.6	-		3.9			-
	Cadmium	mg/kg 0.1	120"2		0.5		0.5	-	-	0.5	-	-	
	Chromium (III+VI)	mg/kg 0.5			87.2		63	-	-	78.4	-	-	
	Copper	mg/kg 1	12000*2		82	-	78	-	-	73			-
	Lead	mg/kg 5		630	2223	1016	1027	849	901	546	506	782	611
	Mercury	mg/kg 0.1	120"2		1.1		0.8			0.7			
	Nickel	mg/kg 0.7	230 ⁸²		27.8		31.2		-	22.8			
	Selenium	mg/kg 1	1100*2		<1		<1			<1			
	Vanadium	mg/kg 1	2000*2		64		79			58			
	Zinc	mg/kg 5	81000 ⁴²		474		514	-	-	267	-		
Organics	TOC	% 0.0			-			-	-	-	-	-	
Asbestos	Asbestos Type	None			No Asbestos Detected		No Asbestos Detected			No Asbestos Detected			-
	Asbestos Level	None											
	General Description (Bulk Analysis)	None			soil		soil			soil/stones			
	Asbestos Containing Material	None			No Asbestos Detected		No Asbestos Detected	- :		No Asbestos Detected	- : ·	1	-
	Total Detailed Gravimetric Quantification (% Asb)	mass % 0			No Aspestos Detected		ASDESIOS DELECTED	- :		No Aspestos Detected	- : - ·		-
							· ·	i :			· ·		· ·
	Asbestos Gravimetric & PCOM Total Asbestos PCOM Quantification (Fibres)	mass % 0 mass % 0			- :			- :			- :		
						-		- :	-	-	- :	- :	-
	Total ACM Gravimetric Quantification (% Asb)	mass % 0			N . A . b		N. A						
	Asbestos fibres	1-			No Asbestos Detected		No Asbestos Detected		-	No Asbestos Detected		-	

Env Stds Comments #2:LQM/CIEH S4ULs 2015 #3:EIC/AGS/CL:AIRE

L					Location Code	APG113	APG114	APG114	APG114	APG114	APG115	APG115	APG116	APG116	GTCS 1-24
					Depth Range	0.5-0.6	0-0.05	0.1-0.2	0.5-0.6	0.9-1	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0-0.05
					Date	06/12/2021	06/12/2021	06/12/2021	06/12/2021	06/12/2021	06/12/2021	06/12/2021	06/12/2021	06/12/2021	05/06/2019
					Monitoring Zone	43. Avondale Park Gardens	43. Avondale Park Garden								
					Soil cover	Turf	turf								
					EN_AECOM_RBKCGrenfell_G										
				GAC HH POS RES SLOAM	SC_APG_Lead										
				>3.48%TOC	1										
Chem_Group	ChemName	output unit													
	Natural Moisture Content	%	0.1	-		14.2	-		7.4	20.5			-	16.4	15.2
PAH	Naphthalene	mg/kg	0.03	4900*2		0.15		-	0.21	0.06	-	-	-	0.41	<0.027 - 0.28
	Acenaphthylene	mg/kg	0.03	15000 ⁴²		0.53		-	0.69	0.23	-	-	-	2.58	1.04
	Acenaphthene	mg/kg	0.05	1500082		0.07		-	0.12	<0.05	-		-	0.15	0.16
	Fluorene	mg/kg	0.04	9900*2		0.08		-	0.16	<0.04	-		-	0.22	0.16
	Phenanthrene	mg/kg	0.03	3100*2		1.29			2.65	0.46				3.47	2.56
	Anthracene	mg/kg	0.04	74000*2		0.66			1.49	0.25				2.26	1.24
	Fluoranthene	mg/kg	0.03	3100*2		3.03			6.98	1.29	-		-	13.54	8.11
	Pyrene	mg/kg	0.03	7400*2		2.72			6.06	1.19				12.45	7.19
	Benz(a)anthracene	mg/kg	0.06	29 ^{#2}		1.6			3.39	0.78				8.24	4.4
	Chrysene	mg/kg	0.02	57*2		1.92			4.04	0.92	-		-	8.44	4.53
	Benzo(a) pyrene	mg/kg	0.04	5 7 ⁸²		2.06			3.45	0.88	-		-	9.7	5.75
	Indeno(1,2,3-c,d)pyrene	mg/kg	0.04	82 ⁸²		1.88			3.25	0.77	-		-	8.45	4.2
	Dibenz(a,h)anthracene	mg/kg	0.04	0.58*2		0.26			0.48	0.16				1.73	1.06
	Benzo(g.h.i)perylene	mg/kg	0.04	640 ⁸²		1.77			2.92	0.7				7.61	4.34
	Benzo(b)fluoranthene	mg/kg	0.05	7 2*2		2.72			4.43	1.14				12.33	7.17
	Benzo(k)fluoranthene	mg/kg	0.02	190*2		1.06			1.72	0.45				4.79	2.79
	Benzo(b)&(k)fluoranthene	mg/kg	0.07			3.78			6.15	1.59				17.12	9.96
	PAH 16 Total	mg/kg	0.6			21.8			42	9.3				96.4	55
	Benzo(a)ovrene (surrogate marker for PAH mixture)	mg/kg		10	10	2.06			3.45	0.88				9.7	5.75
Metals	Arsenic	mg/kg	0.5	79 ⁸²	10	15.9			11.8	13.9				19.4	23.1
metals	Barium	mg/kg	1	1300*3		176			163	86				213	269
	Beryllium	mg/kg	0.5	2 2 12		1.3			100	0.6				1.4	1.6
	Boron	mg/kg	0.1	21000*2		1.6			1.1					1.7	2.7
	Cadmium	mg/kg	0.1	120"2		0.2	-		0.2	0.2				0.3	1
	Chromium (III+VI)		0.5	910*2		84.1	- :	- :	68.7	52.9				82.3	68.2
		mg/kg	0.3			46	-	- :	55	27		-		68	76
	Copper	mg/kg	1	12000*2											
	Lead	mg/kg	5		630	468	715	599	1038	600	589	673	545	572	659
	Mercury	mg/kg	0.1	120#2		0.9			0.4	3.5				0.9	1.8
	Nickel	mg/kg	0.7	230#2		20.6			21	11.3			-	24.5	27.4
	Selenium	mg/kg	1	1100*2		<1			<1	<1				<1	2
	Vanadium	mg/kg	1	2000*2		60	-	-	135	32	-		-	96	62
	Zinc	mg/kg	5	81000 ⁸²		151	-	-	111	52	-	-	-	187	285
Organics	TOC	%	0.02			-		-	-	-	-		-	-	5.84
Asbestos	Asbestos Type	None	_			No Asbestos Detected		-	No Asbestos Detected	No Asbestos Detected	-	-	-	No Asbestos Detected	No Asbestos Detected
	Asbestos Level	None	_							-					
	General Description (Bulk Analysis)	None				soil			Soil/Stones	soil/stones				Soil/Stones	soil-stones
	Asbestos Containing Material	None				No Asbestos Detected			No Asbestos Detected	No Asbestos Detected				No Asbestos Detected	No Asbestos Detected
	Total Detailed Gravimetric Quantification (% Asb)	mass %	0											-	
1	Asbestos Gravimetric & PCOM Total	mass %	0												
	Asbestos PCOM Quantification (Fibres)	mass %	0							-					
	Total ACM Gravimetric Quantification (% Asb)	mass %	0							-					
1	Asbestos fibres	-				No Asbestos Detected			No Asbestos Detected	No Asbestos Detected	-		-	No Asbestos Detected	No Asbestos Detected

Env Stds Comments #2:LQM/CIEH S4ULs 2015 #3:EIC/AGS/CL:AIRE

AECOM (Monitoring_Zone = '43. Avondale Park Gardens')

Appendix H Detailed Quantitative Risk Assessment Data Tables

	_																						
		Location Code	TH164	TH164	TH165	TH165	TH166	TH166	TH167	TH167	TH167	TH167	TH168	TH168									
		Depth Range	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0.3-0.4	0.6-0.7	0-0.05	0.1-0.2									
		Date	22/11/2021	22/11/2021	22/11/2021	22/11/2021	22/11/2021	22/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	22/11/2021	22/11/2021									
		Monitoring Zone						28. Treadgold	House - Plot 1														
		Soil Cover	Bare soil	Bare soil	Turf	Turf	Turf	Turf	Turf	Turf	Turf	Turf	Bare soil	Bare soil									
EN_AECOM_R	RBKCGR EN_AECOM_RBKCGR E	EN_AECOM_RBKCGR													Statistical Sumn	nary							
ENFELL_SSAC	AC CHILD ENFELL SSAC ADULT I																						
RECEPTOR S	STEP 1 RECEPTOR STEP 1	RECEPTOR STEP 2																					
Chem_Group ChemName output unit EQL															Number of	Number of	Minimum	Minimum	Maximum	Maximum	Average	Median	Standard
															Results	Detects	Concentration	Detect	Concentration	Detect	Concentration	Concentration	Deviation
																_			_		_	_	
Metals Lead me/kg 5 1.060	50 2.150	4.530	925	1005	1489	8.563	1311	1997	677	2229	451	469	233	148	12	12	148	148	8563	8563	1625	965	2284

															_								
Location Cod	e TH158	TH158	TH159	TH159	TH160	TH160	TH161	TH161	TH161	TH162	TH162	TH162	TH163	TH163									
Depth Rang	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0-0.05	0.3-0.4	0.6-0.7	0-0.05	0.1-0.2	0.3-0.4	0-0.05	0.1-0.2									
Dat	22/11/2021	22/11/2021	22/11/2021	22/11/2021	22/11/2021	22/11/2021	23/11/2021	23/11/2021	23/11/2021	25/11/2021	25/11/2021	25/11/2021	22/11/2021	22/11/2021									
Monitoring Zon	e						28. Treadgold	House - Plot 2															
Soil Cove	Turf	Turf	Partial turf	Partial turf	Turf	Turf	Turf	Turf	Turf	Bare soil													
EN_AECOM_RBKCGR EN_AECOM_RBKCGR EN_AECOM_RBKCG	R														Statistical Summary								
ENFELL_SSAC_CHILD_ENFELL_SSAC_ADULT_ENFELL_SSAC_CHIL	D																						
RECEPTOR STEP 1 RECEPTOR STEP 1 RECEPTOR STEP	2																						
Chem_Group ChemName output unit EQL															Number of	Number of	Minimum	Minimum	Maximum	Maximum	Average	Median	Standard
															Results	Detects	Concentration	Detect	Concentration	Detect	Concentration	Concentration	Deviation
Marair Lord molin E 1,050 2,150 4,520	1785	1720	1591	1700	1000	3168	1941	1100	715	1411	6245	1090	1000	1379	14	14	715	715	6745	6245	1996	1505 5	1276

Location (
		TH151	TH152	TH152	TH153	TH153	TH154	TH154	TH155	TH155	TH156	TH156	TH156	TH156	TH157	TH157									
Depth Ra	ange 0-0.05	0.1-0.2	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0-0.05	0.1-0.2	0.3-0.4	0.6-0.7	0-0.05	0.1-0.2									
	Date 23/11/202	23/11/2021	23/11/2021	23/11/2021	22/11/2021	22/11/2021	23/11/2021	23/11/2021	22/11/2021	22/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021	22/11/2021	22/11/2021									
Monitoring i	Zone							28. Treadgold	House - Plot 3																
Soil Co	over Bare soil	Bare soil	Bare soil	Bare soil	Turf	Turf	Turf	Turf	Turf	Turf	Bare soil	Bare soil	Bare soil	Bare soil	Turf	Turf									
EN AECOM RINCOR EN AECOM RINCORE EN AECOM RIN	KCGR																Statistical Summary								
ENFELL SSAC CHILD NIFELL SSAC ADULT ENFELL SSAC C	CHILD																								
RECEPTOR STEP 1 RECEPTOR STEP 1 RECEPTOR ST	TEP 2																								
Chem_Group ChemName output unit EQL																	Number of	Number of	Minimum	Minimum	Maximum	Maximum	Average	Median	Standard
																	Results	Detects	Concentration	Detect	Concentration	Detect	Concentration	Concentration	Deviation
																									1
Metals Lead mg/kg 5 1,060 2,150 4,530	1001	1239	926	3101	1693	3752	1415	2119	1485	3623	6029	2049	1095	903	1271	995	16	16	903	903	6029	6029	2044	1450	1417

Comments SSAC: Site Specific Assessment Criteria (blank): No assessment criteria available

	Location Code Depth Range Date	GTCS2-S280A 0-0.05 05/11/2020	TH141 0-005 24/11/2021	TH141 0.1-0.2 24/11/2021	TH142 0-0.05 23/11/2021	TH142 0.3-0.4 23/11/2021	TH162 0.6-0.7 23/11/2021	THUM 0-0.05 24/11/2021	THG43 0.1-0.2 24/11/2021	TH166 0-0.05 26/11/2021	TH144 0.1-0.2 24/11/2021	TH145 0-0.05 25/11/2021	THMS 0.1-0.2 25/11/2021	TH145 0.3-0.4 25/11/2021	TH046 0-0.05 24/11/2021	TH166 0.1-0.2 26/11/2021	TH147 0-0.05 24/11/2021	THS47 0.1-0.2 24/11/2021	TH168 0-0.05 23/11/2021	TH148 0.1-0.2 23/11/2021	TH149 0-0.05 23/11/2021	TH169 0.1-0.2 23/11/2021	TH150 0-0.05 23/11/2021	THESE 0.1-0.2 22/11/2021									
	Monitoring Zone											21	L Treadgold House - Pl	at 4											1								
	Sall Cover	bare spil - disturbed	Sare spil	Sare soil	Turf	Turf	Turf	Terf	Turf	Turf	Turf	Race spil	Sare soil	Rare spil	Sare soil	Race soil	Sare soil	Rare soil	Sare spil	Bare soil	Rare spil	Bare soil	Rare spil	Sare soil									
EN_AECO	COM_REKCG EN_AECOM_REKCG EN_AECOM_REKCG	1																							Statistical Summary								
RENFELL	LL_SSAC_CHI RENFELL_SSAC_ADU RENFELL_SSAC_CHI																																
LD_RECEP	SPTOR_STEP_LT_RECEPTOR_STEP_LD_RECEPTOR_STE																																
	1 1 92																								_								
Chem_Group ChemName output EQL																									Number of	Number of	Minimum 8	Minimum 1	Vasimum M	Assimum Avr	Jerage M	iedian Standar	d
unit																									Results	Detects	Concentration D	Detect	Concentration De	∠etect Cor	uncentration ©	oncentration Deviatir	20
Metals Lead me/ke S 13	1.060 2.150 4.510	2216	584	649	2006	624	685	1357	1616	1059	596	1476	1766	2041	1358	1751	1432	2107	1679	2031	1327	1920	1921	2424	22	22	584 5	84 2	2006 20	.006 16°	.28 2	606 806	

	Locatio Depth	n Code GTCS2-5279A Range 0-0.02 Date 05/11/2020	TH131 0-0.05 24/11/2021	TH131 0.1-0.2 24/11/2021	TH132 0-0.05	TH132 0.1-0.2	TH122 0-0.05 24/11/2021	TH122 0.1-0.2 24/11/2021	THE24 0-055 25/11/2021	TH134 0.1-0.2 25/11/2021	TH134 0.3-0.4 25/11/2021	TH124 0.6-0.7 25/11/2021	TH125 0-0.05	TH135 0.1-0.2 24/11/2021	TH136 0-0.05 24/11/2021	TH136 0.1-0.2 24/11/2021	TH137 0-0.05 24/11/2021	THE37 0.1-0.2 24/11/2021	TH138 0-0.05 24/11/2021	TH128 01-02	TH139 0-0.05 24/11/2021	TH129 0.1-0.2 24/11/2021	TH140 0-0.05 24/11/2021	TH140 0.1-0.2 24/11/2021								
	Monitorin												S. Treadgold House - Pl												1							
	Sai	Cover turf	Turf	Turf	Turf	Turf	Turf	Terf	Rare soil	Sare spil	Bare soil	Race spil	Bare soil	Rare spil	Terf	Turf	Turf	Turf	Turf	Turf	Turf	Turf	Turf	Terf								
EN_AECO	OM_REKCG EN_AECOM_REKCG EN_AECOM	RENCG																							Statistical Summary							
RENFELL	_SSAC_OH RENFELL_SSAC_ADU RENFELL_SS	AC_OH																														
LD_RECEP	PTOR_STEP_LT_RECEPTOR_STEP_LD_RECEPT	OR,STE																														
Characteristics and the Control of t	1 1	72							_																Number of	the seeders of	Malana Malana	Mariana	Mariana	Thomas .	Mades 74	
Changarap Channally Stepen Lick																									Sanitr	Detects	Concentration Detect	Concentral	ion Detect	Connectration	Concentration De	mistion
Metals Lead me/ke 5 10	1,060 2,150 4,51	1385	1993	1921	1692	4628	1736	1876	717	1081	1649	541	947	994	1615	2644	2766	2774	1934	5942	1353	1135	1398	2172	22	23	541 541	5942	5942	2070	1692 13	GE .

	Location Code Depth Range Date	TH022 0-0.05	TH122 0.1-0.2 25/11/2021	TH122 0.3-0.4 35/11/2021	TH123 0-0.05 24/11/2021	TH123 0.1-0.2 24/11/2021	TH124 0-0.05 26/11/2021	TH12H 0.1-0.2 26/11/2021	TH125 0-0.05 25/11/2001	TH125 0.1-0.2 25/11/2021	TH125 0.3-0.4 25/11/2021	TH126 0-0.05 26/11/2021	TH126 0.1-0.2 36/11/2021	TH127 0-0.05 36/11/2021	TH127 0.1-0.2 36/11/2021	TH128 0-0.05 34/11/2021	TH128 0.1-0.2 34/11/2021	TH129 0-0.05 36/11/2021	TH129 0.1-0.2 26/11/2021	TH120 0-0.05	TH120 0.1-0.2 25/11/2021	TH130 0.3-0.4 25/11/2021	TH130 0.6-0.7 25/11/2021									
	Monitoring Zone											28. Treadrold	Mouse - Sint 6																			
	Soil Cover	Partial turf	Partial turf	Partial turf	Partial turf	Partial turf	Race spil	Sare soil	Turf	Turf	Turf	Race spil	Fare soil	Turf	Turf	Rare soil	Sare spil	Partial turf	Partial turf	Turf	Turf	Turf	Turf									
EN_AECOM_REKCG EN_AECOM_REKC	EN_AECOM_RBKCG																							Statistical Summa	ary							
RENFELL SSAC OH RENFELL SSAC AD	RENFELL SSAC OH																															
LD_RECEPTOR_STEP_LT_RECEPTOR_STE	P LD_RECEPTOR_STE																															
1 1	9.2																															
Chem_Group ChemName output EQL																								Number of	Number of	Minimum	Minimum	Maximum 1	Maximum Av	erage 1	Medan 9	andard
unk																								Results	Detects	Concentration	Detect	Concentration	Detect Co	encentration (Concentration D	eviation
Metals Lead marks 5 1,060 2,150	4.520	1549	1346	638	999	1100	1399	1508	6220	1535	854	2136	1722	1754	1212	758	661	1557	4405	1774	2207	526	575	22	22	526	526	6230 (220 16	61 1	1453.5 1	114

	Location Code	TH117	TH117	TH117	TH118	TH118	TH118	TH118	TH119	TH119	TH119	TH120	TH120	TH120	TH171	TH172	TH173									
	Depth Range	0-0.05	0.1-0.2	0.3-0.4	0-0.05	0.1-0.2	0.3-0.4	0.6-0.7	0-0.05	0.1-0.2	0.3-0.4	0-0.05	0.1-0.2	0.3-0.4	0-0.05	0-0.05	0-0.05									
	Date	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	25/11/2021	26/11/2021	26/11/2021	26/11/2021									
Mo	tonitoring Zone								28. Treadgold	House - Plot 7																
	Soil Cover	Partial turf	Partial turf	Partial turf	Bare soil	Bare soil	Bare soil	Bare soil	Turf	Turf	Turf	Turf	Turf	Turf	Turf	Turf	Turf	1								
EN_AECOM_RBKCGR_EN_AECOM_RBKCGRE_EN_AEC	ECOM_RBKCGR																	Statistical Summary								
ENFELL SSAC_CHILD NFELL SSAC_ADULT_ ENFELL	LL_SSAC_CHILD																									
RECEPTOR STEP 1 RECEPTOR STEP 1 RECE	CEPTOR STEP 2																									
Chem_Group ChemName output unit EQL																		Number of	Number of	Minimum	Minimum	Maximum	Maximum	Average	Median	Standard
																		Results	Detects	Concentration	Detect	Concentration	Detect	Concentration	Concentration	Deviation
Matrix 1 and 1 and 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					242		550										1515								1266.6	040
Metals Lead mg/kg 5 1,060 2,150	4.530	2148	3693	1253	342	192	550	456	1843	2174	2069	1065	2763	1204	1169	1260	1515	16	16	192	192	3693	3693	1481	1256.5	1940

		Location Code Depth Range Date	0-0.02	TH111 0-0.05 26/11/2021	TH111 0.1-0.2 26/11/2021	TH112 0-0.05 26/11/2021	TH112 0.1-0.2 26/11/2021	TH113 0-0.05 26/11/2021	TH113 0.1-0.2 26/11/2021	TH114 0-0.05 25/11/2021	TH114 0.1-0.2 25/11/2021	TH114 0.3-0.4 25/11/2021	TH115 0-0.05 25/11/2021	TH115 0.1-0.2 25/11/2021	TH115 0.3-0.4 25/11/2021	TH116 0-0.05 23/11/2021	TH116 0.1-0.2 23/11/2021	TH116 0.3-0.4 23/11/2021	TH116 0.6-0.7 23/11/2021	TH174 0-0.05 26/11/2021	TH125 0-0.05 26/11/2021	TH176 0-005 26/11/2021	TH177 0-0.05 26/11/2021	TH178 0-0.05 26/11/2021	TH129 0-0.05 26/11/2021	TH180 0-0.05 26/11/2021								
		Monitoring Zone													d House - Plot B																			
		Sail Cover	terf	Turf	Turf	Turf	Turf	Turf	Terf	Partial turf	Partial turf	Partial turf	Turf	Turf	Turf	Terf	Turf	Turf	Turf	Partial turf	Turf	Partial turf	Turf	Turf	Terf	Turf								
	EN_AECOM_REKCG EN_AECOM_REKCG	EN_AECOM_RBKCG																									Statistical Summary							
	RENFELL_SSAC_CHI RENFELL_SSAC_ADU	RENFELL_SSAC_OH																																
	LD_RECEPTOR_STEP_LT_RECEPTOR_STEP	LD_RECEPTOR_STE																																
	1 1	92								_									_							_		Terror Trans	Ten c	100			Terror T	
Chem_uroup ChemName output unit	ios.																										Results	Number of Mil Detects Cor	mum Minim centration Detect	um Mai t Con	ncentration Detect	Average Concentration	n Concentration	Deviation
Metals Lead me/ke S	1.060 2.150	4.530	992	1027	1273	1009	935	1270	2920	1556	1606	1612	1951	4102	1240	2323	1472	1407	1222	1422	1882	1525	1752	754	1294	1349	24	24 754	754	410	.02 4102	1617	1414.5	929

To a ser Tags are and DOS Modes Republished or Control of the Cont

Lecation Co	de GTCS2-5275A	GTCS2-S279A	THIOR	TH108	TH108	TH109	TH109	TH109	TH110	TH110	TH110	TH110	TH111	TH111	TH112	TH112	TH113	TH113	TH181	TH192	TH193	TH184	THISS	TH186									
Depth Rang	ge 0-0.02	0-0.02	0-0.05	0.1-0.2	0.3-0.4	0-0.09	01-02	0.3-0.4	0-0.05	0.1-0.2	0.3-0.4	0.6-0.7	0-0.05	0.1-0.2	0-0.06	01-02	0-0.05	0.1-0.2	0-0.05	0-0.05	0-0.09	0-0.09	0-0.05	0-0.06									
Dat	te 05/11/2020	05/11/2020	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021									
Monitoring 2a	ne .												House - Plot 9																				
Soil Cow	er turf	terf	Turf	Turf	Turf	Rare spil	Rare soil	Rane soil	Partial turf	Partial turf	Partial turf	Partial turf	Terf	Turf	Tarf	Turf	Turf	Turf	Partial turf	Partial turf	Partial turf	Partial turf	Partial turf	Partial turf									
EN_AGCOM_RINCG EN_AGCOM_RINCGR EN_AGCOM_RIN	CG																								Statistical Summary								
RENFELL SSAC CHIL ENFELL SSAC ADUL RENFELL SSAC O	DHI																																
D RECEPTOR STEP T RECEPTOR STEP 1 LD RECEPTOR ST	TEP .																																
	2																																
Chem_Group ChemName output EQL																									Number of	Number of N	inimum Mi	nimum Ma	sémum M	Maximum	Average	Median Star	dard
unk																									Results	Detects C	incentration De	sect Cos	ncentration D	Detect	Concentration	Concentration Dev'	ation
Marala Land molks C 1,000 2,100 4,530	993	1300	2021	19 960	26 636	1536	9259	2920	636	1419	991	493	1022	1772	1000	630	1270	2020	436	491	AGO	1542	1000	1661	24	24 4	6 42	200	630 26	20620	3100	110AC C30	

Comments SSAC: Site Specific Assessment Criteria Blankt: No assessment criteria availa -: Not analysed Transport Color Co

		Location Code	GTCS2-S274A	TH:001	TH:001	TH101	TH102	TH102	TH102	TH102	THISDS	TH103	TH::03	THIOM	TH104	TH104	THIDS	TH:105	THOUS	TH::06	TH:206	TH107	TH107	TH187	TH188	TH189	TH190	1							
		Depth Range	0-0.02	0-0.05	0.1-0.2	0.3-0.4	0-0.09	0.1-0.2	03-04	0.6-0.7	0-0.05	0.1-0.2	0.3-0.4	0-0.05	0.3-0.4	0.6-0.7	11-12	0-0.05	0.1-0.2	0-0.09	0.1-0.2	0-0.05	0.1-0.2	0-0.05	0-0.05	0-0.06	0-0.05								
		Date	05/11/2020	26/11/2021	26/11/2021	26/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021	26/11/2021	26/11/2021	26/11/2021	23/11/2021	23/11/2021	23/11/2021	23/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021	26/11/2021								
		Monitoring Zone													L Treadgold House - Pi													1							
		Soil Cover	turf	Partial turf	Partial turf	Partial turf	Sare spil	Sare soil	Rare spil	Rane soil	Partial turf	Partial turf	Partial turf	Turf	Turf	Turf	Turf	Turf	Turf	Turf	Turf	Turf	Turf	Partial turf	Turf	Tarf	Turf								
	EN_ASCOM_REKCG EN_ASCOM_REKC	GR EN_AECOM_RENCG																										Statistical Summary							
	RENFELL_SSAC_CHIL_ENFELL_SSAC_AD	UL RENFELL_SSAC_CHI																																	
	D_RECEPTOR_STEP T_RECEPTOR_STE	1 LD_RECEPTOR_STEP																																	
	- 1	2																																	
Chem_Group ChemName output (60)	:																											Number of	Number of M	nimum Minimum	n Maximum	Maximum	Average	Median Standar	erd .
unk																												Results	Detects Co	uncentration Detect	Concentration	Jon Detect	Concentration	Concentration Deviati	ion
Metals Lead min'ky S	1.060 2.150	4.530	1168	650	441	922	668	676	209	153	2748	609	453	1071	630	150	507	1326	2412	1281	1488	1207	1122	1283	3414	1556	240	25	25 15	a0 150	2748	2748	977	676 654	_

Comments SSAC: Site Specific Assessment Criteria Iblanki: No assessment criteria availat -: Not analysed

Appendix I Letter to Residents – Treadgold House

Unit 7 Baseline Studios Whitchurch Road W11 4AT

07 April 2022

Dear resident,

In July 2021, we wrote to you to let you know that further soil sampling would be undertaken, following the completion of the environmental checks that were carried out in the areas surrounding Grenfell Tower, to identify any significant soil contamination from the Grenfell Tower tragedy.

At Treadgold House, the checks concluded that:

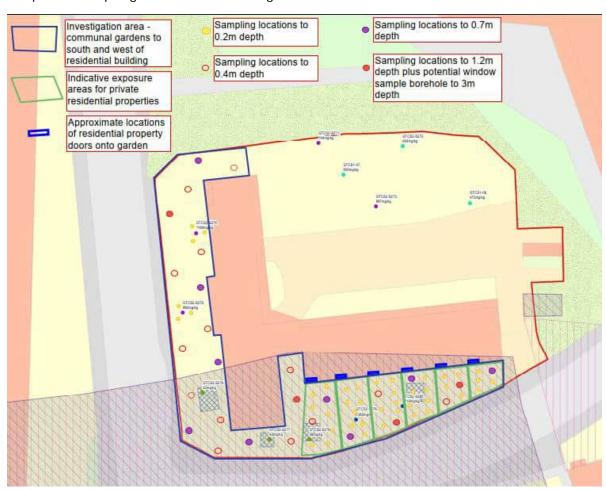
- Public open space to the north of the building and the raised planters to the south and west found normal soil composition and require no further action.
- Higher levels of lead than expected were found in four ground-level samples, two to the south and two to the west of the building (as requested at our block meeting on 23rd September 2021, a summary of these results is provided at the end of this letter).
- The source of lead in the four samples is more likely to be from historic contamination rather than from the Grenfell tragedy and could be linked to removing lead paint from windows or railings, or the past use of the land as a brickworks.

Specialists from AECOM, the consultants carrying out the additional work, will visit and walk around the garden area to finalise sampling positions on Tuesday November 9. The soil sampling work is then scheduled to commence on Monday November 22 and will be completed by Tuesday 30 November at the latest. No works are expected to be undertaken during the weekends.

During that time, AECOM will be:

- Digging 66 shallow holes in the communal garden to the west and south of Treadgold House to depths of between 20cm and 70cm
- Potentially drilling holes at 4 locations using a window sampling drilling rig to depths of up to 3m below ground level
- Taking about 200 soil samples and testing for substances such as lead, asbestos, hydrocarbon compounds and other metals

A plan of the proposed investigation is included on the next page. The shallow hole and window sample locations may vary slightly from the attached plan to avoid features such as areas of paving or water supply pipes.



For those residents who saw the soil sampling undertaken during the two stages of investigation connected with the Grenfell Tower, the area of the ground to be sampled at each location will be smaller and typically no larger than 20cm by 20cm.

Where holes are dug in grassed areas, AECOM will try hard to minimise damage to the turf by removing it prior to digging and then replacing it once the hole is finished. Once complete, marks where the turf was cut are likely to be visible, potentially for several months. Every effort will be made to clean up after work has finished, however, the grass may also be left slightly muddy around each hole and in the general area investigated, but this should wash away when it rains.

Generally, the sampling work shouldn't result in noise that will be a nuisance, however, the window sampling rig (if it is required) uses a drop hammer, which makes a regular hammering sound, which can be noisy. For example, you will probably be able to hear the hammering noise within your home with the windows closed. If the rig is needed, it will only be used on one day, Friday 26 November, and only during normal working hours between 9am and 5pm, in accordance with the Council's Code of Construction. Please note, it will not be possible to use the garden area on this day and access will be restricted.

Proposed sampling locations at Treadgold House

WeAreW11 app

We apologise for any disturbance caused by the sampling works. AECOM will try its best to minimise the impact of the work and the Council will ensure that any damage is fixed.

As part of these works, we also want to find out about how you use the land – do you sit out, do you mainly use the area outside your back door or the whole area, do your children play ball games on it, do you grow plants or vegetables? We are particularly keen to hear from residents whose doors lead out on to the southern garden area where the soil sampling is to take place. This is to make sure we can take this into account when looking at the results of the sampling. You can contact us by calling us on 0800 389 2005 or email lancasterwestoffice@rbkc.gov.uk.

On completion of the sampling work, it will take a few months for the soil samples to be tested and for AECOM to prepare a report with their recommendations. We will provide you with an update early in the new year and by the end of February at the latest.

The Council will carry out additional works if further action is recommended by AECOM. Even if no action is needed, we will discuss the results with you.

Given understandable concerns, and to provide maximum assurance, we have committed to replace the turf and beds of all areas to the south and west of Treadgold House that may have higher levels of trace elements than expected – even if it is deemed safe to leave them as they are.

If you have any queries about these works, either before or while they take place, please contact us using the details at the bottom of this page.

There will also be an opportunity to ask questions at a block meeting, which will take place once we have the results back – we will confirm dates to you as soon as possible.

Kind regards,

James Caspell

Neighbourhood Director

Your Japen

Attachment 1: Summary of soil sampling data for Treadgold House

As part of the Stage 2 Environmental Checks undertaken in the areas surrounding Grenfell Tower, AECOM produced the following site specific assessment criteria (SSAC) to assess lead levels found in ground level soil within the communal garden to the south and west of Treadgold House:

- Residential use without home grown produce 737mg/kg
- Public open space near to a residential use 1420mg/kg

These SSAC identify how much lead in the soil may be safely swallowed and digested by a child using the communal garden. This includes both soil that is directly eaten while using the garden or tracked into homes and then breathed in and swallowed with other household dust. As the SSAC are based on very conservative assumptions, exceeding them does not necessarily mean that a person will be harmed.

Previously, four samples of surface soil were taken from the communal garden including two samples to the west (1168mg/kg and 992mg/kg) and two samples to the south (2216mg/kg and 1385mg/kg) of Treadgold House.

All four lead results exceeded the 'residential use without home grown produce' SSAC and one of the soil samples, from the communal garden to the south of Treadgold House, also exceeded the 'public open space near to residential use' SSAC. Elevated lead levels in urban soils are common and meaningful conclusions cannot be drawn from four samples taken from such a large area, so it is important to wait until we have the results of the planned soil sampling exercise before deciding whether an unacceptable risk exists from lead in soil.

AECOM believes that the SSAC for 'public open space near to a residential use' probably applies to the whole communal garden and that the 'residential use without home grown produce' criteria may apply in the southern part of the communal garden, near to residents' back doors. AECOM would like to refine the SSAC to better reflect how the communal garden is used and we would appreciate it if Treadgold House residents could tell us whether they:

- Sit out and, if so, how often and for how long?
- Mainly use the area outside back doors or the whole area?
- Play ball games and if so, where?
- Grow plants or vegetables?

The planned soil sampling work and input from residents will provide the level of information that AECOM needs to update the SSAC and identify the level of risk to residents using the communal garden. If lead is found to pose unacceptable risks, AECOM will use the results to design a plan to clean-up lead contamination. Normally clean-up will include replacing contaminated soils with clean soil, which would be designed in consultation with residents.

As mentioned in July, these results do not change existing advice from Public Health England, now known as the UK Health Security Agency, which applies to anyone handling soil in an urban environment. This is to follow general good practice such as washing your hands after gardening, working or playing in soil and washing and peeling homegrown fruit and vegetables.

To read more about the results from the Stage 2 Environmental Checks Programme visit www.gov.uk/guidance/soil-and-environmental-checks.

Part 2A Investigation

Appendix J Data Validation Summary Report

Field Procedure No. FP26 Version 2: May 2018 FIELD SAMPLING AND LABORATORY QUALITY ASSURANCE AND QUALITY CONTROL PROCEDURES Page 1 of 1 **DATA VALIDATION SUMMARY REPORT** Grenfell Tower Stage 2 Follow on Site name: Samples collected by: Emma Judd, Holly Fenwick, David Dyson, Ben Disney Project number: 60632092 David Dyson Project Manager: Analytical data checked Matrix type: Soil Emma Judd, David Dyson by: 235 soil samples Date Primary samples: Element Signed Laboratories used: Project Manager: **David Dyson** Lab batch Main batch references: 21-18548 B1; 21-18548 B2; 21-18548 Date reference (s): B3; 21-18548 B4; 21-18548 B5 Signed General Issues Errors (Y/N) Completed by David Dyson/ Emma Deliverables checked against chain of custody Sample IDs checked. Errors noted on photo board for locations: TH104 at depth 0.6-0.7m - no duplicate taken here
TH104 at depth 1.1-1.2m - incorrect location ID David Dyson/ Emma Sample IDs reviewed ludd TH131 - all photoboards state TH171 but TH131 is correct These errors are noted and updated within the sample logs. David Dyson/ Emma 3 Sample temperature on receipt checked No deviating samples recorded in laboratory certificates Holding times acceptable - a check of the laboratory certificates has been completed. David Dyson/ Emma Holding times acceptable ludd Unit consistency reviewed Reporting units correct and consistent. 5 Holly Fenwick Check LOD / MDL are as expected. A check of the laboratory certificates has been completed. Holly Fenwick Results are accredited. a check of the laboratory certificates David Dyson/ Emma 7 Are the results accredited? has been completed. Limited previous data is available, however the results of the Do the results fit with previous concentration trends? follow-on sampling exercise are consistent with the previous Stage 1 and Stage 2 Environmental Checks results for David Dyson/ Emma Treadgold House and Avondale Park Gardens. No visual / olfactory observations which correspond to high concentrations of lead in samples TH165 0.1-0.2m (38,490mg/kg), TH108 0.1-0.2m (18,960mg/kg) or TH108 0.3-0.4m (20,630mg/kg) Comparison of data to visual/ olfactory evidence Emma Judd

Visual evidence of contamination often not relevant for metals - therefore absence of visual or olfactory evidence is not inconsistent with high metals concentrations. Project number: 60632092

Annendiy I Da

Аррениіх з	Project number: 6063209
ita Validation Summary Report	

Field Procedure No. FP26 FIELD SAMPLING AND LABORATORY QUALITY ASSURANCE AND QUALITY

Version 2: May 2018

	QUALITY ASSURA CONTRO	ANCE AND QUA L PROCEDURE			Pag	ge 1 of 1
	DATA	VALIDATION S	JMMARY	REPORT		
Specific Issues	Task Name	Errors (Y/N)		Comments		Completed by
# # #	Duplicate samples identified	N	11 no. duplic report.	cate samples. RPDs calculate	d and discussed in	David Dyson/ Emma Judd
# # #	Duplicate frequency appropriate (1 in 20 samples)	N	Acceptable.			David Dyson/ Emma Judd
# # # #	RPD assessment acceptable	N	Acceptable.	High RPDs are discussed with	nin the report.	Holly Fenwick
# # #	Trip blanks results acceptable	N	N/A			Holly Fenwick
#	Field & Equipment/Rinsate blank results acceptable	N	N/A			Holly Fenwick
#	Laboratory blank acceptable	N	N/A			Holly Fenwick
# # # #	Surrogate laboratory data acceptable	N	No surrogate certificates.	e recovery issues identified on	the laboratory	Emma Judd
# # #	AQC data acceptable	N	No AQC fail	ures noted in the laboratory ce	ertificates	Emma Judd
# # #	Matrix spike (and Matrix Spike duplicate) data acceptable (optional)	N/A	N/A			Emma Judd
# # # #	Relevant data added to table footnotes & any deviation issues identified	N	Complete. N	lo deviations identified.		Holly Fenwick
Specific Issues	Task Name	Errors (Y/N)		Comments		Completed by
# # #	10% minimum check of tabulated laboratory data against lab certificates	N	Complete.			Holly Fenwick
# # #	Tabulated field data (e.g. water quality parameters) checked for input errors	N	Complete.			Emma Judd
# # # #	Lab dilution error	Y	following a re	n error was identified for sample- e-test of the sample. Reasonir s discussed further in section 4 Report.	ng for the re-test of	David Dyson/ Emma Judd
Other Observations			ļ			
	deviating samples. There was a holding time sults gained as there were no tests conducte			0.9-1m), though th	is is unlikely	to have
pprovals	<u> </u>	Dat	e	Name	Si	gnature
he data set is not con	sidered appropriate for reporting					

The data set is considered appropriate for reporting with the identified issue

The data review has identified minor isolated quality issues, as described above, and within the main report. Overall the data are considered suitable for reporting

05/04/2022

David Dyson

Part 2A Investigation

Appendix K CLEA Model Inputs and Results

Environment Agency

CLEA Software Version 1.071 Page 1 of 11

Report generated 04-Feb-22

Report title Treadgold House Part 2A Assessment

Created by ET at AECOM

RESULTS

CLEA Software Version 1.071		Repo	rt generated	4-Feb-22										Page 2	of 11	
Environment Agency										•		Apply Top	2 Approac	ch to Produ	ıce Group	
	Assessm	ent Criterion	(mg kg ⁻¹)	Rat	io of ADE to	HCV		50%	rule?	Two applied?	Green vegetables	Root vegetables	Tuber vegetables	Herbaceous fruit	Shrub fruit	fruit
	oral	inhalation	combined	oral	inhalation	combined	Saturation Limit (mg kg ⁻¹)	Oral	Inhal	Top .	Gree	Root	Tube	Herb	Shru	Tree fruit
1 Lead (C4SL adult)	2.15E+03	NR	NR	1.00	NR	NR	NR	No	No	Yes	Yes	No	Yes	No	No	No
2					į											
3																:
4					į	i										
5					ļ								•	,		
6	1		1		•											
7					ļ											
8					İ											
9					İ	i i										
10					ļ			<u> </u>				!	!			
11					İ	i i							•	•		
12				1	į											
13	†		i											· ·		
14					İ								•	· ·		
15					į											
16																
17					ļ	ļ										
18	1				ļ											
10	i i			i i	i	i i		i	i	i :	:	:	:	: '	: :	

20

CLEA Software Version 1.071

Report generated 4-Feb-22

Page 3 of 11

Apply Top 2 Approach to Produce Group

										арр	getał	getabl	getab	us fr	ü	
	Assessr	nent Criterion	(mg kg ⁻¹)	Rati	o of ADE to	HCV	Saturation Limit (mg kg ⁻¹)	50%	rule?	Тwo	en ve	t veg	er ve	acec	ub fru	fruit
	oral	inhalation	combined	oral	inhalation	combined	Saturation Limit (mg kg)	Oral	Inhal	Тор	Gree	Root	Tube	Herk	Shr	Tree
21											ŧ	ŧ				
22					j] [
23] [
24	1															
25																
26																
27	į		İ		į										i İ	
28																
29					i I											
30															: 1	: 1

CLEA Coffware Version 1 071	Depart generated	4 Eab 22	Dags 4 of 44
CLEA Software Version 1.071	Report generated	4-Feb-22	Page 4 of 11

Environment Agency	Soil Distribution																		
	Sorbed	Dissolved	Vapour	Total	Soil	Soil gas	Indoor Dust	Outdoor dust at 0.8m	Outdoor dust at 1.6m	Indoor Vapour	Outdoor vapour at 0.8m	Outdoor vapour at 1.6m	Green vegetables	Root vegetables	Tuber vegetables	Herbaceous fruit	Shrub fruit	Tree fruit	
	%	%	%	%	mg kg ⁻¹	mg m ⁻³	mg kg ⁻¹	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg m ⁻³	1				mg kg ⁻¹ FW	mg kg ⁻¹ FW	
1 Lead (C4SL adult)	100.0	0.0	0.0	100.0	2.15E+03	NR	1.07E+03	9.15E-07	1.16E-07	0.00E+00	0.00E+00	0.00E+00	NA	NA	NA	NA	NA	NA	
2 3 4																			
3				ļ															
4				<u> </u>															
5			i	<u> </u>															
6				į														i i	
7																			
8				l															
9																			
10				İ															
11			ĺ																
12				į															
9 10 11 12 13 14 15 16 17 18 19																			
14				<u> </u>															
15				ļ															
16			<u> </u>	ļ															
17			<u> </u>	 														<u> </u>	
18			i	į															
19			<u> </u>	 															
20			l	ļ														<u> </u>	

CLEA Software Version 1.0	No. 1071 Report generated 4-Feb-22												Page 5 of 11					
Environment Agency	:	Soil Distribution Media Concentrations																
	Sorbed	Dissolved	Vapour	Total	Soil	Soil gas	Indoor Dust	Outdoor dust at 0.8m	Outdoor dust at 1.6m	Indoor Vapour	Outdoor vapour at 0.8m	Outdoor vapour at 1.6m	Green vegetables	Root vegetables	Tuber vegetables	Herbaceous fruit	Shrub fruit	Tree fruit
	%	%	%	%	mg kg ⁻¹	mg m ⁻³	mg kg ⁻¹	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg kg ⁻¹ FW	mg kg ⁻¹ FW	mg kg ⁻¹ FW	mg kg ⁻¹ FW	mg kg ⁻¹ FW	mg kg ⁻¹ FW

CLEA Software Version 1.071					Repo	ort generated	4-Feb-22					Page 6	of 11		
Environment Agency		Avera	ge Daily Ex	posure (m	g kg ⁻¹ bw c	lay ⁻¹)				Dist	ribution by	/ Pathwa	y (%)		
	Direct soil ingestion	Consumption of homegrown produce and attached soil	Dermal contact with soil and dust	Inhalation of dust	Inhalation of vapour	Background (oral)	Background (inhalation)	Direct soil ingestion	Consumption of homegrown produce and attached soil	Dermal contact with soil and dust	Inhalation of dust	Inhalation of vapour (indoor)	Inhalation of vapour (outdoor)	Background (oral)	Background (inhalation)
1 Lead (C4SL adult)	6.25E-04	0.00E+00	0.00E+00	5.10E-06	0.00E+00	0.00E+00	0.00E+00	99.19	0.00	0.00	0.81	0.00	0.00	0.00	0.00
2 3 4 5 6 7							İ			i !	i I	į	İ		
3															
4							İ		İ	İ			i I		į
5													ļ		
6	i !						i I		i I	 	İ	i !	i i		
7															
8															ļ
9													i		İ
10															
11											İ	İ			İ
12															
13											! !				
14										l					ļ
15										ļ	<u> </u>	<u> </u>			İ
16															
8 9 110 111 12 13 14 15 16 16 17 18											i !				
	i I						i I								
19															
20	į	į					į		į	İ	İ	İ	İ		İ

CLEA	Software	Version	1	071
	SULLWALE	VEISIOII		1111

Report generated 4-Feb-22

Page 7 of 11

Environment Agency		Avera	age Daily Ex	rposure (m	g kg ⁻¹ bw d	lay ⁻¹)				Dis	tribution b	y Pathwa	ay (%)		
	Direct soil ingestion	Consumption of homegrown produce and attached soil	Dermal contact with soil and dust	Inhalation of dust	Inhalation of vapour	Background (oral)	Background (inhalation)	Direct soil ingestion	Consumption of homegrown produce	Dermal contact with soil and dust	Inhalation of dust	Inhalation of vapour (indoor)	Inhalation of vapour (outdoor)	Background (oral)	Background (inhalation)
21	į	į													
22 23 24															
23	ļ														
24	į	į							į			į		į	<u> </u>
25													•		
26	Î !	i !		i !	<u> </u>	i !	î !	<u> </u>		<u> </u>	ļ		i !	<u> </u>	
27	İ	İ													
28 29															
29															
30	ļ	ļ						1	1	1		1	į —	ļ	

CLEA Software Version 1.071					Repo	rt generated	4-Feb-22	2							Page 8	of 11
Environment Agency		Oral Health Criteria Value (µg kg¹ BW day¹)		iniaauon reanti onena varue (µg kg²¹ BW day²¹)	Oral Mean Daily Intake (µg day⁻¹)	Inhalation Mean Daily Intake (µg day⁻¹)	Air-water partition coefficient (K _{aw}) (cm³ cm³)	Coefficient of Diffusion in Air (m^2s^4)	Coefficient of Diffusion in Water $(m^2s^{\text{-1}})$	log K _{oc} (cm³ g⁻¹)	log K _{ow} (dimensionless)	Dermal Absorption Fraction (dimensionless)	Soil-to-dust transport factor (g g ⁻¹ DW)	Sub-surface soil to indoor air correction factor (dimensionless)	Relative bioavailability via soil ingestion (unitless)	Relative bioavailability via dust inhalation (unitless)
1 Lead (C4SL adult)	ID	0.63	NR	0	NR	NR	NR	NR	NR	NR	NR	0	0.5	1	0.68	0.64
2 3 4			ļ						į			ļ				1
3			[[
4			į							į		į				
5			ļ						ļ			ļ		-	!	[
6		i I	1			i I	İ	i I	i			1	i I	İ	į	1
7																
8			İ						i !			İ				
9		İ				İ							İ			
10		i I	ļ			i I		i !				ļ	i I			
9 10 11 12 13 14 15 16 17			İ						ĺ	İ		İ		İ	ĺ	[
12																
13			Ì						Ì	Ì		Ì		ĺ	Ì	
14			ļ				ļ		!			ļ			<u> </u>	[
15							İ		İ	ļ					İ	
16													Ì			
17										ĺ						
			•							i i		•				
19							ļ		ļ !							[
20		i	į			i	İ	i	İ	i		į	i	į		í ·

CLEA Software Version 1.0	071		Repo	rt generated	4-Feb-22	2							Page 9	of 11
Environment Agency	Oral Health Criteria Value (µg kg¹ BW day²¹)	Inhalation Health Criteria Value (µg kg¹ BW day²)	Oral Mean Daily Intake (µg day ⁻¹)	Inhalation Mean Daily Intake (µg day ^{.¹})	Air-water partition coefficient (K_{aw}) $(cm^3 cm^3)$	Coefficient of Diffusion in Air $(m^2 s^{-1})$	Coefficient of Diffusion in Water (m^2s^{-1})	log K _{oc} (cm³ g⁻¹)	log K _{ow} (dimensionless)	Dermal Absorption Fraction (dimensionless)	Soil-to-dust transport factor (g g ⁻¹ DW)	Sub-surface soil to indoor air correction factor (dimensionless)	Relative bioavailability via soil ingestion (unitless)	Relative bioavailability via dust inhalation (unitless)
21 22 23 24 25			ļ	! ! !		! ! !		į					1	
22								ļ		ļ		ļ	ļ	
23			į					<u> </u>				ļ		
24			į		İ		İ	1	ĺ	į	i I	ļ	<u> </u>	
25								ļ		•		•		
26	i i		İ		1		i i	ļ	i i	i			1	
27								İ	İ					
28								İ	İ					
29								į				ļ		
20	1 1		į	i	į	i	į	İ	į	i	į	į	1	i i

CLEA Software Version 1.071				Report generated	4-Feb-22				Page 10 of 11	
Environment Agency	Soil-to-water partition coefficient (cm ³ g ⁻¹)	Vapour pressure (Pa)	Water solubility (mg L ⁻ⁱ)	Soil-to-plant concentration factor for green vegetables (mg g² plant DW or FW basis over mg g² DW soil)	Soil-to-plant concentration factor for root vegatables (mg g² plant DW or FW basis over mg g³ DW soil)	Soil-to-plant concentration factor for tuber vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	Soil-to-plant concentration factor for herbaceous fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	Soil-to-plant concentration factor for shrub fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	Soil-to-plant concentration factor for tree fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	
1 Lead (C4SL adult)	1.00E+03	NR	2.96E+05	0.00419 fw	0.00402 fw	0.00731 fw	0.00074 fw	0.00020 fw	0.00022 fw]
2	İ									
3										
4	ļ									
5										ļ
6										1
7	İ									=
8	ļ									1
9	İ									į
10										
11		İ	į	į	ĺ		İ	İ	İ	1
12										1 1 1
13	ĺ				Ì					ĺ
14										
15			<u> </u>							
16										<u> </u>
17	į									<u>i</u>
18				i I I	i ! !					<u> </u>
19										
20	i	i	i	i	i	į	į		•	į

CLEA Software Version 1.07	71			Report generated	4-Feb-22			Page 11 of 11				
Environment Agency	Sol-to-water partition coefficient (cm^3g^4)	Vapour pressure (Pa)	Water solubility (mg L ⁻¹)	Soil-to-plant concentration factor for green vegetables (mg g² plant DW or FW basis over mg g² DW soil)	Soil-to-plant concentration factor for root vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	Soli-to-plant concentration factor for tuber vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	Soli-to-plant concentration factor for herbaceous fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	Soli-to-plant concentration factor for shrub fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	Soil-to-plant concentration factor for tree fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)			
21												
22 23 24	1		ļ 	<u> </u>] 							
23		ļ	ļ									
24		į	ļ		<u></u>							
25		ļ	ļ									
26												
27		į	i i									
28		İ	İ									
29	1	į	į									
20	i	į .	İ	İ		İ						

CLEA Software	e version 1.071			Page 1 of 5
Report generated	04/02/2022			
Report title	Treadgold House Part 2A A	Assessment		Environment Agency
Created by	ET at AECOM			
BASIC SETTINGS				
Land Use	Residential (lifetime exposu	ure C4SL)		
Building Receptor Soil	Small terraced house Female (res C4SL) Sandy loam	Start age class 17	End age class 18	Exposure Duration 59 years
Exposure Pathways	Consumption	et soil and dust ingestion of homegrown produce to homegrown produce	Dermal contact with indoor dust Dermal contact with soil	Inhalation of indoor dust Inhalation of soil dust Inhalation of indoor vapour Inhalation of outdoor vapour

Report generated 4-Feb-22

Page 2 of 5

La	nd Use	Reside	ntial (life	time exp	oosure (C4SL)							Recept	or	Female	(res C4SL)		Environment Agency
	E	xposure	Freque	ncies (c	lavs yr ⁻¹)	I	Occupation P	eriods (hr day ⁻¹)	0.314		rate		İ		Max expose	d skin factor	
	ingestion	on of n produce	contact with	tact with	of dust r, indoor	of dust ır, outdoor				Soil to skin factors (ingestion ra	weight (kg)	ıt (m)	rate	² m²)	(m² m²)	area
Age Class	Direct soil	Consumption of homegrown pr	Dermal indoor o	Dermal contact with soil	Inhalation and vapou	Inhalation and vapou		Indoors	Outdoors	Indoor	Outdoor	Direct soil (g day ⁻¹)	Body	Body height (m)	Inhalation (m³ day ⁻¹)	Indoor (m² m²)	Outdoor	Total skin area (m²)
1	180	180	180	170	365	365	į_	23.0	1.0	0.06	0.10	0.10	5.60	0.7	5.4	0.32	0.26	3.43E-01
2	365	365	365	170	365	365	Ĺ	23.0	1.0	0.06	0.10	0.10	9.80	8.0	8.0	0.33	0.26	4.84E-01
3	365	365	365	170	365	365	ļ.	23.0	1.0	0.06	0.10	0.10	12.70	0.9	8.9	0.32	0.25	5.82E-01
4	365	365	365	170	365	365	I.	23.0	1.0	0.06	0.10	0.10	15.10	0.9	10.1	0.35	0.28	6.36E-01
5	365	365	365	170	365	365	L	19.0	1.0	0.06	0.10	0.10	16.90	1.0	10.1	0.35	0.28	7.04E-01
6	365	365	365	170	365	365	Ĺ	19.0	1.0	0.06	0.10	0.10	19.70	1.1	10.1	0.33	0.26	7.94E-01
7	365	365	365	170	365	365	İ	19.0	1.0	0.06	0.10	0.10	22.10	1.2	12.0	0.22	0.15	8.73E-01
8	365	365	365	170	365	365		19.0	1.0	0.06	0.10	0.10	25.30	1.2	12.0	0.22	0.15	9.36E-01
9	365	365	365	170	365	365	Ĺ	19.0	1.0	0.06	0.10	0.10	27.50	1.3	12.0	0.22	0.15	1.01E+00
10	365	365	365	170	365	365	L	19.0	1.0	0.06	0.10	0.10	31.40	1.3	12.0	0.22	0.15	1.08E+00
11	365	365	365	170	365	365	Ĺ	19.0	1.0	0.06	0.10	0.10	35.70	1.4	12.0	0.22	0.14	1.19E+00
12	365	365	365	170	365	365	į_	19.0	1.0	0.06	0.10	0.10	41.30	1.4	15.2	0.22	0.14	1.29E+00
13	365	365	365	170	365	365		15.0	1.0	0.06	0.30	0.05	47.20	1.5	15.2	0.22	0.14	1.42E+00
14	365	365	365	170	365	365	L	15.0	1.0	0.06	0.30	0.05	51.20	1.6	15.2	0.22	0.14	1.52E+00
15	365	365	365	170	365	365		15.0	1.0	0.06	0.30	0.05	56.70	1.6	15.2	0.21	0.14	1.60E+00
16	365	365	365	170	365	365	L	15.0	1.0	0.06	0.30	0.05	59.00	1.6	15.2	0.21	0.14	1.63E+00
17	365	365	365	170	365	365	į_	16.0	1.0	0.06	0.30	0.03	70.00	1.6	15.7	0.33	0.27	1.78E+00
18	365	365	365	170	365	365		16.0	1.0	0.06	0.30	0.03	70.90	1.6	13.6	0.33	0.27	1.80E+00

Consumption Rates

_	_											-
				Co	nsumption rate	s (a FW ka ⁻¹ bo	dvweight dav ⁻¹)	by Produce Gro	oup			
			MEAN	RATES					90TH PERCE	NTILE RATES		
Age Class	Green veg	Root veg	Tuber veg	Herb. Fruit	Shrub fruit	Tree fruit	Green veg	Root veg	Tuber veg	Herb. Fruit	Shrub fruit	Tree fruit
1	3.47E+00	5.22E+00	9.22E+00	8.90E-01	1.07E+00	1.87E+00	7.12E+00	1.07E+01	1.60E+01	1.83E+00	2.23E+00	3.82E+00
2	3.34E+00	1.61E+00	3.14E+00	1.93E+00	2.60E-01	5.84E+00	5.87E+00	2.83E+00	6.60E+00	3.39E+00	4.60E-01	1.03E+01
3	3.34E+00	1.61E+00	3.14E+00	1.93E+00	2.60E-01	5.84E+00	5.87E+00	2.83E+00	6.60E+00	3.39E+00	4.60E-01	1.03E+01
4	3.34E+00	1.61E+00	3.14E+00	1.93E+00	2.60E-01	5.84E+00	5.87E+00	2.83E+00	6.60E+00	3.39E+00	4.60E-01	1.03E+01
5	2.54E+00	1.20E+00	2.65E+00	1.25E+00	1.10E-01	2.89E+00	4.53E+00	2.14E+00	4.95E+00	2.24E+00	1.90E-01	5.16E+00
6	2.54E+00	1.20E+00	2.65E+00	1.25E+00	1.10E-01	2.89E+00	4.53E+00	2.14E+00	4.95E+00	2.24E+00	1.90E-01	5.16E+00
7	2.54E+00	1.20E+00	2.65E+00	1.25E+00	1.10E-01	2.89E+00	4.53E+00	2.14E+00	4.95E+00	2.24E+00	1.90E-01	5.16E+00
8	2.54E+00	1.20E+00	2.65E+00	1.25E+00	1.10E-01	2.89E+00	4.53E+00	2.14E+00	4.95E+00	2.24E+00	1.90E-01	5.16E+00
9	2.54E+00	1.20E+00	2.65E+00	1.25E+00	1.10E-01	2.89E+00	4.53E+00	2.14E+00	4.95E+00	2.24E+00	1.90E-01	5.16E+00
10	2.54E+00	1.20E+00	2.65E+00	1.25E+00	1.10E-01	2.89E+00	4.53E+00	2.14E+00	4.95E+00	2.24E+00	1.90E-01	5.16E+00
11	2.54E+00	1.20E+00	2.65E+00	1.25E+00	1.10E-01	2.89E+00	4.53E+00	2.14E+00	4.95E+00	2.24E+00	1.90E-01	5.16E+00
12	1.03E+00	4.90E-01	1.60E+00	5.10E-01	4.00E-02	1.18E+00	1.87E+00	8.90E-01	3.05E+00	9.30E-01	8.00E-02	2.13E+00
13	1.03E+00	4.90E-01	1.60E+00	5.10E-01	4.00E-02	1.18E+00	1.87E+00	8.90E-01	3.05E+00	9.30E-01	8.00E-02	2.13E+00
14	1.03E+00	4.90E-01	1.60E+00	5.10E-01	4.00E-02	1.18E+00	1.87E+00	8.90E-01	3.05E+00	9.30E-01	8.00E-02	2.13E+00
15	1.03E+00	4.90E-01	1.60E+00	5.10E-01	4.00E-02	1.18E+00	1.87E+00	8.90E-01	3.05E+00	9.30E-01	8.00E-02	2.13E+00
16	1.03E+00	4.90E-01	1.60E+00	5.10E-01	4.00E-02	1.18E+00	1.87E+00	8.90E-01	3.05E+00	9.30E-01	8.00E-02	2.13E+00
17	1.26E+00	6.00E-01	1.18E+00	6.90E-01	9.00E-02	1.27E+00	2.36E+00	1.12E+00	2.35E+00	1.29E+00	1.80E-01	2.38E+00
18	1.35E+00	6.40E-01	1.25E+00	7.40E-01	1.00E-01	1.36E+00	2.34E+00	1.12E+00	2.36E+00	1.28E+00	1.80E-01	2.37E+00

Top 2 applied? Yes

Where top 2 method is applied, two produce categories use 90th percentile rates, while the remainder use the mean. Produce categories vary on a chemical-by-chemical basis. Where top 2 method is not used, all produce categories for all chemicals assume 90th percentile rates.

Report generated 4-Feb-22

Page 4 of 5

Building Small terraced house

Building footprint (m ²)	2.80E+01
Living space air exchange rate (hr ⁻¹)	5.00E-01
Living space height (above ground, m)	4.80E+00
Living space height (below ground, m)	0.00E+00
Pressure difference (soil to enclosed space, Pa)	3.10E+00
Foundation thickness (m)	1.50E-01
Floor crack area (cm²)	4.23E+02
Dust loading factor (µg m ⁻³)	5.00E+01

Soil Sandy loam

Porosity, Total (cm ³ cm ⁻³)	5.30E-01
Porosity, Air-Filled (cm ³ cm ⁻³)	2.00E-01
Porosity, Water-Filled (cm³ cm⁻³)	3.30E-01
Residual soil water content (cm³ cm³)	1.20E-01
Saturated hydraulic conductivity (cm s ⁻¹)	3.56E-03
van Genuchten shape parameter m (dimensionless)	3.20E-01
Bulk density (g cm ⁻³)	1.21E+00
Threshold value of wind speed at 10m (m s ⁻¹)	7.20E+00
Empirical function (F _x) for dust model (dimensionless)	1.22E+00
Ambient soil temperature (K)	2.83E+02
Soil pH	7.00E+00
Soil Organic Matter content (%)	6.00E+00
Fraction of organic carbon (g g ⁻¹)	3.48E-02
Effective total fluid saturation (unitless)	5.12E-01
Intrinsic soil permeability (cm²)	4.75E-08
Relative soil air permeability (unitless)	6.42E-01
Effective air permeability (cm²)	3.05E-08

Report generated 4-Feb-22

Page 5 of 5

Soil - Vapour Model

Air Dispersion Model

Depth to top of source (no building) (cm)	0
Depth to top of source (beneath building) (cm)	65
Default soil gas ingress rate?	Yes
Soil gas ingress rate (cm³ s⁻¹)	2.50E+01
Building ventilation rate (cm ³ s ⁻¹)	1.87E+04
Averaging time surface emissions (yr)	59
Finite vapour source model?	No
Thickness of contaminated layer (cm)	200

Mean annual windspeed at 10m (m s ⁻¹)	5.00
Air dispersion factor at height of 0.8m *	2400.00
Air dispersion factor at height of 1.6m *	19000.00
Fraction of site cover (m ² m ⁻²)	0.75

^{*} Air dispersion factor in g m⁻² s⁻¹ per kg m⁻³

Dry weight conversion

Soil - Plant Model	factor	Homegrov Average	wn fraction High	Soil loading factor	Preparation correction factor
	g DW g ⁻¹ FW	dimens	sionless	g g ⁻¹ DW	dimensionless
Green vegetables	0.096	0.05	0.33	1.00E-03	2.00E-01
Root vegetables	0.103	0.06	0.40	1.00E-03	1.00E+00
Tuber vegetables	0.210	0.02	0.13	1.00E-03	1.00E+00
Herbaceous fruit	0.058	0.06	0.40	1.00E-03	6.00E-01
Shrub fruit	0.166	0.09	0.60	1.00E-03	6.00E-01
Tree fruit	0.157	0.04	0.27	1.00E-03	6.00E-01

Gardener type Average

Page 1 of 11

Environment Agency

Report generated

05-Apr-22

Report title

Treadgold House Part 2A Assessment

Created by

ET at AECOM

RESULTS

CLEA Software Version 1.07	1	Repo	rt generated	5-Apr-22										Page 2	of 11	
Environment											İ					
											1	Apply Top	2 Approac	to Produ	ice Group	
										applied?	Green vegetables	Root vegetables	Tuber vegetables	Herbaceous fruit	_	
	Assessm	nent Criterion	(mg kg ⁻¹)	Rati	o of ADE to	HCV	Saturation Limit (mg kg ⁻¹)	50%	rule?	Тор Тwo	e vec	t vege	er veg	засео	Shrub fruit	Tree fruit
	oral	inhalation	combined	oral	inhalation	combined	Saturation Limit (mg kg)	Oral	Inhal	Тор	Gree	Roo	Tube	Hert	Shr	Tree
1 Lead (C4SL child)	1.06E+03	NR	NR	1.00	NR	NR	NR	No	No	Yes	Yes	No	Yes	No	No	No
2																
3																
4		į			<u> </u>											
5		l			•											
6				1												
7																
8																
9					l											
10				1												
11																
12																
13		İ			İ						1					
14																
15		İ						İ								
16																
17																
18					i											
19								ļ								
20	1				1				1							

CONDITIONAL FORMAT CHECK FOR SATURATION LIMITS

Saturation limit exceeded for oral AC Saturation limit exceeded for inhal AC

0 = No result1= Amber 2= Red, 3 = Gr

		2 = Red, 3 = 0	Green	
1	Lead (C4SL child)	3		
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				

CLEA Software Version 1.071		Repo	rt generated	5-Apr-22				Page 3 of 1	1							
Environment												Apply Top	o 2 Approac	h to Prodi	uce Group	,
										applied?	vegetables	vegetables	vegetables	aceous fruit	į į	
	Assessr	ment Criterion	(mg kg ⁻¹)	Rat	io of ADE to	HCV	a	50%	rule?	J_wo	> =) N	er ve	ace	b fri	fruit
	oral	inhalation	combined	oral	inhalation	combined	Saturation Limit (mg kg ⁻¹)	Oral	Inhal	Тор	Green	Root	Tuber	Herb	Shrub fruit	Tree
21	1													t		
22																
23																
24																
25																
26																
27		ļ														
28		!			!											
29																

Saturation limit exceeded for oral AC	Saturation limit exceeded for inhal AC	Saturation limit exceeded for combined AC
0 = No result		
1= Amber		
2= Red, 3 = Gree	en	

	2- Red, 5 - Green
21	
22	
23	
24	
25	
26	
27	
28	
29	

CLEA Software Version 1.07	1					Repo	rt generated			5-Apr-22							Page 4 of 1	1
Environment Agency		Soil Dist	tributio	n							Media	a Concentr	ations					
	Sorbed	Dissolved	Vapour	Total	Soil	Soil gas	Indoor Dust	Outdoor dust at 0.8m	Outdoor dust at 1.6m	Indoor Vapour	Outdoor vapour at 0.8m	Outdoor vapour at 1.6m	Green vegetables	Root vegetables	Tuber vegetables	Herbaceous fruit	Shrub fruit	Tree fruit
	%	%	%	%	mg kg ⁻¹	mg m ⁻³	mg kg ⁻¹	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg kg ⁻¹ FW	mg kg ⁻¹ FW	mg kg ⁻¹ FW	i	mg kg ⁻¹ FW	mg kg ⁻¹ FW
1 Lead (C4SL child)	100.0	0.0	0.0	100.0	1.06E+03	NR	5.29E+02	4.33E-06	1.08E-06	NA	0.00E+00	0.00E+00	NA	NA	NA	NA	NA	NA
2			!											:				
3			İ															
4																		
5																		
6													! ! !	! ! !				
7															1	1		
8			!															
9			1												İ	İ		
10																		
			1															
11 12																		
13																		
14																		
15																		
16			1															
17																		
18																		
			!															
19 20			1	ĺ									ĺ	ĺ				

CONDITIONAL FORMAT CHECK FOR USER ENTERED SITE DATA

Soil Dist	ribution	- 1				Media	a Concentra	ations				
					ı	1	1			1		
				i		1				i i	 	

	Sorbed	Dissolved	Vapour	Total	Soil	Soil gas	Indoor Dust	Outdoor dust at 0.8m	Outdoor dust at 1.6m	Indoor Vapour	Outdoor vapour at 0.8m	Outdoor vapour at 1.6m	Green vegetables	Root vegetables	Tuber vegetables	Herbaceous fruit	Shrub fruit	Tree fruit
	%	%	%	%	mg kg ⁻¹	mg m ⁻³	mg kg ⁻¹	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg kg ⁻¹ FW	mg kg ⁻¹ FW	mg kg ⁻¹ FW	mg kg ⁻¹ FW	mg kg ⁻¹ FW	mg kg ⁻¹ FW
1 NA	NA	NA	NA	NA	NA	0	NA	NA	NA	0	0	0	0	0	0	0	0	0
2 NA	NA	NA	NA	NA	NA	0	NA	NA	NA	0	0	0	0	0	0	0	0	0
3 NA	NA	NA	NA	NA	NA	0	NA	NA	NA	0	0	0	0	0	0	0	0	0
4 NA	NA	NA	NA	NA	NA	0	NA	NA	NA	0	0	0	0	0	0	0	0	0
5 NA	NA	NA	NA	NA	NA	0	NA	NA	NA	0	0	0	0	0	0	0	0	0
6 NA	NA	NA	NA	NA	NA	0	NA	NA	NA	0	0	0	0	0	0	0	0	0
7 NA	NA	NA	NA	NA	NA	0	NA	NA	NA	0	0	0	0	0	0	0	0	0
8 NA	NA	NA	NA	NA	NA	0	NA	NA	NA	0	0	0	0	0	0	0	0	0
9 NA	NA	NA	NA	NA	NA	0	NA	NA	NA	0	0	0	0	0	0	0	0	0
10 NA	NA	NA	NA	NA	NA	0	NA	NA	NA	0	0	0	0	0	0	0	0	0
11 NA	NA	NA	NA	NA	NA	0	NA	NA	NA	0	0	0	0	0	0	0	0	0
12 NA	NA	NA	NA	NA	NA	0	NA	NA	NA	0	0	0	0	0	0	0	0	0
13 NA	NA	NA	NA	NA	NA	0	NA	NA	NA	0	0	0	0	0	0	0	0	0
14 NA	NA	NA	NA	NA	NA	0	NA	NA	NA	0	0	0	0	0	0	0	0	0
15 NA	NA	NA	NA	NA	NA	0	NA	NA	NA	0	0	0	0	0	0	0	0	0
16 NA	NA	NA	NA	NA	NA	0	NA	NA	NA	0	0	0	0	0	0	0	0	0
17 NA	NA	NA	NA	NA	NA	0	NA	NA	NA	0	0	0	0	0	0	0	0	0
18 NA	NA	NA	NA	NA	NA	0	NA	NA	NA	0	0	0	0	0	0	0	0	0
19 NA	NA	NA	NA	NA	NA	0	NA	NA	NA	0	0	0	0	0	0	0	0	0
20 NA	NA	NA	NA	NA	NA	0	NA	NA	NA	0	0	0	0	0	0	0	0	0

CLEA Software Version 1.0)71					Repo	ort generated			5-Apr-22							Page 5 of 11	1
Environment Agency		Soil Dis	tributio	n							Media	Concentra	tions					
	Sorbed	Dissolved	Vapour	Total	Soil	Soil gas	Indoor Dust	Outdoor dust at 0.8m	Outdoor dust at 1.6m	Indoor Vapour	Outdoor vapour at 0.8m	Outdoor vapour at 1.6m	Green vegetables	Root vegetables	Tuber vegetables	Herbaceous fruit	Shrub fruit	Tree fruit
	%	%	%	%	mg kg ⁻¹	mg m ⁻³	mg kg ⁻¹	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg m ⁻³		i .	mg kg ⁻¹ FW	mg kg ⁻¹ FW	mg kg ⁻¹ FW	mg kg ⁻¹ FW	mg kg ⁻¹ FW
21																		
22			1										1					
23	1		1										1					
24																		
25																		
26			1															
27			İ															
28																		
29																		
30			Ì															

- 1	Soil Dis	tributio						Media	Concentrat					ļ
- 1		1	1	1	1	1	1				1	1	1	

	Sorbed	Dissolved	Vapour	Total	Soil	Soil gas	Indoor Dust	Outdoor dust at 0.8m	Outdoor dust at 1.6m	Indoor Vapour	Outdoor vapour at 0.8m	Outdoor vapour at 1.6m	Green vegetables	Root vegetables	Tuber vegetables	Herbaceous fruit	Shrub fruit	Tree fruit
	%	%	%	%	mg kg ⁻¹	mg m ⁻³	mg kg ⁻¹	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg kg ⁻¹ FW	mg kg ⁻¹ FW	mg kg ⁻¹ FW	mg kg ⁻¹ FW	mg kg ⁻¹ FW	mg kg ⁻¹ FW
21 NA	NA	NA	NA	NA	NA	0	NA	NA	NA	0	0	0	0	0	0	0	0	0
22 NA	NA	NA	NA	NA	NA	0	NA	NA	NA	0	0	0	0	0	0	0	0	0
23 NA	NA	NA	NA	NA	NA	0	NA	NA	NA	0	0	0	0	0	0	0	0	0
24 NA	NA	NA	NA	NA	NA	0	NA	NA	NA	0	0	0	0	0	0	0	0	0
25 NA	NA	NA	NA	NA	NA	0	NA	NA	NA	0	0	0	0	0	0	0	0	0
26 NA	NA	NA	NA	NA	NA	0	NA	NA	NA	0	0	0	0	0	0	0	0	0
27 NA	NA	NA	NA	NA	NA	0	NA	NA	NA	0	0	0	0	0	0	0	0	0
28 NA	NA	NA	NA	NA	NA	0	NA	NA	NA	0	0	0	0	0	0	0	0	0
29 NA	NA	NA	NA	NA	NA	0	NA	NA	NA	0	0	0	0	0	0	0	0	0
30 NA	NA	NA	NA	NA	NA	0	NA	NA	NA	0	0	0	0	0	0	0	0	0

CLEA Software Version 1.071					Repo	ort generated	5-Apr-22					Page 6	of 11		
Environment Agency	İ	Avera	ige Daily Ex	posure (m	g kg ⁻¹ bw c	lay ⁻¹)				Dist	ribution by	y Pathwa	y (%)		
	Direct soil ingestion	Consumption of homegrown produce and attached soil	Dermal contact with soil and dust	Inhalation of dust	Inhalation of vapour	Background (oral)	Background (inhalation)	Direct soil ingestion	Consumption of homegrown produce and attached soil	Dermal contact with soil and dust	Inhalation of dust	Inhalation of vapour (indoor)	Inhalation of vapour (outdoor)	Background (oral)	Background (inhalation)
1 Lead (C4SL child)	1.39E-03	0.00E+00	0.00E+00	8.79E-06	0.00E+00	0.00E+00	0.00E+00	99.37	0.00	0.00	0.63	0.00	0.00	0.00	0.00
2	1									i	İ	1			1
3															
4															
5										Î					
6	1														1
7					<u> </u>					1	1	1			1
8	<u> </u>		<u> </u>		<u> </u>					i !	<u> </u>	1			<u> </u>
9	1				-				-	-	-	-			-
10	1				<u> </u>					İ	İ	1			1
11		-			!			-	<u> </u>		-	-	-	-	-
12	i .											<u> </u>			i
13	1				<u> </u>					!		1	!		
14					i				i	l		<u> </u>			<u> </u>
15					<u> </u>				<u> </u>	1		1	!		†
16	1											İ			
17	İ									İ	İ	†			<u> </u>
18	1				l							1			<u> </u>
19					 				 			 			
20	1	l										1			1

CLEA Software Version 1.07	'1				Repo	rt generated	5-Apr-22					Page 7	of 11		
Environment Agency		Avera	age Daily Ex	oposure (m	g kg ⁻¹ bw c	lay ⁻¹)				Dis	tribution b	y Pathwa	ay (%)		
	Direct soil ingestion	Consumption of homegrown produce and attached soil	Dermal contact with soil and dust	Inhalation of dust	Inhalation of vapour	Background (oral)	Background (inhalation)	Direct soil ingestion	Consumption of homegrown produce	Dermal contact with soil and dust	Inhalation of dust	Inhalation of vapour (indoor)	Inhalation of vapour (outdoor)	Background (oral)	Background (inhalation)
21															
22												İ			
23															
24								İ							
25													•		
26												1			
27															
28															
29															
30		Ì	Ì	!	!			1				İ	1		1

CLEA Software Version 1.071					Repo	rt generated	5-Apr-22								Page 8	of 11
Environment					:	:	:		:			:		:	:	:
Environment Agency		Oral Health Criteria Value (µg kg¹¹ ВW day¹¹)	and of the Criteria Value	imaaton reatin Cinena value (µg kg ⁻¹ BW day ⁻¹)	Oral Mean Daily Intake (µg day¹)	Inhalation Mean Daily Intake (µg day¹)	Air-water partition coefficient (K _{sw}) (cm³ cm⁻³)	Coefficient of Diffusion in Air (m^2s^4)	Coefficient of Diffusion in Water (m² s¹)	log K∞ (cm³ g⁻¹)	log Kow (dimensionless)	Dermal Absorption Fraction (dimensionless)	Soil-to-dust transport factor (g.g ⁻¹ DW)	Sub-surface soil to indoor air correction factor (dimensionless)	Relative bioavailability via soil ingestion (unitless)	Relative bioavailability via dust inhalation (unitless)
1 Lead (C4SL child)	ID	1.4	NR	0	NR	⊢ ≟ ⇒ NR	∢ € NR	NR	NR	NR	NR	0	ο <u>Θ</u> 0.5	<u> </u>	0.68	0.64
2							!		!							
3					İ		İ		İ	İ						
4																
5									ĺ							
6							:									
7							<u> </u>		1							
8			<u> </u>		<u> </u>		<u>. </u>		i !							
9			 				-								-	
10					<u> </u>		!		!							
11							i									
12																
13																
14																
15																
16																
17																
18																
19																
20									l							

		Oral Health Criteria Value (µg kgʻ		Inhalation Health Criteria Value (j	Oral Mean Daily Intake (μg day ⁱ)	Inhalation Mean Daily Intake (μg	Air-water partition coefficient (P	Coefficient of Diffusion in Air (मै	Coefficient of Diffusion in Water	$\log K_{oc} (cm^3 g^{-1})$	$\log K_{\rm ow} ({\rm dimensionless})$	Dermal Absorption Fraction (dim-	Soil-to-dust transport factor (g	Sub-surface soil to indoor air o (dimensionless)	Relative bioavailability via soil (unitless)	Relative bioavailability via dust (unitless)
1 Lead (C4SL child)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
2	Ī		[
3																
4	ļ		!										} !	<u> </u>		<u> </u>
5	T		ļ		} 		! !						 	ļ		[
6	ļ															
7	T											[
8			I													
9	<u> </u>		<u> </u>													
10																
11	<u> </u>		<u> </u>			<u> </u>	İ					<u> </u>	<u> </u>	<u> </u>		
12	<u> </u>		<u> </u>			<u> </u>						<u> </u>		<u> </u>		<u> </u>
13	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>						<u></u>	<u> </u>	<u>į</u>	<u> </u>	<u> </u>
14	ļ		ļ		ļ	ļ	ļ			ļ	ļ	Ļ	ļ	ļ	ļ	<u> </u>
15	<u> </u>		<u> </u>											<u> </u>		<u> </u>
16	<u> </u>	ļ 	<u> </u>		ļ 	<u> </u>	ļ 			<u> </u>	ļ	<u> </u>	<u> </u>	ļ	<u> </u>	<u> </u>
17	<u> </u>		<u> </u>			<u> </u>						<u> </u>		<u> </u>		<u> </u>
18	ļ		ļ			<u> </u>	ļ					ļ	ļ	ļ		ļi
	ļ		ļ		¦ }	ļ	ļ			 		Ļ	¦ }	<u> </u>	ļ	ļ
20	į	İ	ļ			İ						į		İ		1 1

CLEA Software Version 1.	.071		Repo	rt generated	5-Apr-22								Page 9 o	of 11
Environment Agency	Oral Health Criteria Value (µg kg¹¹ BW day¹)	inhalation Health Criteria Value (µg kgʻ BW dayʻ ¹)	Oral Mean Daily Intake (µg day [*])	Inhalation Mean Daily Intake (µg day [*])	Air-water partition coefficient (K _{ew}) (cm ³ cm ⁻³)	Coefficient of Diffusion in Air $(m^2 s^4)$	Coefficient of Diffusion in Water $({\rm m^2\ s^1})$	log K₀c (cm³ g⁻¹)	log K _{ow} (dimensionless)	Dermal Absorption Fraction (dimensionless)	Soil-to-dust transport factor (g g ⁻¹ DW)	Sub-surface soil to indoor air correction factor (dimensionless)	Relative bioavailability via soil ingestion (unitless)	Relative bioavailability via dust inhalation (unitless)
21														
22 23									l					
23								ļ						
24				1										<u> </u>
25														
26	i i													
27								İ		İ				
28				İ									1	
29														
30	1 1			1				1	1	1				

CONDITIONAL FORMAT CHECK FOR CHEMICAL DATA

¹ BW day ⁻ ¹)	нg kg¹ BW day¹)		daý)	< _{aw}) (cm³ cm³)	(s ₋₁)	$(\vec{m} \ s^{-1})$			ensionless)	g-1 DW)	orrection factor	ingestion	: inhalation	
--------------------------	-----------------	--	------	-----------------------------	--------------------	----------------------	--	--	-------------	---------	------------------	-----------	--------------	--

		Oral Health Criteria Value (µg kgʻ		Inhalation Health Criteria Value (j	Oral Mean Daily Intake (μg day ⁱ)	Inhalation Mean Daily Intake (μg	Air-water partition coefficient (P	Coefficient of Diffusion in Air (mै	Coefficient of Diffusion in Water	$\log K_{oc} (cm^3g^{-1})$	$\log K_{\rm ow} ({\rm dimensionless})$	Dermal Absorption Fraction (dim	Soil-to-dust transport factor (g	Sub-surface soil to indoor air o (dimensionless)	Relative bioavailability via soil (unitless)	Relative bioavailability via dust (unitless)
21			l				l								l	
22							ļ								I	
23							•							!		
24	<u> </u>						1			!					l	
25	[[[i			ļ				[İ	
26	l	[[İ						•		l	
27		!					!									
28	i						İ						i		į	
29	ŀ		ŀ				•			!					1	
30	Γ	T	Γ		[[Γ			[[T	·

CLEA Software Version 1.071				Report generated	5-Apr-22				Page 10 of 11
Environment Agency			i	i	i	İ	i	į	i
	Soil-to-water parttion coefficient (cm³ g-¹)	Vapour pressure (Pa)	Water solubility (mg L-¹)	Soil-to-plant concentration factor for green vegetables (mg g¹ plant DW or FW basis over mg g¹ DW soil)	Soli-to-plant concentration factor for root vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	Soil-to-plant concentration factor for tuber vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	Soil-to-plant concentration factor for herbaceous fruit (mg g¹ plant DW or FW basis over mg g¹ DW soil)	Soil-to-plant concentration factor for shrub fruit (mg g¹ plant DW or FW basis over mg g¹ DW soil)	Soll-to-plant concentration factor for tree fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)
1 Lead (C4SL child)	1.00E+03	NR	2.96E+05	0.00419 fw	0.00402 fw	0.00731 fw	0.00074 fw	0.00020 fw	0.00022 fw
2									į
3									<u> </u>
4									
5						<u> </u>		<u> </u>	<u> </u>
6									
7									<u> </u>
8									<u> </u>
9									ļ
10									
11 12									
13	<u> </u>								
14									
15									
16									
17									
18						İ			
19									
20									-

		Soil-to-water partition coefficier	Vapour pressure (Pa)	Water solubility (mg L ⁻¹)	Soil-to-plant concentration factor	Soil-to-plant concentration factor	Soil-to-plant concentration factor	Soil-to-plant concentration factor	Soil-to-plant concentration factor	Soil-to-plant concentration factor
1	Lead (C4SL child)	0	0	0	0	0	0	0	0	0
2										
3										
4										
5										
6										
7										
- 8										
9										
10										
11	<u> </u>									
12										
13										
14										
15										
16	<u></u>									
17										
18										
19										
20										

CLEA Software Version 1.	071			Report generated	5-Apr-22				Page 11 of 11	
Environment Agency	Soil-to-water partition coefficient (cm³ g¹)	Vapour pressure (Pa)	Water solubility (mg L ⁻¹)	Soli-to-plant concentration factor for green vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soli)	Soil-to-plant concentration factor for rook vegetables (mg g¹ plant DW or FW basis over mg g¹ DW soil)	Soli-to-plant concentration factor for tuber vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	Soil-to-plant concentration factor for herbaceous fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	Soil-to-plant concentration factor for shrub fruit (mg g ¹ plant DW or FW basis over mg g ¹ DW soil)	Soil-to-plant concentration factor for tree fruit (mg g¹ plant DW or FW basis over mg g¹ DW soil)	
21										1
22]
23										
24			ļ							
25										į
26										
27										1
28										1
29										1
30		i !		î I	î I		i I	î I	î I	1

CONDITIONAL FORMAT CHECK FOR CHEMICAL DATA

÷.	.getables)	etables)	getables)	ous fruit)	ĵį	(ı	
em ₃ g	n uaa	oot veg	lber ve	rbace	fl g	ee fra	
ļ ģ ļ	5	<u> </u>	Ē	Ĕ	<u>5</u>	Ė	1

		Soil-to-water partition coefficier	Vapour pressure (Pa)	Water solubility (mg L ⁻¹)	Soil-to-plant concentration factor	Soil-to-plant concentration factor	Soil-to-plant concentration factor	Soil-to-plant concentration factor	Soil-to-plant concentration factor	Soil-to-plant concentration factor
21										
22	i !	<u> </u>	<u> </u>	i 	i 	i 				
23	! !		l							
24		!	!	!						
25		į	į	İ						
26		1	1	!						
27		1	İ							
28		1	İ	İ	İ					
29		ŀ	l	ŀ						
30	i]]		[[·

Inhalation of outdoor vapour

CLEA Software Version 1.071 Page 1 of 5 Report generated 05/04/2022 Environment Agency Treadgold House Part 2A Assessment Report title Created by ET at AECOM **BASIC SETTINGS** Land Use Public Open Space (res C4SL) Building Small terraced house End age class 9 Receptor Female (res C4SL) Start age class 4 Exposure Duration 6 years Soil Sandy loam **Exposure Pathways** Direct soil and dust ingestion ✓ Dermal contact with indoor dust ✓ Inhalation of indoor dust Consumption of homegrown produce Dermal contact with soil ✓ Inhalation of soil dust Inhalation of indoor vapour

Soil attached to homegrown produce *

0

0

0

0

0

0

0

0

0

0

0

0

13

14

15

16

17

18

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.0

0.0

0.0

0.0

0.0

0.0

Land Use Public Open Space (res C4SL)

Report generated 5-Apr-22

Receptor

47.20 1.5

51.20 1.6

70.00 1.6

70.90 1.6

1.6

1.6

56.70

59.00

15.2

15.2

15.2

15.2

15.7

13.6

0.22

0.22

0.21

0.21

0.33

0.33

0.14

0.14

0.14

0.14

0.27

0.27

1.42E+00

1.52E+00

1.60E+00

1.63E+00

1.78E+00

1.80E+00

Female (res C4SL)

Page 2 of 5

	E	xposure	Freque	ncies (d	lays yr ُ)	Occupation P	Soil to skin	skin adherence					Max exposed skin factor		ļ	
	ingestion	of roduce	t with	t with	dust	dust outdoor			factors (mg cm ²)		estion ra	(g)	Œ)		m ⁻²)	m ⁻²)	e a
Age Class	rect soil	Consumption homegrown pi	Dermal contac	Dermal contact soil	alation of vapour, i	lation of vapour,	ndoors	utdoors	door	Outdoor	rect soil ing	Body weight (kg)	Body height (r	Inhalation rate (m³ day⁻¹)	door (m² n	utdoor (m²	Total skin ar (m²)
	ä				and		<u> </u>	ő	Ĕ		Ö Ö				٤	0	
1	0	0	0	0	0	0	0.0	0.0	0.00	0.00	0.00	5.60	0.7	5.4	0.32	0.26	3.43E-01
2	0	0	0	0	0	0	0.0	0.0	0.00	0.00	0.00	9.80	8.0	8.0	0.33	0.26	4.84E-01
3	0	0	0	0	0	0	0.0	0.0	0.00	0.00	0.00	12.70	0.9	8.9	0.32	0.25	5.82E-01
4	365	0	365	111	365	111	23.0	1.0	0.06	0.10	0.04	15.10	0.9	10.1	0.35	0.28	6.36E-01
5	365	0	365	111	365	111	19.0	1.0	0.06	0.10	0.04	16.90	1.0	10.1	0.35	0.28	7.04E-01
6	365	0	365	111	365	111	19.0	1.0	0.06	0.10	0.04	19.70	1.1	10.1	0.33	0.26	7.94E-01
7	365	0	365	111	365	111	19.0	1.0	0.06	0.10	0.04	22.10	1.2	12.0	0.22	0.15	8.73E-01
8	365	0	365	111	365	111	19.0	1.0	0.06	0.10	0.04	25.30	1.2	12.0	0.22	0.15	9.36E-01
9	365	0	365	111	365	111	19.0	1.0	0.06	0.10	0.04	27.50	1.3	12.0	0.22	0.15	1.01E+00
10	0	0	0	0	0	0	0.0	0.0	0.00	0.00	0.00	31.40	1.3	12.0	0.22	0.15	1.08E+00
11	0	0	0	0	0	0	0.0	0.0	0.00	0.00	0.00	35.70	1.4	12.0	0.22	0.14	1.19E+00
12	0	0	0	0	0	0	0.0	0.0	0.00	0.00	0.00	41.30	1.4	15.2	0.22	0.14	1.29E+00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.0

0.0

0.0

0.0

0.0

0.0

CLEA Treadgold House Step 1 child_updated March 2022b.xls

Report generated 5-Apr-22

Page 3 of 5

Consumption Rates

				Со	nsumption rates	s (a FW ka ⁻¹ bo	dvweight dav ⁻¹)	bv Produce Gro	auc			
		•	MEAN	RATES					90TH PERCE	NTILE RATES	·	
Age Class	Green veg	Root veg	Tuber veg	Herb. Fruit	Shrub fruit	Tree fruit	Green veg	Root veg	Tuber veg	Herb. Fruit	Shrub fruit	Tree fruit
1	3.47E+00	5.22E+00	9.22E+00	8.90E-01	1.07E+00	1.87E+00	7.12E+00	1.07E+01	1.60E+01	1.83E+00	2.23E+00	3.82E+00
2	3.34E+00	1.61E+00	3.14E+00	1.93E+00	2.60E-01	5.84E+00	5.87E+00	2.83E+00	6.60E+00	3.39E+00	4.60E-01	1.03E+01
3	3.34E+00	1.61E+00	3.14E+00	1.93E+00	2.60E-01	5.84E+00	5.87E+00	2.83E+00	6.60E+00	3.39E+00	4.60E-01	1.03E+01
4	3.34E+00	1.61E+00	3.14E+00	1.93E+00	2.60E-01	5.84E+00	5.87E+00	2.83E+00	6.60E+00	3.39E+00	4.60E-01	1.03E+01
5	2.54E+00	1.20E+00	2.65E+00	1.25E+00	1.10E-01	2.89E+00	4.53E+00	2.14E+00	4.95E+00	2.24E+00	1.90E-01	5.16E+00
6	2.54E+00	1.20E+00	2.65E+00	1.25E+00	1.10E-01	2.89E+00	4.53E+00	2.14E+00	4.95E+00	2.24E+00	1.90E-01	5.16E+00
7	2.54E+00	1.20E+00	2.65E+00	1.25E+00	1.10E-01	2.89E+00	4.53E+00	2.14E+00	4.95E+00	2.24E+00	1.90E-01	5.16E+00
8	2.54E+00	1.20E+00	2.65E+00	1.25E+00	1.10E-01	2.89E+00	4.53E+00	2.14E+00	4.95E+00	2.24E+00	1.90E-01	5.16E+00
9	2.54E+00	1.20E+00	2.65E+00	1.25E+00	1.10E-01	2.89E+00	4.53E+00	2.14E+00	4.95E+00	2.24E+00	1.90E-01	5.16E+00
10	2.54E+00	1.20E+00	2.65E+00	1.25E+00	1.10E-01	2.89E+00	4.53E+00	2.14E+00	4.95E+00	2.24E+00	1.90E-01	5.16E+00
11	2.54E+00	1.20E+00	2.65E+00	1.25E+00	1.10E-01	2.89E+00	4.53E+00	2.14E+00	4.95E+00	2.24E+00	1.90E-01	5.16E+00
12	1.03E+00	4.90E-01	1.60E+00	5.10E-01	4.00E-02	1.18E+00	1.87E+00	8.90E-01	3.05E+00	9.30E-01	8.00E-02	2.13E+00
13	1.03E+00	4.90E-01	1.60E+00	5.10E-01	4.00E-02	1.18E+00	1.87E+00	8.90E-01	3.05E+00	9.30E-01	8.00E-02	2.13E+00
14	1.03E+00	4.90E-01	1.60E+00	5.10E-01	4.00E-02	1.18E+00	1.87E+00	8.90E-01	3.05E+00	9.30E-01	8.00E-02	2.13E+00
15	1.03E+00	4.90E-01	1.60E+00	5.10E-01	4.00E-02	1.18E+00	1.87E+00	8.90E-01	3.05E+00	9.30E-01	8.00E-02	2.13E+00
16	1.03E+00	4.90E-01	1.60E+00	5.10E-01	4.00E-02	1.18E+00	1.87E+00	8.90E-01	3.05E+00	9.30E-01	8.00E-02	2.13E+00
17	1.26E+00	6.00E-01	1.18E+00	6.90E-01	9.00E-02	1.27E+00	2.36E+00	1.12E+00	2.35E+00	1.29E+00	1.80E-01	2.38E+00
18	1.35E+00	6.40E-01	1.25E+00	7.40E-01	1.00E-01	1.36E+00	2.34E+00	1.12E+00	2.36E+00	1.28E+00	1.80E-01	2.37E+00

Top 2 applied? Yes

Where top 2 method is applied, two produce categories use 90th percentile rates, while the remainder use the mean. Produce categories vary on a chemical-by-chemical basis. Where top 2 method is not used, all produce categories for all chemicals assume 90th percentile rates.

CLEA Treadgold House Step 1 child_updated March 2022b.xls

Report generated 5-Apr-22

Page 4 of 5

Environment Agency

Building Small terraced house

Building footprint (m ²)	2.80E+01
Living space air exchange rate (hr ⁻¹)	5.00E-01
Living space height (above ground, m)	4.80E+00
Living space height (below ground, m)	0.00E+00
Pressure difference (soil to enclosed space, Pa)	3.10E+00
Foundation thickness (m)	1.50E-01
Floor crack area (cm ²)	4.23E+02
Dust loading factor (μg m ⁻³)	5.00E+01

Soil Sandy loam

Porosity, Total (cm ³ cm ⁻³)	5.30E-01
Porosity, Air-Filled (cm ³ cm ⁻³)	2.00E-01
Porosity, Water-Filled (cm ³ cm ⁻³)	3.30E-01
Residual soil water content (cm³ cm³)	1.20E-01
Saturated hydraulic conductivity (cm s ⁻¹)	3.56E-03
van Genuchten shape parameter m (dimensionless)	3.20E-01
Bulk density (g cm ⁻³)	1.21E+00
Threshold value of wind speed at 10m (m s ⁻¹)	7.20E+00
Empirical function (F _x) for dust model (dimensionless)	1.22E+00
Ambient soil temperature (K)	2.83E+02
Soil pH	7.00E+00
Soil Organic Matter content (%)	6.005.00

CLEA Treadgold House Step 1 child_updated March 2022b.xls

Report generated 5-Apr-22

Page 5 of 5

Soil - Vapour Model

Air Dispersion Model

Depth to top of source (no building) (cm)	0
Depth to top of source (beneath building) (cm)	65
Default soil gas ingress rate?	Yes
Soil gas ingress rate (cm ³ s ⁻¹)	2.50E+01
Building ventilation rate (cm ³ s ⁻¹)	1.87E+04
Averaging time surface emissions (yr)	6
Finite vapour source model?	No
Thickness of contaminated layer (cm)	200

Mean annual windspeed at 10m (m s ⁻¹)	5.00
Air dispersion factor at height of 0.8m *	500.00
Air dispersion factor at height of 1.6m *	2000.00
Fraction of site cover (m² m-²)	0.5

Air dispersion factor in g m⁻² s⁻¹ per kg m

Dry weight conversion

Soil - Plant Model	factor	Homegrow Average	vn fraction High	Soil loading factor	Preparation correction factor
	g DW g ⁻¹ FW	dimens	ionless	g g ⁻¹ DW	dimensionless
Green vegetables	0.096	0.05	0.33	1.00E-03	2.00E-01
Root vegetables	0.103	0.06	0.40	1.00E-03	1.00E+00
Tuber vegetables	0.210	0.02	0.13	1.00E-03	1.00E+00
Herbaceous fruit	0.058	0.06	0.40	1.00E-03	6.00E-01
Shrub fruit	0.166	0.09	0.60	1.00E-03	6.00E-01
Tree fruit	0.157	0.04	0.27	1.00E-03	6.00E-01

Gardener type None

CLEA Treadgold House Step 1 child_updated March 2022b.xls

Page 1 of 11

Environment Agency

Report generated

Report title Grenfell Investigation into Potential Land Contamination Impacts

DJD at AECOM Created by

RESULTS

CLEA Software Version 1.071 Report generated 17-Mar-22 Page 2 of 11

Environment Agency

Agency												Apply Top	2 Approac	ch to Produ	uce Group	
	Assessm	nent Criterion	(mg kg ⁻¹)	Rati	o of ADE to	нсу		50%	rule?	wo applied?	Green vegetables	vegetables	Tuber vegetables	Herbaceous fruit	o fruit	fruit
	oral	inhalation	combined	oral	inhalation	combined	Saturation Limit (mg kg ⁻¹)	Oral	Inhal	Тор Тwo	Gree	Root	Tube	Herb	Shrub fruit	Tree fruit
1 Lead (C4SL child)	4.53E+03	NR	NR	1.00	NR	NR	NR	No	No	Yes	Yes	No	Yes	No	No	No
2					i											
3					1											
4																
5																
6																
7					1											
8																
9								1								
10																
11						1 1										
12																
13																
14																
15																
16																
17																
18																
19																
20																

CLEA Software Version 1.071		Repo	rt generated	17-Mar-2	2			Page 3 of	11							
Environment Agency												Apply Top	2 Approac	h to Produ	ıce Group	,
										applied?	vegetables	vegetables	egetables	Herbaceous fruit	=	
	Assess	ment Criterion	(mg kg ⁻¹)	Rat	io of ADE to	HCV	Saturation Limit (mg kg ⁻¹)	50%	rule?	Two	n ve	t veg	er ve	асес	Shrub fruit	fruit
	oral	inhalation	combined	oral	inhalation	combined	Saturation Limit (mg kg)	Oral	Inhal	Тор	Green	Root	Tube	Herb	Shru	Tree
21																
22		1			1				1							
23		1														
24		1														
25		1														
26		1			•											
27					1	1										
28	1	1			!				1							
29	1	1			į											

30

CLEA Software Version 1.07	'1					Repo	rt generated			17-Mar-22							Page 4 of 1	1
Environment Agency		Soil Dis	tributio	n	İ						Media	a Concentr	ations					
	Sorbed	Dissolved	Vapour	Total	Soil	Soil gas	Indoor Dust	Outdoor dust at 0.8m	Outdoor dust at 1.6m	Indoor Vapour	Outdoor vapour at 0.8m	Outdoor vapour at 1.6m	Green vegetables	Root vegetables	Tuber vegetables	Herbaceous fruit	Shrub fruit	Tree fruit
	%	%	%	%	mg kg ⁻¹	mg m ⁻³	mg kg ⁻¹	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg kg ⁻¹ FW	mg kg ⁻¹ FW	mg kg ⁻¹ FW	mg kg ⁻¹ FW	mg kg ⁻¹ FW	mg kg ⁻¹ FW
1 Lead (C4SL child)	100.0	0.0	0.0	100.0	4.53E+03	NR	2.27E+03	1.85E-05	4.63E-06	NA	0.00E+00	0.00E+00	NA	NA	NA	NA	NA	NA
2																		
3			İ	1											i			
4			1															
5			Î															
6																		
7				1											i !			
8			<u> </u>	1														
9			-	1														
10			-												<u> </u>			
11			1	1														
12				1														
13																		
			<u> </u>	1														
14 15																		
16																		
17																		
18			İ	1														
18 19 20			1															
20				1														

CLEA Software Version 1.0	71					Repo	ort generated			17-Mar-22							Page 5 of 1	1
Environment Agency		Soil Dis	tributio	n							Media	Concentra	tions					į
	Sorbed	Dissolved	Vapour	Total	Soil	Soil gas	Indoor Dust	Outdoor dust at 0.8m	Outdoor dust at 1.6m	Indoor Vapour	Outdoor vapour at 0.8m	Outdoor vapour at 1.6m	Green vegetables	Root vegetables	Tuber vegetables	Herbaceous fruit	Shrub fruit	Tree fruit
	%	%	%	%	mg kg ⁻¹	mg m ⁻³	mg kg ⁻¹	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg m ⁻³		1		mg kg ⁻¹ FW	mg kg ⁻¹ FW	mg kg ⁻¹ FW
21																		
22		1																
23																		
24		İ	į .											<u> </u>				
25		•																
26		İ	İ															
27			İ															
28																		
29																		
30	1		1															

CLEA Software Version 1.071					Repo	ort generated	17-Mar-22					Page 6	of 11			
Environment Agency		Avera	ige Daily Ex	posure (m	g kg ⁻¹ bw c	lay ⁻¹)		Distribution by Pathway (%)								
	Direct soil ingestion	Consumption of homegrown produce and attached soil	Dermal contact with soil and dust	Inhalation of dust	Inhalation of vapour	Background (oral)	Background (inhalation)	Direct soil ingestion	Consumption of homegrown produce and attached soil	Dermal contact with soil and dust	Inhalation of dust	Inhalation of vapour (indoor)	Inhalation of vapour (outdoor)	Background (oral)	Background (inhalation)	
1 Lead (C4SL child)	2.06E-03	0.00E+00	0.00E+00	3.77E-05	0.00E+00	0.00E+00	0.00E+00	98.21	0.00	0.00	1.79	0.00	0.00	0.00	0.00	
2												ļ				
3			!		-	<u> </u>	!			<u> </u>	ļ		<u> </u>		. I	
4																
5																
6	İ											İ				
7																
8												İ				
9																
10												ĺ				
11																
12												İ				
13																
14	ļ											ļ				
15																
16												į				
17																
18												<u> </u>				
19 20												ļ				
20																

CLEA Software Version 1.07	71				Repo	rt generated	17-Mar-22	!				Page 7	of 11		
Environment Agency		Avera	age Daily Ex	oposure (m	g kg ⁻¹ bw d	lay ⁻¹)				Dis	tribution b	y Pathwa	ay (%)		
	Direct soil ingestion	Consumption of homegrown produce and attached soil	Dermal contact with soil and dust	Inhalation of dust	Inhalation of vapour	Background (oral)	Background (inhalation)	Direct soil ingestion	Consumption of homegrown produce	Dermal contact with soil and dust	Inhalation of dust	Inhalation of vapour (indoor)	Inhalation of vapour (outdoor)	Background (oral)	Background (inhalation)
21															
22												l			
23															
24												İ			
25															
26															
27															
28															
29												ļ			

CLEA Software Version 1.071					Repo	rt generated	17-Mar-2	22							Page 8	of 11
Environment Agency	:	Oral Health Criteria Value (µg kg¹¹ BW day¹¹)	de la discontinue de la contraction de la contra	imaraton neatri Criteria varue (µg kg²¹ BW day²¹)	Oral Mean Daily Intake (µg day¹)	Inhalation Mean Daily Intake (µg day¹)	Air-water partition coefficient (K _{sw}) (cm³ cm⁻³)	Coefficient of Diffusion in Air $(m^2 s^{-1})$	Coefficient of Diffusion in Water (m² s¹)	log K _{oc} (cm³ g⁻¹)	log K _{ow} (dimensionless)	Dermal Absorption Fraction (dimensionless)	Soil-to-dust transport factor (g g ⁻¹ DW)	Sub-surface soil to indoor air correction factor (dimensionless)	Relative bioavailability via soil ingestion (unitless)	Relative bioavailability via dust inhalation (unitless)
1 Lead (C4SL child)	ID	2.1	NR	0	NR	NR	NR	NR	NR	NR	NR	0	0.5	1	0.68	0.64
2 3														<u> </u>	<u> </u>	
			į				<u> </u>			į .				į	į	
4			<u> </u>				ļ							ļ	<u> </u>	
5			İ											İ	İ	
6																
7			ĺ											İ	1	
8			1											1		
9			l				<u> </u>			ļ .				1	l	
10		<u> </u>	İ				1							1	<u> </u>	
			!				!							1	1	
11 12			l											ļ	İ	
13														1		
14																
15 16																
17														ļ		
18			į .							<u> </u>				į .	į	
19			ļ				<u> </u>			ļ					<u> </u>	<u> </u>
20							İ			ļ				i	İ	

CLEA Software Version 1.0	Repo	rt generated	17-Mar-2	2							Page 9 o	of 11		
Environment Agency	Oral Health Criteria Value (µg kg ⁻¹ BW day ⁻¹)	inhalation Health Criteria Value (µg kg¹ BW day¹)	Oral Mean Daily Intake (µg day [*])	Inhalation Mean Daily Intake (µg day⁻¹)	Air-water partition coefficient (K _{ew}) (cm³ cm³)	Coefficient of Diffusion in Air (m^2s^4)	Coefficient of Diffusion in Water $({ m m^2\ s^4})$	log K _{oc} (cm³ g¹)	log K _{ow} (dimensionless)	Dermal Absorption Fraction (dimensionless)	Soil-to-dust transport factor (g.g ⁻¹ DW)	Sub-surface soil to indoor air correction factor (dimensionless)	Relative bioavailability via soil ingestion (unitless)	Relative bioavailability via dust inhalation (unitless)
21														
22 23														
24														
25								•						
26														
27														
28														
29														
30														

CLEA Software Version 1.071				Report generated	17-Mar-22				Page 10 of 11
Environment	i i	i	i	i	i	i	i	i	i i
Agency	Soil-to-water partition coefficient (cm $^3g^4)$	Vapour pressure (Pa)	Water solubility (mg L ⁻¹)	Soil-to-plant concentration factor for green vegetables (reg g¹ pant DW or FW basis over mg g¹ DW soil)	Soli-to-plant concentration factor for root vegetables (mg g¹ plant DW or FW basis over mg g¹ DW soil)	Soli-to-plant concentration factor for tuber vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soli)	Soil-to-plant concentration factor for herbaceous fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	Soil-to-plant concentration factor for shrub fruit (mg g¹ plant DW or FW basis over mg g¹ DW soil)	Soil-to-plant concentration factor for tree fruit (rng g¹ plant DW or FW basis over rng g¹ DW soil)
1 Lead (C4SL child)	1.00E+03	NR	2.96E+05	0.00419 fw	0.00402 fw	0.00731 fw	0.00074 fw	0.00020 fw	0.00022 fw
2			İ			ļ			
3 4									
			-			<u> </u>			
5	!		ļ	<u> </u>		<u> </u>	<u> </u>	1	
6									
7									
8			ļ	İ	İ	<u> </u>	İ	ļ	
9									
10									
11									
12			<u> </u>			<u> </u>			
13									
14									
15						<u> </u>			
16					ļ				
17			ļ			<u> </u>			
18									
19									
20	į		<u> </u>	<u> </u>	<u>!</u>	<u> </u>	<u> </u>	1	

CLEA Software Version 1.07			Report generated	17-Mar-22		Page 11 of 11				
Environment Agency	Soil-to-water partition coefficient (cm³ g⁻¹)	Vapour pressure (Pa)	Water solubility (mg L ⁻¹)	Soil-to-plant concentration factor for green vegetables (mg g¹ plant DW or FW basis over mg g¹ DW soil)	Soll-to-plant concentration factor for root vegetables (mg g¹ plant DW or FW basis over mg g¹ DW soil)	Soli-to-plant concentration factor for tuber vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	Soli-to-plant concentration factor for herbaceous fruit (mg gr¹ plant DW or FW basis over mg gr¹ DW soil)	Soil-to-plant concentration factor for shrub fruit (mg g ¹ , plant DW or FW basis over mg g ¹ DW soil)	Soil-to-plant concentration factor for tree fruit (mg g¹ plant DW or FW basis over mg g¹ DW soil)	
21										
22		ļ								
23	ļ	ļ	ļ							
24			ļ							
25	ļ	į	ļ							
26		-								
27	1	!	!							
28										
29										
30		}								

Page 1 of 5

Report generated 17/03/2022

Report title Grenfell Investigation into Potential Land Contamination Impacts

Environment Agency

Created by DJD at AECOM

BASIC SETTINGS

Land Use Public Open Space (res C4SL)

Building Small terraced house

Receptor Female (res C4SL) Start age class 4 End age class 9 Exposure Duration 6 years

Soil Sandy loam

Exposure Pathways Direct soil and dust ingestion 🗸 Dermal contact with indoor dust

Dermal contact with soil

Inhalation of soil dust

Inhalation of indoor vapour

Inhalation of outdoor vapour

Inhalation of indoor dust

Consumption of homegrown produce

Direct soil ingestion

Age Class

Report generated 17-Mar-22

Receptor

Direct soil ingestion rate (g day⁻¹)

0.00

0.00

0.00

0.01

0.01

0.01

0.01

0.01

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Page 2 of 5

I and Use	Public Open	Space	(res C4SL)

Exposure Frequencies (days yr⁻¹)

Inhalation of dust and vapour, indoor

Dermal contact with indoor dust

	Occupatio
Inhalation of dust and vapour, outdoor	Indoors
0	0.0
0	0.0
0	0.0
111	23.0
111	19.0
111	19.0
111	19.0
111	19.0
111	19.0
0	0.0
0	0.0
0	0.0
0	0.0

Occupation F	Periods (hr day ⁻¹)	Soil to skin adherence factors (mg cm²)		
Indoors	Outdoors	Indoor	Outdoor	
0.0	0.0	0.00	0.00	
0.0	0.0	0.00	0.00	
0.0	0.0	0.00	0.00	
23.0	1.0	0.06	0.10	
19.0	1.0	0.06	0.10	
19.0	1.0	0.06	0.10	
19.0	1.0	0.06	0.10	
19.0	1.0	0.06	0.10	
19.0	1.0	0.06	0.10	
0.0	0.0	0.00	0.00	
0.0	0.0	0.00	0.00	
0.0	0.0	0.00	0.00	
0.0	0.0	0.00	0.00	
0.0	0.0	0.00	0.00	
0.0	0.0	0.00	0.00	
0.0	0.0	0.00	0.00	
0.0	0.0	0.00	0.00	
0.0	0.0	0.00	0.00	

	resolution (100 0 10E)								
				Max expose	d skin factor				
	Body weight (kg)	Body height (m)	Inhalation rate (m³ day¹)	Indoor (m² m²)	Outdoor (m² m²)	Total skin area (m²)			
1	5.60	0.7	5.4	0.32	0.26	3.43E-01			
	9.80	8.0	8.0	0.33	0.26	4.84E-01			
	12.70	0.9	8.9	0.32	0.25	5.82E-01			
	15.10	0.9	10.1	0.35	0.28	6.36E-01			
	16.90	1.0	10.1	0.35	0.28	7.04E-01			
	19.70	1.1	10.1	0.33	0.26	7.94E-01			
	22.10	1.2	12.0	0.22	0.15	8.73E-01			
1	25.30	1.2	12.0	0.22	0.15	9.36E-01			
	27.50	1.3	12.0	0.22	0.15	1.01E+00			
	31.40	1.3	12.0	0.22	0.15	1.08E+00			
	35.70	1.4	12.0	0.22	0.14	1.19E+00			
Ì	41.30	1.4	15.2	0.22	0.14	1.29E+00			
	47.20	1.5	15.2	0.22	0.14	1.42E+00			
İ	51.20	1.6	15.2	0.22	0.14	1.52E+00			
1	56.70	1.6	15.2	0.21	0.14	1.60E+00			
1	59.00	1.6	15.2	0.21	0.14	1.63E+00			
	70.00	1.6	15.7	0.33	0.27	1.78E+00			
]	70.90	1.6	13.6	0.33	0.27	1.80E+00			

Female (res C4SL)

Report generated 17-Mar-22

Page 3 of 5

Consumption Rates

	Consumption rates (a FW ka ⁻¹ bodyweight dav ⁻¹) by Produce Group											
			MEAN	RATES	ı				90TH PERCE	NTILE RATES		
Age Class	Green veg	Root veg	Tuber veg	Herb. Fruit	Shrub fruit	Tree fruit	Green veg	Root veg	Tuber veg	Herb. Fruit	Shrub fruit	Tree fruit
1	3.47E+00	5.22E+00	9.22E+00	8.90E-01	1.07E+00	1.87E+00	7.12E+00	1.07E+01	1.60E+01	1.83E+00	2.23E+00	3.82E+00
2	3.34E+00	1.61E+00	3.14E+00	1.93E+00	2.60E-01	5.84E+00	5.87E+00	2.83E+00	6.60E+00	3.39E+00	4.60E-01	1.03E+01
3	3.34E+00	1.61E+00	3.14E+00	1.93E+00	2.60E-01	5.84E+00	5.87E+00	2.83E+00	6.60E+00	3.39E+00	4.60E-01	1.03E+01
4	3.34E+00	1.61E+00	3.14E+00	1.93E+00	2.60E-01	5.84E+00	5.87E+00	2.83E+00	6.60E+00	3.39E+00	4.60E-01	1.03E+01
5	2.54E+00	1.20E+00	2.65E+00	1.25E+00	1.10E-01	2.89E+00	4.53E+00	2.14E+00	4.95E+00	2.24E+00	1.90E-01	5.16E+00
6	2.54E+00	1.20E+00	2.65E+00	1.25E+00	1.10E-01	2.89E+00	4.53E+00	2.14E+00	4.95E+00	2.24E+00	1.90E-01	5.16E+00
7	2.54E+00	1.20E+00	2.65E+00	1.25E+00	1.10E-01	2.89E+00	4.53E+00	2.14E+00	4.95E+00	2.24E+00	1.90E-01	5.16E+00
8	2.54E+00	1.20E+00	2.65E+00	1.25E+00	1.10E-01	2.89E+00	4.53E+00	2.14E+00	4.95E+00	2.24E+00	1.90E-01	5.16E+00
9	2.54E+00	1.20E+00	2.65E+00	1.25E+00	1.10E-01	2.89E+00	4.53E+00	2.14E+00	4.95E+00	2.24E+00	1.90E-01	5.16E+00
10	2.54E+00	1.20E+00	2.65E+00	1.25E+00	1.10E-01	2.89E+00	4.53E+00	2.14E+00	4.95E+00	2.24E+00	1.90E-01	5.16E+00
11	2.54E+00	1.20E+00	2.65E+00	1.25E+00	1.10E-01	2.89E+00	4.53E+00	2.14E+00	4.95E+00	2.24E+00	1.90E-01	5.16E+00
12	1.03E+00	4.90E-01	1.60E+00	5.10E-01	4.00E-02	1.18E+00	1.87E+00	8.90E-01	3.05E+00	9.30E-01	8.00E-02	2.13E+00
13	1.03E+00	4.90E-01	1.60E+00	5.10E-01	4.00E-02	1.18E+00	1.87E+00	8.90E-01	3.05E+00	9.30E-01	8.00E-02	2.13E+00
14	1.03E+00	4.90E-01	1.60E+00	5.10E-01	4.00E-02	1.18E+00	1.87E+00	8.90E-01	3.05E+00	9.30E-01	8.00E-02	2.13E+00
15	1.03E+00	4.90E-01	1.60E+00	5.10E-01	4.00E-02	1.18E+00	1.87E+00	8.90E-01	3.05E+00	9.30E-01	8.00E-02	2.13E+00
16	1.03E+00	4.90E-01	1.60E+00	5.10E-01	4.00E-02	1.18E+00	1.87E+00	8.90E-01	3.05E+00	9.30E-01	8.00E-02	2.13E+00
17	1.26E+00	6.00E-01	1.18E+00	6.90E-01	9.00E-02	1.27E+00	2.36E+00	1.12E+00	2.35E+00	1.29E+00	1.80E-01	2.38E+00
18	1.35E+00	6.40E-01	1.25E+00	7.40E-01	1.00E-01	1.36E+00	2.34E+00	1.12E+00	2.36E+00	1.28E+00	1.80E-01	2.37E+00

Top 2 applied? Yes

Where top 2 method is applied, two produce categories use 90th percentile rates, while the remainder use the mean. Produce categories vary on a chemical-by-chemical basis. Where top 2 method is not used, all produce categories for all chemicals assume 90th percentile rates.

Report generated 17-Mar-22

Page 4 of 5

3.05E-08

Environment Agency

Building Small terraced house

Building footprint (m ²)	2.80E+01
Living space air exchange rate (hr ⁻¹)	5.00E-01
Living space height (above ground, m)	4.80E+00
Living space height (below ground, m)	0.00E+00
Pressure difference (soil to enclosed space, Pa)	3.10E+00
Foundation thickness (m)	1.50E-01
Floor crack area (cm²)	4.23E+02
Dust loading factor (µg m ⁻³)	5.00E+01

Soil Sandy loam

Effective air permeability (cm²)

Porosity, Total (cm ³ cm ⁻³)	5.30E-01
Porosity, Air-Filled (cm ³ cm ⁻³)	2.00E-01
Porosity, Water-Filled (cm ³ cm ⁻³)	3.30E-01
Residual soil water content (cm³ cm⁻³)	1.20E-01
Saturated hydraulic conductivity (cm s ⁻¹)	3.56E-03
van Genuchten shape parameter m (dimensionless)	3.20E-01
Bulk density (g cm ⁻³)	1.21E+00
Threshold value of wind speed at 10m (m s ⁻¹)	7.20E+00
Empirical function (F _x) for dust model (dimensionless)	1.22E+00
Ambient soil temperature (K)	2.83E+02
Soil pH	7.00E+00
Soil Organic Matter content (%)	6.00E+00
Fraction of organic carbon (g g ⁻¹)	3.48E-02
Effective total fluid saturation (unitless)	5.12E-01
Intrinsic soil permeability (cm²)	4.75E-08
Relative soil air permeability (unitless)	6.42E-01

Report generated 17-Mar-22

Page 5 of 5

Soil - Vapour Model

Air Dispersion Model

Depth to top of source (no building) (cm)	0
Depth to top of source (beneath building) (cm)	65
Default soil gas ingress rate?	Yes
Soil gas ingress rate (cm ³ s ⁻¹)	2.50E+01
Building ventilation rate (cm ³ s ⁻¹)	1.87E+04
Averaging time surface emissions (yr)	6
Finite vapour source model?	No
Thickness of contaminated layer (cm)	200

Mean annual windspeed at 10m (m s ⁻¹)	5.00
Air dispersion factor at height of 0.8m *	500.00
Air dispersion factor at height of 1.6m *	2000.00
Fraction of site cover (m² m⁻²)	0.5

Air dispersion factor in g m⁻² s⁻¹ per kg m

Dry weight	conversion
------------	------------

Soil - Plant Model	factor	Homegrow Average	n fraction High	Soil loading factor	Preparation correction factor
	g DW g ⁻¹ FW	dimens	ionless	g g ⁻¹ DW	dimensionless
Green vegetables	0.096	0.05	0.33	1.00E-03	2.00E-01
Root vegetables	0.103	0.06	0.40	1.00E-03	1.00E+00
Tuber vegetables	0.210	0.02	0.13	1.00E-03	1.00E+00
Herbaceous fruit	0.058	0.06	0.40	1.00E-03	6.00E-01
Shrub fruit	0.166	0.09	0.60	1.00E-03	6.00E-01
Tree fruit	0.157	0.04	0.27	1.00E-03	6.00E-01

Gardener type None

Part 2A Investigation

Appendix L Laboratory Chains of Custody

Representative Sample Temperature: this should represent the in-ground sample temperature of soil/groundwater at time of sampling, and not the ambient air.

Unit 3 Deeside Point, Zone 3 Deeside Industrial Park, Deeside, CH5 2UA Tel: 0044 1244 833 780

Reg Office: Element Materials Technology Environmental UK Limited, 10 Lower Grosvenor Place, London, SW1W 0EN Company Reg No: 11371415

EMT 220261

QF-PM-1.1a v 4.1

Unit 3 Deeside Point, Zone 3 Deeside Industrial Park, Deeside, CH5 2UA Tel: 0044 1244 833 780

Reg Office: Element Materials Technology Environmental UK Limited, 10 Lower Grosvenor Place, London, SW1W 0EN Company Reg No: 11371415

CHAIN OF CUSTODY			. 0				SAN	PLE TE	MPERATI	SAMPLE TEMPERATURE (°C):						
CLIENT: AC COMPA					If electronic	tic file required	SAMPLER:	LER:	NMA	Toms	1 1	4110	FENN	ick ick		_
ADDRESS MARP & UNITED IN	HOW	JE L	L- BE.	BEDFORD	below below	below	MOBILE	ü							- alament	
PAKK, CROYDOF	Z				EDUIS		EMAI	EMAIL REPORT TO:	TO:	Anonh	Blun	mac	a You Carry		O CICITICITI	
PROJECT MANAGER:	Zo				CROSSTAE	AB	cc RE	cc REPORT TO:	Lamos	1 th	Como	0000	900			
MOBILE:					CLIENT &	ESPAT V	INVO	CE TO: (if	INVOICE TO: (if different to report)	eport))					
PROJECT ID:					AGS (pie	He also fil	QUO	QUOTE NUMBER:	3;		-G	P.O No:		O	Chain of Custody sheet page of	
SITE: TREADGOLD HO	3115	U			S SAMP	s SAMP, REF below)			ANALYSE	ANALYSIS REQUIRED including SUITE names	D including	SUITE nan	es	#1		
TURNAROUND - please tick (SURCHARGES MAY APPLY)	(PPLY)	All waters - ticl		FOR LABORATORY USE ONLY	LY.		Asbe	Aspestos							SOILS -We are MCERTS accredited for	
10 DAY Other		for samples to be tested straken or		AVERAGE COOL BOX TEMP.(if required):	(if required):		-	risk	(2)						loam and clay (no other matrices). Please	
5 DAY 3 DAY		petted	SAMPLE	SAMPLE RECIEPT CONDITION:	ONE:		_		1)						WATERS - we are accredited for surface	-
MATRIX:- S=Soil, GW=GroundWater, SW=St	urfaceWa	ter, L/E=Leach	nate/Effluent	SW=SurfaceWater, L/E=Leachate/Effluent, OW=OtherWater, P=Product/Oil)	r, P=Produ	ct/Oil)			S Pe						and groundwaters (leachates and effluents are accredited for some tests, please see	_
Sample ID SAMP	S AGS IP SAMP E REF	Shaken Settled	S/GW/SW	V Diste	Time	Depth in Pre Wetres at	Preserv ation High	Mediu No V	WY 9CY						UKAS schedule). Please tick whether analysis is required on settled or shaken samples	
 			U)	2411/29	-0	50.0-		>	1							
カダー洋土			u		Q	2-0-1-0		>	5							
- H			C		-0	50.0-			7							
99111-			0		ò	1-02)								
- H-			0		0	0.0)								
87 I H L			W		0.1	1-0-2		_				V				
DU PO9			S	7	0	500)	>				-			
											100					
														1		_
RELINQUISHED BY:							RECIE	RECIEVED BY:						W	METHOD of SHIPMENT	-
Name:					Date:	te:	Name:	100				Date:		S	Consignment note No:	-
Of:					Time:	ne:	Of:					Time:		Sol	Courier Company:	1
Haalth & Safety instructions including known hazards (e.g. suspected asbestos). Please let us know if samples are heavily contaminated e.g. high PAHs expected, provide PID readings if available.	Is (e.g. si	spected asb	estos), Plea	se let us know	fsamples	are heavily c	ntaminate	d e.g. high	PAHs expe	cted, provid	e PID readir	igs if availa	ole.			-

Reg Office: Element Materials Technology Environmental UK Limited, 10 Lower Grosvenor Place, London, SW1W 0EN Company Reg No: 11371415 Unit 3 Deeside Point, Zone 3 Deeside Industrial Park, Deeside, CH5 2UA Tel: 0044 1244 833 780

Unit 3 Deeside Point, Zone 3 Deeside Industrial Park, Deeside, CH5 2UA Tel: 0044 1244 833 780

Reg Office: Element Materials Technology Environmental UK Limited, 10 Lower Grosvenor Place, London, SW1W 0EN Company Reg No: 11371415

Unit 3 Deeside Point, Zone 3 Deeside Industrial Park, Deeside, CH5 2UA Tel: 0044 1244 833 780

Reg Office: Element Materials Technology Environmental UK Limited, 10 Lower Grosvenor Place, London, SW1W 0EN Company Reg No: 11371415

Color									S/	MPLE T	SAMPLE TEMPERATURE (°C)	E (°C):				
CT C C C C C C C C C							If electro	nic file require		PLER:	T HYWW	1 / SMC	044	EMUTCK		
Exercise Columnyage Colum	10	1	M	DEO			below			3ILE:					- alamen	+
Control Cont	PARIE CROYD	>00					EQUIS		EW/	IL REPO	-		100	13	CICILICIT	-
Court Number Court	DAV	DVS	300				CHOSSI	.AB	8	EPORT T	Alex	100	0	some 6		
Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column	MOBILE:						CLIENT	ESDAT	INV	DICE TO:	if different to repor	т)	4			
Color Page Color	PROJECT ID:						AGS (ple	Mile also 18	anc	TE NUM	JER:		P.O No:			u.
Apply Colore Color Col	TREAD	HON	SE				& SAMP	MP_TYPE REF below!	Ц		ANALYSIS RE	QUIRED inclu	ing SUITE name		7	
AVTRIC. gi-Sol.) Control Contr	5000		All waters		OR LABORA	TORY USE ONL	>		Asi	sestos	(SOLS -We are MCEHTS accredited for	9
National Section Secti	4 DAY		for samples tested shal		VERAGE CC	OL BOX TEMP.(required)			nsk	13				loam and clay (no other matrices). Please	
WATRING, e-Solut OW, croundwinter, 20% solution of the control o	>		astre	T	AMPLE HED	IEPT CONDITION	22			III) '				WATERS - we are accredited for surface	
Date According According Control Contr	MATRIX:- S=Soil, GW=GroundWater, SW=Surf	faceWate	er, L/E=L	eachate/	Effluent, O	W=OtherWater	P=Prod	ret/Oil)		u	142				and groundwaters (leachates and effluents are accredited for some tests, please see	(0
1.2.3 5 \(\frac{11}{11} \) 0 \(\cdot \cd	AGS SAMP TYPE	AGS SAMP REF	Shaken	Settled /	S/GW/SW JE/OW/P	Date		200	-		9 50				UKAS schedule), Please tick whether analysis is required on settled or shaken samples	
1.2.5					S	17/11/51	0	500-			1					
1 2 8					-	111/	0	Line-								
	-					1111	0	91.			111					
1 2 5 14 12 0 0 0 0 0 0 0 0 0	42187					/111	0	1			7					
1 2 2 24/11/21 0.11-0.24 1 1 1 1 1 1 1 1 1	TH155			Г		111/4	O	1								
1	-					1111	0	1			2					
1	17 1 11 1				8		0	-0.05			111					
H 14.5 H 14.6 H 15.3 H 15.6 H 15.7 H 15.8	17111				(A		0	19467		0	-					
H L S D D D D D D D D D	7 H 1 43				S		0	-0-05			10					
Harape France F	7 41 43			Ī	S		0	30-1								
Hone San	24147				(V)		0	50-0-			1/					
13 15 15 15 15 15 15 15	97 IN J				1,5		0	1-0-5								
1 3 5 6 6 6 6 6 6 6 6 6	有材133				5		0	0.00			11					
Fig. 18	千H 133				S	_	Ó	1-0-1								
## 5.5 Proof				П	0		0	5000-			7.					
QUISHED BY: Date: Date: Time:	-				0		ó				/.					
H 3 9	D u P O 6				S		0	7-0-1-								
QUISHED BY: RECIEVED BY: Time: Of:					S		0	30.O-			>					
AUSHED BY: Date:	1 3				5		0	10-1		Ì	_	01				
QUISHED BY: RECIEVED BY: Date: Name: Time; Of:	THILO				S	77	0	-0,00	-		>					
Date: Name: Date: Time; Of;	RELINQUISHED BY:						-		REC	EVED BY					METHOD of SHIPMENT	T
Time; Of:	Name:						Ö	ite:	Nam	50			Date:		Consignment note No:	
	Of:						Ē	ne:	OĘ:				Time:	cte:	Courier Company:	1

Reg Office: Element Materials Technology Environmental UK Limited, 10 Lower Grosvenor Place, London, SW1W 0EN Company Reg No: 11371415 Element
Unit 3 Deeside Point, Zone 3 Deeside Industrial Park, Deeside, CH5 2UA Tel: 0044 1244 833 780

Unit 3 Deeside Point, Zone 3 Deeside Industrial Park, Deeside, CH5 2UA Tel: 0044 1244 833 780 Reg Office: Element Materials Technology Environmental UK Limited, 10 Lower Grosvenor Place, London, SW1W 0EN Company Reg No: 11371415

Unit 3 Deeside Point, Zone 3 Deeside Industrial Park, Deeside, CH5 2UA Tel: 0044 1244 833 780

Reg Office: Element Materials Technology Environmental UK Limited, 10 Lower Grosvenor Place. London, SW1W 0EN Company Reg No: 11371415

EMT 220468

QF-PM-1.1a v 4.1

CHAIN OF CUSTODY								REPRESENTATIVE SAMPLE TEMPERATURE (°C):		
CLIENT: AECOM						If electronic file required	ic file required	SAMPLER: FOR TOMS	2	10
ADDRESS: NUMBER HOO	18	中	N N	FOR	0	please select	ille lorina	MOBILE: 07741 653315	9	- element
PARK CROYDO	7					EQUIS		EMAIL REPORT TO:	Cana	O CICILICITI
PROJECT MANAGER:	2450	20				CROSSTAB		oc REPORT TO:	Com	
MOBILE:						CLIENT	SDAT V	INVOICE TO: (if different to report)		
PROJECT ID					1	AGS (please al	SO fill	QUOTE NUMBER:	ਹੋ	Chain of Custody sheet page of
SITE: TREADGOLD HOUSE (G	GREGIT	EUSTA	A G.Z	22.50b	(DINON)	& SAMP_REF below)	vPE elow)	ANALYSIS REQUIRED including SUITE names		
TURNAROUND - please tick (SURCHARGES MAY APPLY)	AY APPLY)	All water	S - SCH		FOR LABORATORY USE ONLY	*		Asbestos	031 0	SOILS -We are MCERTS accredited for
10 DAY 4 DAY Other		for samples to be tented shaken or	s to be		AVERAGE COOL BOX TEMP.(if required):	if required):		risk		loam and clay (no other matrices). Please
5 DAY 3 DAY		petted	P.		SAMPLE RECIEPT CONDITION	4:) (request an MCER IS report if required. WATERS we are accredited to suffice
MATRIX:- S=Soil, GW=GroundWater, SW=SurfaceWater, L/E=Leachate/Effluent, OW=OtherWater, P=Product/Oil)	W=SurfaceW	ater, L/E=	eachai	te/Effluent, (OW=OtherWater	, P=Product/Oi	(1)	W W		and groundwaters (leachates and effluents are accredited for some tests, please see
Sample ID	AGS AGS SAMP SAMP TYPE REF	Shaken	Settled	S/GW/SW /L/E/OW/P	Date	Time Depth in Metres	n in Preserv	High Mediu WoJ	, s o c	UKAS schedule). Please tick whether analysis is required on settled or shaken samples
TH1 34				N	25/11/21	0.3	9.0			
サン・は						-90	10			
TH125						0-0	50.0			
TH125						-	0.5			
THI 2 S						0.3	#1:0			
TH118						0-0	Se			
2 1 1 3 2						-1-0	2.0			
TH 1 8						6.3	4.0			
8 1 1 H L						30	F-0			
+ 1 1 +						0-0	So	7		
カー・カー・オー						4.0	0.5			
7 11 17 7						0.3-	7.0			
一十121						0-0	Yo.			
T H 1.2.1						0.1-	2.0	>		
丁 刊 1 2 4						5.5	力の	7		
7 + 1 2 1						0.6	400			
T#120						0-0	50			
7H120						- 10	2.0			
TH120						-5-0	40			
7 11 1 14						0-0.	20			
RELINGUISHED BY:								VED BY:	ME	METHOD of SHIPMENT
Name:						Date:		ne:	Con	Consignment note No:
<u>;;</u>						Time:		Ot:	Con	Courier Company:
Health & Safety instructions including known ha	zards (e.g.	suspected	asbes	tos). Please	e let us know if	samples are !	reavily con	Health & Safety instructions including known hazards (e.g. suspected asbestos). Please let us know if samples are heavily contaminated e.g. high PAHs expected, provide PID readings if available.		

Reg Office: Element Materials Technology Environmental UK Limited, 10 Lower Grosvenor Place, London, SW1W 0EN Company Reg No: 11371415 **Element**Unit 3 Deeside Point, Zone 3 Deeside Industrial Park, Deeside, CH5 2UA Tel: 0044 1244 833 780

Unit 3 Deeside Point, Zone 3 Deeside Industrial Park, Deeside, CH5 2UA Tel: 0044 1244 833 780 Reg Office: Element Materials Technology Environmental UK Limited, 10 Lower Grosvenor Place, London, SW1W 0EN Company Reg No: 11371415

CLIENT

10 DAY 5 DAY

SITE:

Element

Reg Office: Element Materials Technology Environmental UK Limited, 10 Lower Grosvenor Place, London, SW1W 0EN Company Reg No: 11371415 Unit 3 Deeside Point, Zone 3 Deeside Industrial Park, Deeside, CH5 2UA Tel: 0044 1244 833 780

EMT 222044

Vame:

Unit 3 Deeside Point, Zone 3 Deeside Industrial Park, Deeside, CH5 2UA Tel: 0044 1244 833 780

Reg Office: Element Materials Technology Environmental UK Limited, 10 Lower Grosvenor Place, London, SW1W 0EN Company Reg No: 11371415

Element

Unit 3 Deeside Point, Zone 3 Deeside Industrial Park, Deeside, CH5 2UA Tel: 0044 1244 833 780 Reg Office: Element Materials Technology Environmental UK Limited, 10 Lower Grosvenor Place, London, SW1W 0EN Company Reg No: 11371415

EMT 222043

If electronic file formal please select fi		- olement	Colonicin			Chain of Custody sheet page		SOILS -We are MCERTS accredited for	loam and clay for other matrices). Please	request an MCERTS report if required. WATERS - we are accredited for surface	and groundwaters (leachates and effluents are accredited for some tests, please see	UKAS schedule). Please tick whether analysis is required on settled or shaken samples																				METHOD OF SHIPMEN	. ON BUILDING NO.
if electronic file required please select file format below EQUIS CROSSTAB CLIENT AGS (please also file format below in AGS stamp—TYPE LELeachate/Effluent, OW=Other/Water, P=Product/Oil) Settled ALEOWIP Settled ALEOWIP Settled ALEOWIP Settled ALEOWIP Settled ALEOWIP Settled ALEOWIP Settled ALEOWIP The Depth in Pressive attions to the plant in Pressi	SENTATIVE E TEMPERATURE (°C):	2 X N 1 3 2	PORT TO:	T TO:	O: (if different to report)		ANALYSIS REQUIRED including SUITE names			9 (2	1 -	12021				DI LOUID	77.77								7	(,)(,)	COM MOC	300		(117)		BY:	
waters - tick sample to be about the control of the				8	FALT.		AGS SAMP_IYPE & SAMP_REF below)					Depth in Preserv Mediu	:SI 02 0.00	:Soul-0-2	3.0.5.02	1.50.4.1	:Sm- an	158 n. 1-03	17200	1701-02	3-0-0	100	135 a os	100	0-0	-1-0	6	-0.0-	6:00 1 0.3 V	3000	SWALL OF	RECIEVED	
	2	Mr. Combon	0	O		5	in 8	FOR LABORATORY USE ON	-		SW=SurfaceWater, L/E=Leachate/Effluent, OW=OtherWater, I	S/GW/SW Date	1 5 06/2/21 P	0 1 0	4 5	5		2	-	is v	V)			5						5 2	5 C 5		

Element

Unit 3 Deeside Point, Zone 3 Deeside Industrial Park, Deeside, CH5 2UA Tel: 0044 1244 833 780

Reg Office: Element Materials Technology Environmental UK Limited, 10 Lower Grosvenor Place, London, SW1W 0EN Company Reg No: 11371415

QF-PM-1.1av 4.1

CHAIN OF CUSTODY			F,					SAI	SAMPLE TEMPERATURE (°C)	MPER	ATURE	(°C):				
CLIENT: H						If electronia	If electronic file required		SAMPLER:							
ADDRESS:	4 Bo	Ballerd	P.14	Con	Croude	piease ser below	ect the forms	MOBILE	LE:	i	ď					- clement
CAO 2AP				1		EQUIS		EMAI	EMAIL REPORT TO:	r TO:					D	TOTTOTT
PROJECT MANAGER:						CHOSSTA	AB	SC RE	cc REPORT TO							
MOBILE: +44 7799	79 雪	7175				CLIENT		INVO	INVOICE TO: (if different to report)	different	t to report					
PROJECT ID:	7 %	- Calle	4.0			AGS (pless	Se also fill	ano	QUOTE NUMBER:	ER:			P.O No:		Chain of Custo	Chain of Custody sheet page of
SITE: Averagely Park Sin	fr-> -					& SAMP REF below)	F Delow)			ANAL	YSIS REC	UIRED includ	ANALYSIS REQUIRED including SUITE names	es	2	
TURNAROUND - please tick (SURCHARGES MAY APPLY)	(AY APPLY)	All waters - 101		H LABORAT	FOR LABORATORY USE ONLY			Asb	Asbestos						SOILS -We are	SOLLS -We are MCERTS accredited for
10 DAY 4 DAY Other	1	for samples to be tested shakes or		ERAGE COC	AVERAGE COOL BOX TEMP.(if required):	required);			risk	1/	- (5				loam and clay (loam and clay (no other matrices). Please
5 DAY 3 DAY		settles		MPLE RECE	SAMPLE RECIEPT CONDITION	- 11				21/	(6,				WATERS - we	WATERS - we are accredited for surface
MATRIX:- S=Soil, GW=GroundWater, SW=SurfaceWater, L/E=Leachate/Effluent, OW=OtherWater, P=Product/Oil)	W=SurfaceV	Vater, L/E=Le	eachate/Ei	ffluent, OW	/=OtherWater,	P=Produc	t/Oil)		ш	cal	5				and groundwat	and groundwaters (leachates and effluents are accredited for some tests, please see
Sample ID	AGS AGS SAMP SAMP TYPE REF	Shaken	Settled S//	S/GW/SW	Clate	Time D	Depth in Pre	Preserv ation High	Mediu	2442 h	1747 W				UKAS schedule analysis is requ samples	UKAS schedule). Please tick whether analysis is required on settled or shaken samples
80128	-			5	112/2/1	3:50 0	50-0-		>							
P 6 1 2 9 8				5	1	0 05:51	2000			>	2	3				
0 1 1 9 8 8				U)		2.100-	-0.05		>							
011986				S		S) de Co-	1-02		3	0	2					
11111				5		3:20-	50.0-		_							
111944				5		3:20	-0.3		>							
8 76112				変 5	1	12:500-	0.05		7	1	4					
R 7 6 1 12				0)	7	2.38[3-1	2.0-		1							
C11224				(J)		W.SSD -	50.0		>							
A F G 1 1 3				U	-	10:301	-0.5		1							
A P G 11 3				,01		0:30	9-0-5			1	2					
A76113				S		10:3ED-4	1-1		0)	2	404	0				
A P 6 1 1 12				C)		-033	50.00		34							
0 2 6 1 1 4				S		* 05Z:11	1-02		2							
276116				V		11:250+	2-0-5			>	2					
47 1 1 2 d tt				S		11:50%	9-1		7	2	MCP	0				
APP 6115				8		2:28:5	50.0					C				
9 2 6 1 1 5				5		2:50	1-0-2		>							
A 2 6 1 1 6				S		-0513	0.00		>			20				
A PG 116				4	1	131501	1-0-3		>	>	>					
RELINQUISHED BY:								RECI	RECIEVED BY:					100 000	METHOD of SHIPMENT	PMENT
Name:						Date	Ф	Name:					Date:		Consignment note No:	te No:
Of:						Time:	e:	ö					Time:		Courier Company:	<i>γ</i> :
Health & Safety instructions including known hazards (e.g. suspected asbestos). Please let us know if samples are heavily contaminated e.g. high PAHs expected, provide PID readings if available.	azards (e.g.	suspected	asbestos). Please le	et us know if	samples a	re heavily c	ntaminate	ed e.g. hig	h PAHs e	xpected,	provide PID re	adings if availal	ole.		

Representative Sample Temperature: this should represent the in-ground sample temperature of soil/groundwater at time of sampling, and not the ambient air.

Element

Unit 3 Deeside Point, Zone 3 Deeside Industrial Park, Deeside, CH5 2UA Tel: 0044 1244 833 780

Reg Office: Element Materials Technology Environmental UK Limited, 10 Lower Grosvenor Place, London, SW1W 0EN Company Reg No: 11371415

QF-PM-1.1a v 4.1

Design Process Proce	CHAIN OF CUSTODY					1000		2	S/R	SAMPLE TEMPERATURE (°C)	TEMP	IVE	RE (°C	::		E,				
CTD CATE C	23						f electror	ic file require	1111	(PLER:										
COUNTY-ACE TO Control COUNTY-ACE TO CO	Sould House, a	(So 10)			Cooper	*	oledse se	ופכר ווופ וסווו		3ILE:						Н			- plame	tus
Control Cont	C (82)				>		EQUIS		EM	AIL REPO	DRT TO:					H			D	177
Counting Counting	PROJECT MANAGER:	5			=1		CROSST	AB	SC	EPORT	10:							=		
CTD Carry CTD Carry CTD Carry CTD Carry CTD Carry CTD Carry CTD Carry CTD Carry CTD Carry CTD Carry CTD CT	44 7	19 gt	717	M			CLIENT		<u>N</u>	DICE TO	: (if diffe	rent to re	port)							
1	Georgill Show	[6]	0.0	20			AGS (ple	use also fill	ğ	OTE NUA	ABER:				P.0 I	:01			Chain of Custody sheet page	jo.
A	E	Gulde	2				in AGS SA & SAMP_F	MP_TYPE (EF below)			AN	IALYSIS	REQUIF	ED incl	JS Buipn	ITE nam	Se		-3-	
MATRIC. SSol. Office Woodspie to be Methods COOL BOX TELL (MATRIC. SSol.) Office Woodspie to be Methods COOL BOX TELL (MATRIC. SSol.) Office Woodspie to be Matrice Woodspie to be Woodspi	100	(APPLY)	All wate	ers - tick	_	ATORY USE ONL	>		As	sestos									SOILS -We are MCERTS accredite samples predominantly made up of	d for
MATRIC S-Sol) GW-droundWater, SW-SurfaceNWiter, UE-Learning Town Production Apart Sales Apart			for samp tested sh	les to be		OOL BOX TEMP.(required):			risk	1	-						V	loam and clay (no other matrices).	lease
MATRIC. Secol, Covercioundwider, SWESUrfaceWiner, CF-Learenbandfiltering, OW-Otherwater, Ps-Production) Author State St	5		Til.	ped		CIEPT CONDITION	a di				217	9	653						WATERS - we are accredited for so	rface
Date: Asserting State St	MATRIX:- S=Soil, GW=GroundWater, SW=	=SurfaceWa	ter, L/E=	-Leachai	te/Effluent, t	OW=OtherWater	P=Produ	ct/Oil)		ш	7	1-	115						and groundwaters (leachates and e are accredited for some tests, pleas	muents e see
At Schov Instructions inciding known hazards for a strategies are havely contaminated ag high PANs expected, provides PID reservations inciding a suspected as absences.		GS AGS AMP SAMP YPE REF		Settled	S/GW/SW	Date		1		_	1 coul	4.6	767.						UKAS schedule). Please tick wheth analysis is required on settled or sh samples	er aken
Outsted BY: A Saley Instructions including known hazards (e.g. supported asbestos). Please let us known it samples are heavily contaminated e.g. high PAHs expected, provide PDI readings if samples are heavily contaminated e.g. high PAHs expected, provide PDI readings if samples are heavily contaminated e.g. high PAHs expected, provide PDI readings if samples are heavily contaminated e.g. high PAHs expected, provide PDI readings if samples are heavily contaminated e.g. high PAHs expected, provide PDI readings if available.	0 4 P 1 0				S	1211	•				>	2								
OUSHED BY: A. Salev Instructions including brown hazards (a.g. suspected asheaton). Please let us known it samples are heavily contaminated a.g. high PAHs expected, provide PID readings if available.	1 0 1				S	7	10	200			7	-								
OUSHED BY: A. Salev Instructions Including brown hazards (e.g. suspected as bestock). Please let us know if samples are heavily contaminated e.g. high PAHs expected, provide PID readings if available.							2.40													
OUSHED BY: Salety instructions including known hazards 6 at as known if samples are heavily contrantments 6.9, high PAHs expected, provide PID readings if available.							(m.,)													
OUSHED BY: S. Salevi instructions including shown hazards (e.g. suspected asheatos), Please let us known it samples are heavily contaminated as phigh PAHs expected, provide PID readings if available.							×													Ī
OUISHED BY: Continued by the continued in the continued of gradiable. Continued by the continued in the continued of gradiable.							100													
OUISHED BY: RECIEVED BY: Page						Witnesse.	- 10											B		
OUISHED BY: A. Saleky instructions including shrown hazards (e.g. suspected, ashbestos). Please let us know if samples are heavily contaminated e.g. high PAHs expected, provide PID readings if available.							701.1													
OUISHED BY: A. Salety instructions including known hazards (e.g., suspected, subspected, substitutions including known hazards (e.g., subspected as beats only). Please let us know if samples are heavely contaminated e.g., high PAHs expected, provide PID readings if available.							10													
QUISHED BY: BECIEVED BY: A. Safety instructions including known hazards (e.g., guspected as brown if samples are heavily contaminated e.g., high PANs expected, provide PID readings if available.							-											7		
QUISHED BY: RECIEVED BY: A. Salev instructions including known hazards (e.g. suspected asbestos). Please let us know if samples are heavily contaminated e.g. high PAls expected, provide PID readings if available.							1 8												76	
QUISHED BY: RECIEVED BY: A Salety instructions including known hazards (e.g. suspected asbeatos). Please let us known if samples are heavilly contaminated e.g. high PAHs expected, provide PID readings if available. Time: Or:							100				0	1	3							
QUISHED BY: RECIEVED BY: Date: Date: Time: Of: Time:							10	U.												
QUISHED BY: RECIEVED BY: Received By: Date: Imme: Of: A Safery instructions including known hazards (e.g. suspected asbeatos). Please let us know if samples are heavily contaminated e.g. high PAHs expected, provide PID readings if available.			N				100													
QUISHED BY: Autorial and a supported asbestos). Please let us know if samples are heavily contaminated e.g. high PAHs expected, provide PID readings if available.							10													
QUISHED BY: Authoritions including known hazards (e.g. suspected asbastos). Please let us know if samples are heavily contaminated e.g. high PAHs expected, provide PID readings if available.							1/1				0	7	2							
QUISHED BY: Automatical properties and aspected aspected aspected. Please let us know if samples are heavily contaminated e.g. high PAHs expected, provide PID readings if available.							X 100 K													
QUISHED BY: QUISHED BY: Date: Da							20.00													
OUISHED BY: Date: Date: Time: Date: Date: Date: Date: Time: Time: Time: Time: Date							0													
Date: Date: Name; Date: Time:	RELINOUIISHED BY:								H.	EVED E	3⊀:								METHOD of SHIPMENT	5-1
Time: Of: Time:	Name:						ă	ite:	Nan	e.						Date:			Consignment note No:	300
Health & Safety instructions including known hazards (e.g. suspected asbestos). Please let us know if samples are heavily contaminated e.g. high PAHs expected, provide PID readings if available.	5						ij	ne:	Of:							Time:			Courier Company:	Ô
	Health & Safety instructions including known hazs	ards (e.g. 5	uspecte	d asbes	itos). Pleasi	e let us know if	samples	are heavily o	ontamini	ited e.g.	high PA	is expec	ted, pro	ride PID	readings	if availat	la.			

Element

Unit 3 Deeside Point, Zone 3 Deeside Industrial Park, Deeside, CH5 2UA Tel: 0044 1244 833 780

Reg Office: Element Materials Technology Environmental UK Limited, 10 Luwer Grouvenor Place, London, SW1W DEN Company Reg No 11371415

Part 2A Investigation

Appendix M Historical Ordnance Survey Maps

Historical Mapping Legends

Gravel Pit Other Orchard Mixed Wood Deciduous Brushwood Furze Rough Pasture Arrow denotes Trigonometrical flow of water Station Bench Mark Site of Antiquities Pump, Guide Post, Well, Spring, Signal Post **Boundary Post** Surface Level Sketched Instrumental Contour Contour Fenced Main Roads Minor Roads Un-Fenced Raised Road Sunken Road Railway over Road over Railway Ri∨er Railway over Level Crossing Road over Road over Road over County Boundary (Geographical) County & Civil Parish Boundary Administrative County & Civil Parish Boundary County Borough Boundary (England) Co. Boro. Bdy. County Burgh Boundary (Scotland) Rural District Boundary RD. Bdy.

····· Civil Parish Boundary

Ordnance Survey County Series 1:10,560

Ordnance Survey Plan 1:10,000

E COURT	Chalk Pit, Clay Pit or Quarry	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Gravel Pit
	Sand Pit	(、 Disused Pit ✓ or Quarry
1.000.00	Refuse or Slag Heap	((()	Lake, Loch or Pond
	. Dunes		Boulders
*	Coniferous Trees	44	Non-Coniferous Trees
ቀ ቀ	P Orchard Ωn_	Scrub	∖Y₁v Coppice
ជា ជា	Bracken	Heath '	、 , , , Rough Grassland
<u> </u>	- Marsh 、、、Y//,	Reeds	스크스 Saltings
	Direc	tion of Flow of	Water
	Building	15	Shingle
		<i>#</i>	
223	Glasshouse		Sand
2020	Glassilouse	Didan	
		Pylon _	Electricity
333337	Sloping Masonry		Transmission
	, ,	Pole	Line
		,_	_
Cutting	g Embankm	ient	
	***************************************	***************************************	
	//	\\	, Standard Gauge
Road			Single Track
Under	Over Cross	sing Bridge	Siding, Tramway
			or Mineral Line
			→ Narrow Gauge
	Geographical Co	unty	
	Administrative C	ounty, County I	Borough
	or County of City Municipal Borou Burgh or District	gh, Urban or Ru	ıral District,
	Borough, Burgh Shown only when n	or County Con	
	Civil Parish Shown alternately w	vhen coincidence	of boundaries occurs
BP, BS	Boundary Post or Stone	Pol Sta	Police Station
Ch	Church	PO	Post Office
CH F E Sta	Club House		Public Convenience Public House
FE Sta FB	Fire Engine Station Foot Bridge		Public House Signal Box
Fn	Fountain		Spring
GP	Guide Post		Telephone Call Box
MD	Mile Deet	TCD	Talanhana Call Baat

Mile Post

Telephone Call Post

1:10,000 Raster Mapping

(EB)	Gravel Pit	(((()))	Refuse tip or slag heap
	Rock	3 3	Rock (scattered)
	Boulders		Boulders (scattered)
	Shingle	Mud	Mud
Sand	Sand		Sand Pit
********	Slopes		Top of cliff
	General detail		Underground detail
	- Overhead detail		Narrow gauge railway
	Multi-track railway		Single track railway
	County boundary (England only) District, Unitary,	• • • • •	Ci∨il, parish or community boundary
	Metropolitan, London Borough boundary		Constituency boundary
۵ ⁰	Area of wooded vegetation	۵ ^۵	Non-coniferous trees
۵ ۵	Non-coniferous trees (scattered)	**	Coniferous trees
*	Coniferous trees (scattered)	Ö	Positioned tree
ф ф ф ф	Orchard	* *	Coppice or Osiers
alle.	Rough Grassland	www.	Heath
Oo	Scrub	7 <u>₩</u> ۲	Marsh, Salt Marsh or Reeds
6	Water feature	←	Flow arrows
MHW(S)	Mean high water (springs)	MLW(S)	Mean low water (springs)
	Telephone line (where shown)		Electricity transmission line (with poles)
← BM 123.45 m	Bench mark (where shown)	Δ	Triangulation station
	Point feature (e.g. Guide Post or Mile Stone)	\boxtimes	Pylon, flare stac or lighting tower
+	Site of (antiquity)		Glasshouse
	General Building		Important

General Building

Building

Envirocheck®

LANDMARK INFORMATION GROUP®

Historical Mapping & Photography included:

Mapping Type	Scale	Date	Pg
Middlesex	1:10,560	1874	3
Surrey	1:10,560	1874	4
London	1:10,560	1896	5
London	1:10,560	1920	6
Ordnance Survey Plan	1:10,000	1951	7
Ordnance Survey Plan	1:10,000	1957	8
Ordnance Survey Plan	1:10,000	1967	9
Ordnance Survey Plan	1:10,000	1975	10
Ordnance Survey Plan	1:10,000	1984	11
London	1:25,000	1985	12
Ordnance Survey Plan	1:10,000	1996	13
10K Raster Mapping	1:10,000	1999	14
10K Raster Mapping	1:10,000	2006	15
VectorMap Local	1:10,000	2020	16

Historical Map - Slice A

Order Details

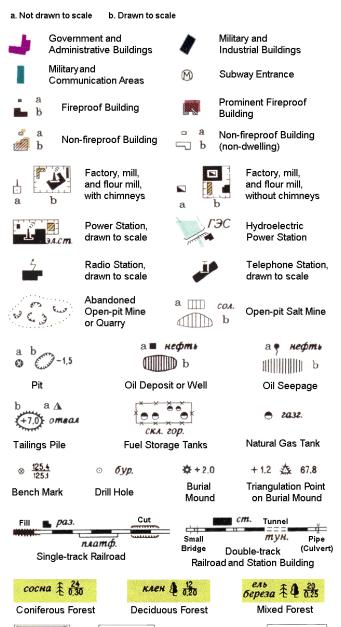
Order Number: 244506740_1_1
Customer Ref: 60632092
National Grid Reference: 523500, 181360

Slice:

Site Area (Ha): 0.25 Search Buffer (m): 1000

Site Details

Kensington, LONDON



el: 0844 844 9952 ax: 0844 844 9951 eb: www.envirocheck.co.uk

A Landmark Information Group Service v50.0 11-Jun-2020 Page 1 of 16

Russian Military Mapping Legends

1:5,000 and 1:10,000 mapping

Citrus Orchard

the diameter of trees

3 3 (Z)

Ии(I)

Йй(Y)

K K (K)

Лл(L)

M m (m)

H H (N)

O o (o)

Values for prominent elevations

Numbers for spot elevations, depth soundings,

Russian Alphabet (Forreference and phonetic interpretation of map text)

Velocity of the current, width of river bed, depth of river

Fractional terms: length and capacity of bridges; depth of

fords and condition of the river bottom; height of forest and

Пп(Р)

P p (R)

C c (s)

T T (T)

y y (u)

Фф(F)

Цц(тѕ)

Хх (кн) Ээ (е)

243.8

186.0

0,2

A a (A)

Бб (в)

B B (V)

Γr (G)

Дд(D)

E e (E)

Ë ë (YO)

Ж ж (ZH)

Wet Ground

Scattered

Vegetation

Чч (СН)

ъ (-)

ы (Y)

Шш (SH)

Щ щ (SHCH)

Юю (YU or IU) A (YA or IA)

Heavy (Index)

Contour Line

Contour Line

and Value

Deciduous

Half Contour

Line

Spot Elevation

Value

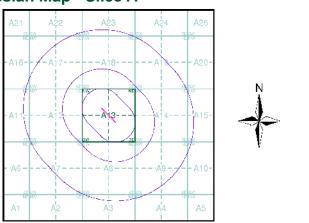
1:25,000 mapping

a. Not draw	n to sc	ale b. Drawn to sca	le	
4		ernment and inistrative Buildings		filitary and ndustrial Buildings
		ryand munication Areas	M S	Subway Entrance
888as	Partly Build	Demolished ings	3888 D	emolished Buildings
	Firep	Up Area with roof Buildings ominant	<i>/////////////////////////////////////</i>	uilt-Up Area with Ion-Fireproof Buildings Predominant
a b	Indivi Build	dual Fireproof ing	STATE OF THE PARTY	rominent Industrial Juilding
	Indivi Firep	dual Dwelling, roof		tuins ofan Individual Welling
≜ ®		бум.	□ скип	. ♀ медн.
Factory o Mill Chimi		Factory or Mill with Chimney	Factory or M without Chim	
🗴 кам.	уг.	*	1 co	ο.4. Δ.
Operatin Shaft or M		Non-Operating Shaft or Mine	Salt Mine	Tailings Pile
<i>OO</i> -1	. 7	CA. nec. kam.	₽	•
Pit		Stone Quarry	Gas Pump o Service Stati	
8		\times	×	= 6.mp.
Oil or Natu Gas Derr		Small Hydroelectric Power Station	Power Statio	on Transformer Station
•		\$ ∅ +8.1	₫ 95.7	A 92.6
Cemeter	у	Burial Mound (height in metres)	Triangulation F on Burial Mou	
□ 52. /		e 7/./	×	T
Bench Ma	ark	Bench Mark (monumented)	Telegraph Office	Telephone Station
4 D⊪- 04-4	u!	₹ D-#- T	†	♦
Radio Stat	uon	Radio Tower	Airfield or Seaplane Ba	Landing Strip se
Cut	Fill	Km Post Plantings		Width of Road
		Telephone Lines lighway	Highway under Construction	Steep Grade Improved Dirt Road (former truck road)
Small Bridge	cm.	Pipe (Culvert) Tunnel	Dism	nantled Railroad
Doul		ck Railroad with ass Station	ann	Under Construction
Comment Street	1000 S	+2.4	Direction and	Water Gauge
Shore Embankr		River or Ditch with Embankment		ent 135.1 Water Level Mark
0 K. 125.0 (2.	-coa.)	вдхр.	156,2 📍 KA.	20
Well		Water Reservoir or Rain Water Pit	Spring	Isobath with value
		20		o 347.1

Key to Numbers on Mapping

TQ28 London

No.	Description
83	Factory (Gas)
347	Television Centre


Envirocheck®

LANDMARK INFORMATION GROUP®

Historical Mapping & Photography included:

Mapping Type	Scale	Date	Pg
Middlesex	1:10,560	1874	3
Surrey	1:10,560	1874	4
London	1:10,560	1896	5
London	1:10,560	1920	6
Ordnance Survey Plan	1:10,000	1951	7
Ordnance Survey Plan	1:10,000	1957	8
Ordnance Survey Plan	1:10,000	1967	9
Ordnance Survey Plan	1:10,000	1975	10
Ordnance Survey Plan	1:10,000	1984	11
London	1:25,000	1985	12
Ordnance Survey Plan	1:10,000	1996	13
10K Raster Mapping	1:10,000	1999	14
10K Raster Mapping	1:10,000	2006	15
VectorMap Local	1:10,000	2020	16

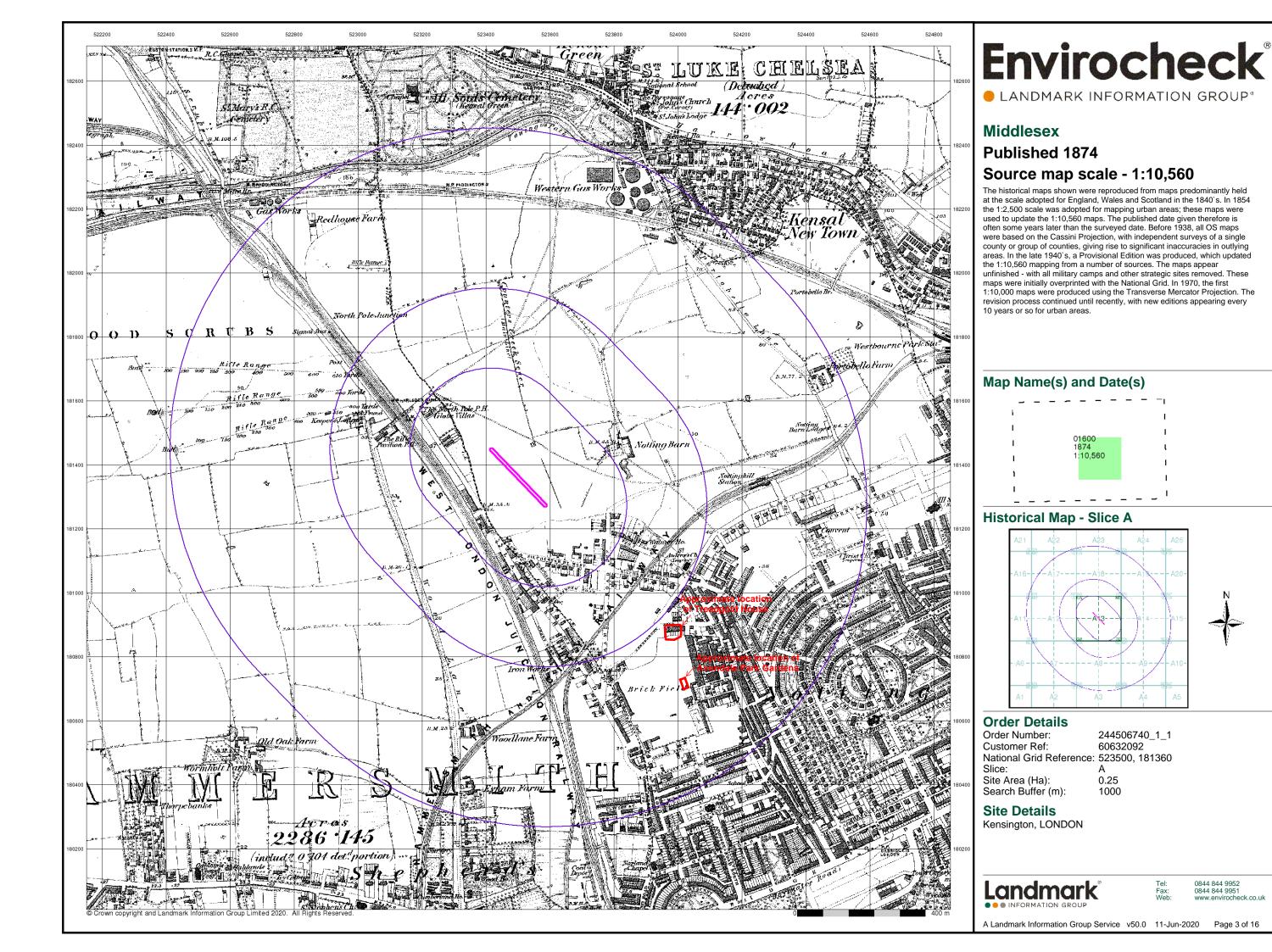
Russian Map - Slice A

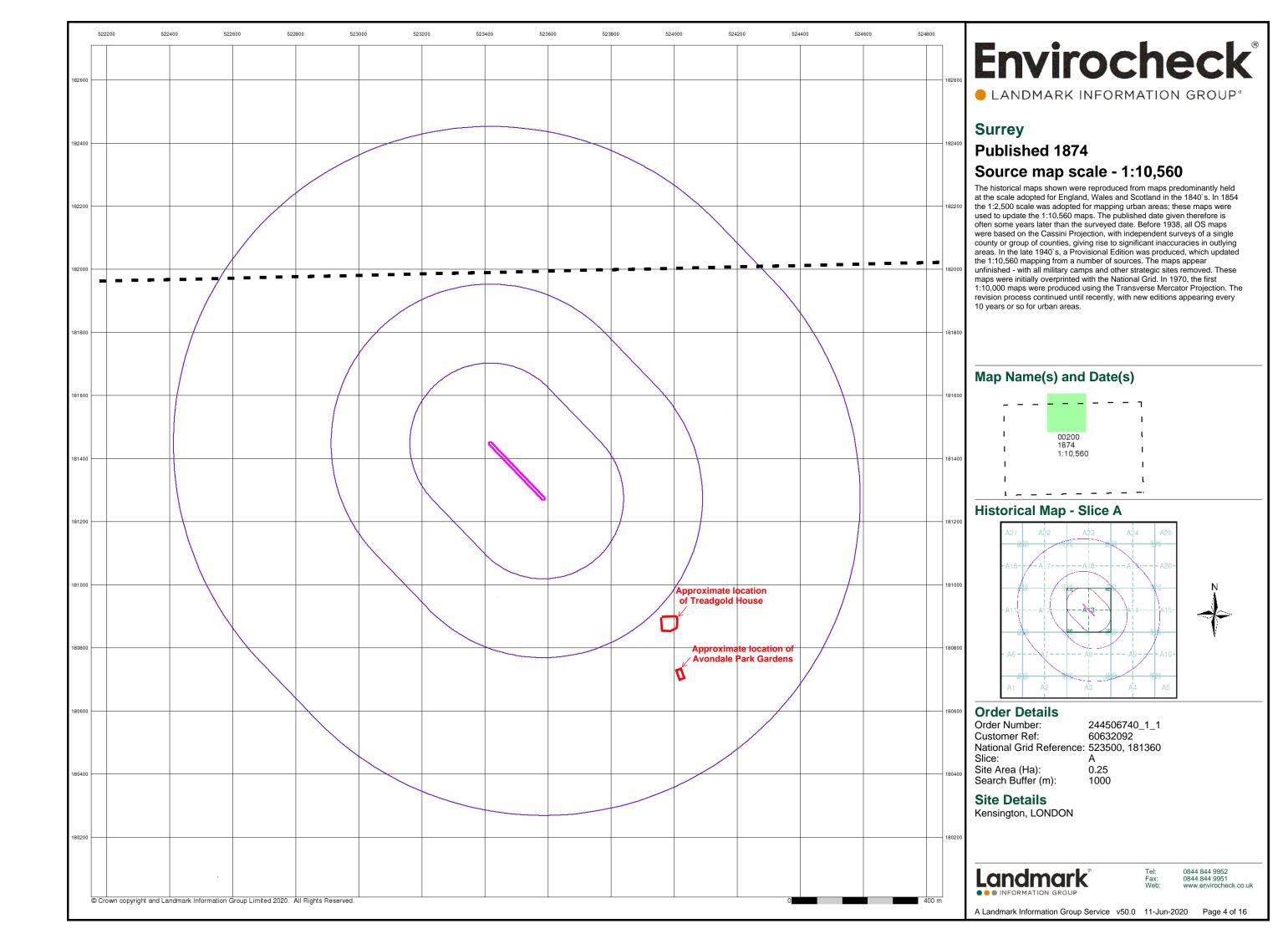
Order Details

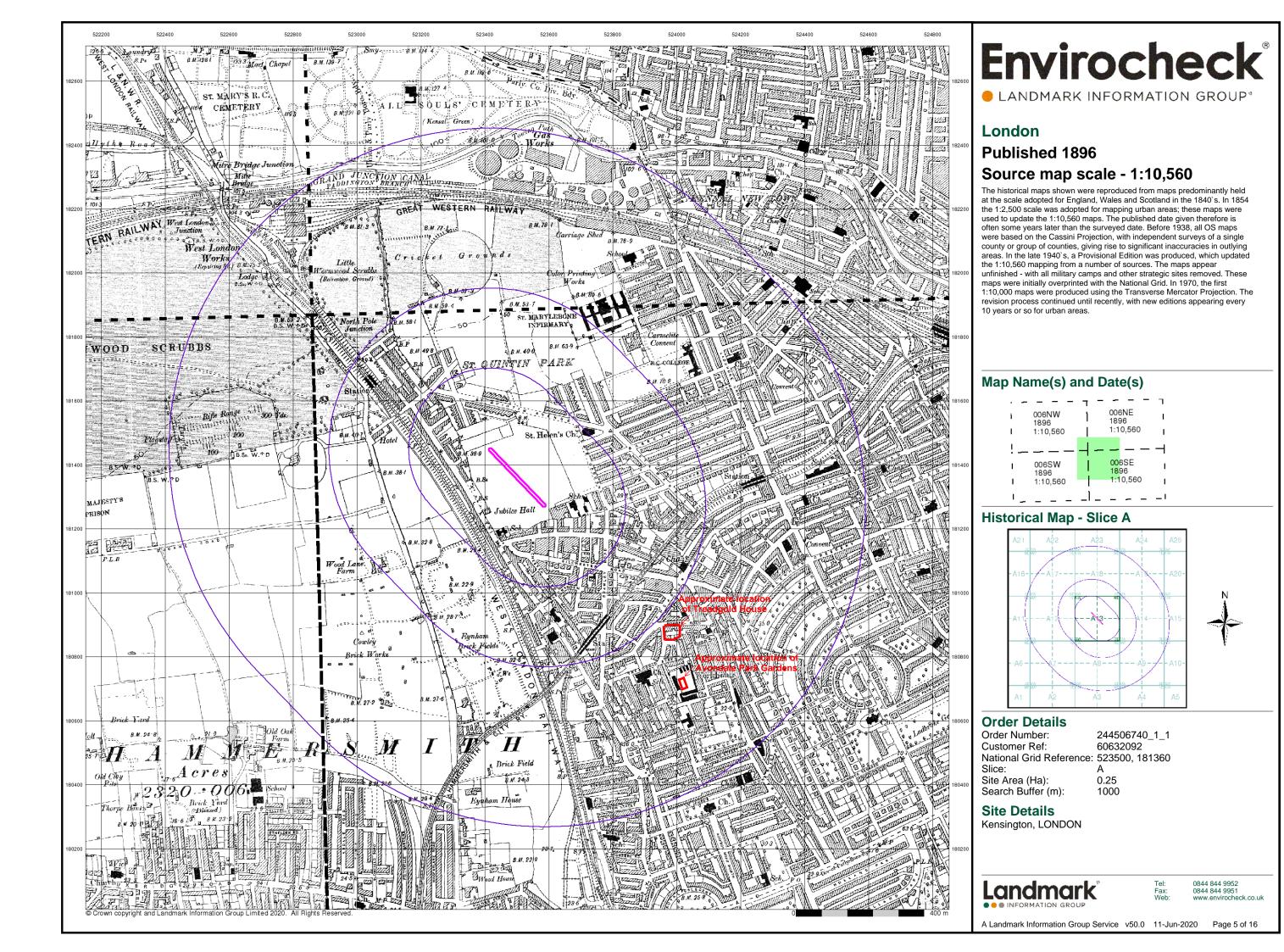
Order Number: 244506740_1_1 Customer Ref: 60632092 National Grid Reference: 523500, 181360

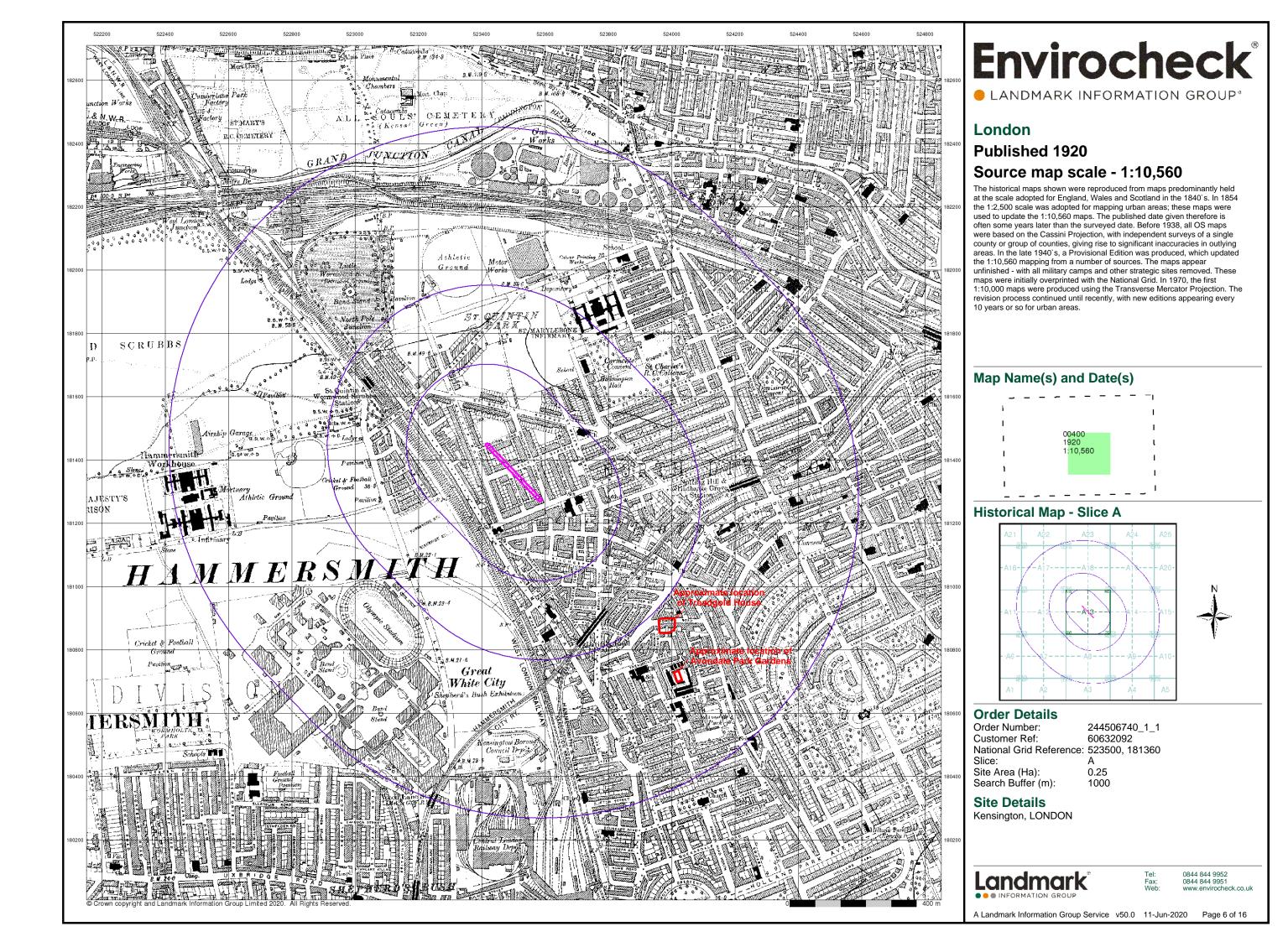
Slice:

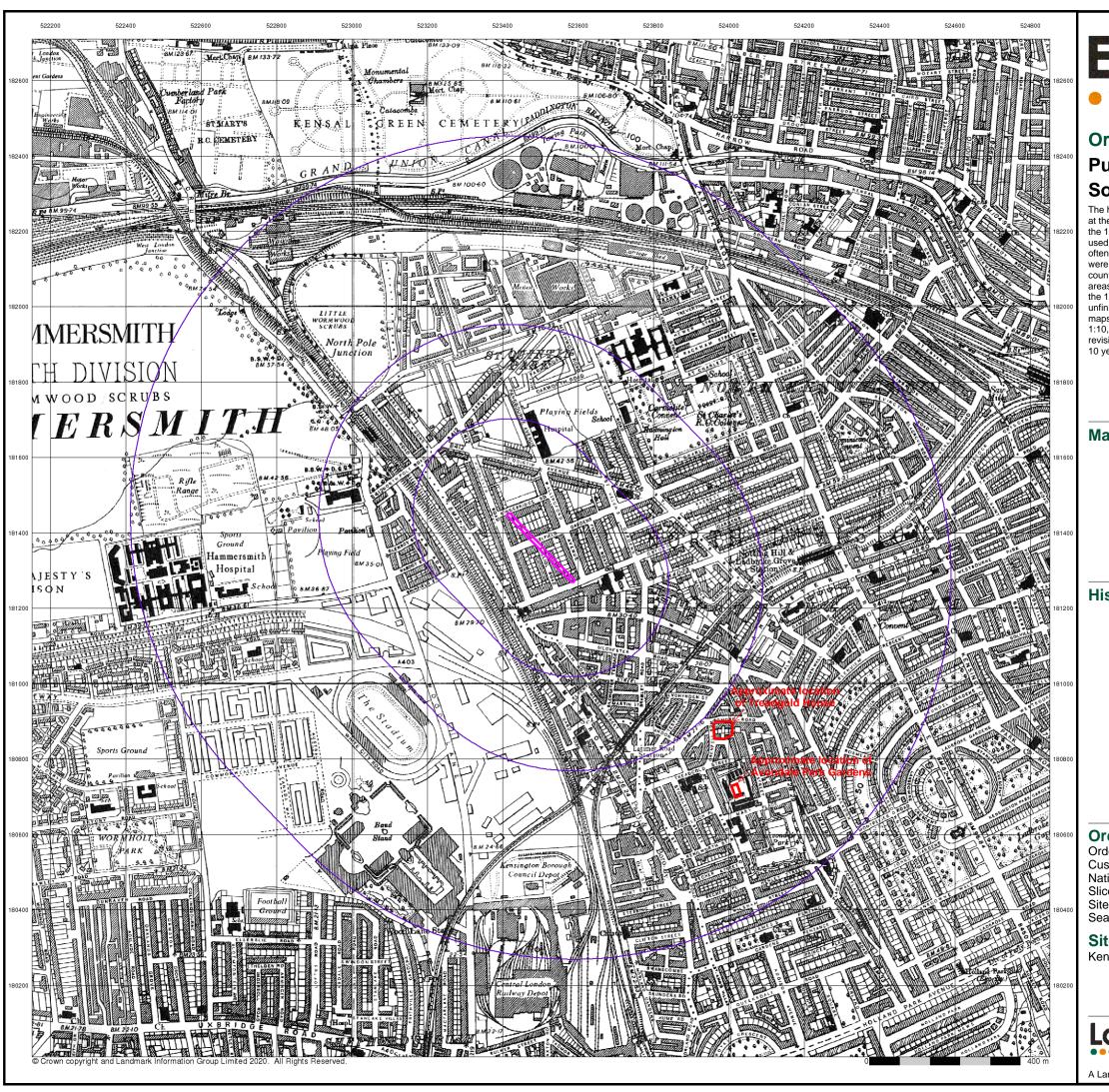
0.25 Site Area (Ha): Search Buffer (m): 1000

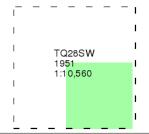

Site Details


Kensington, LONDON

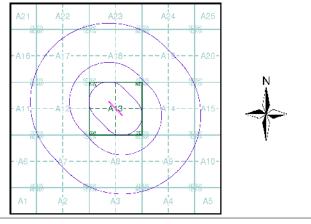



0844 844 9951


A Landmark Information Group Service v50.0 11-Jun-2020 Page 2 of 16



LANDMARK INFORMATION GROUP®


Ordnance Survey Plan Published 1951 Source map scale - 1:10,000

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

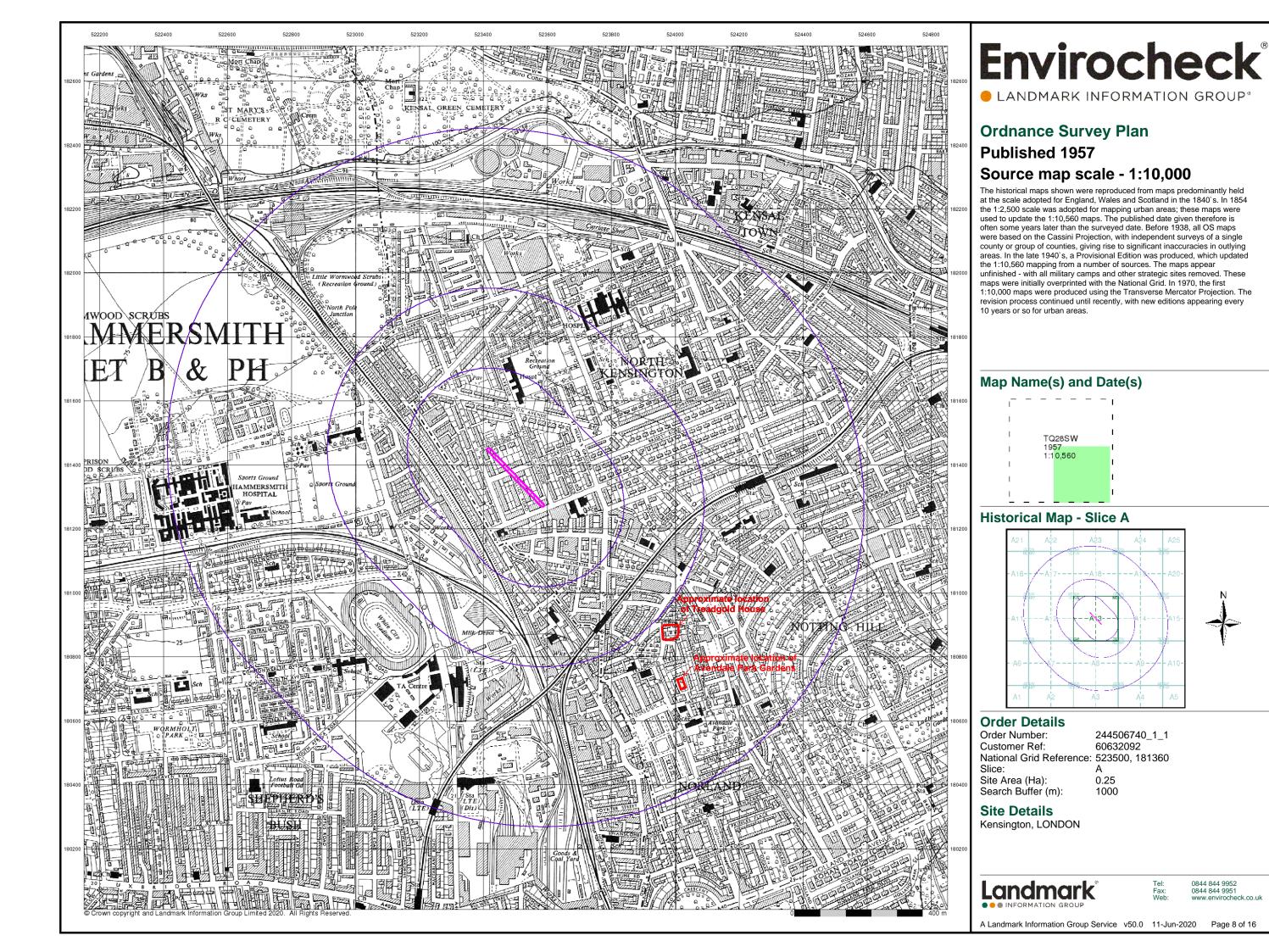
Map Name(s) and Date(s)

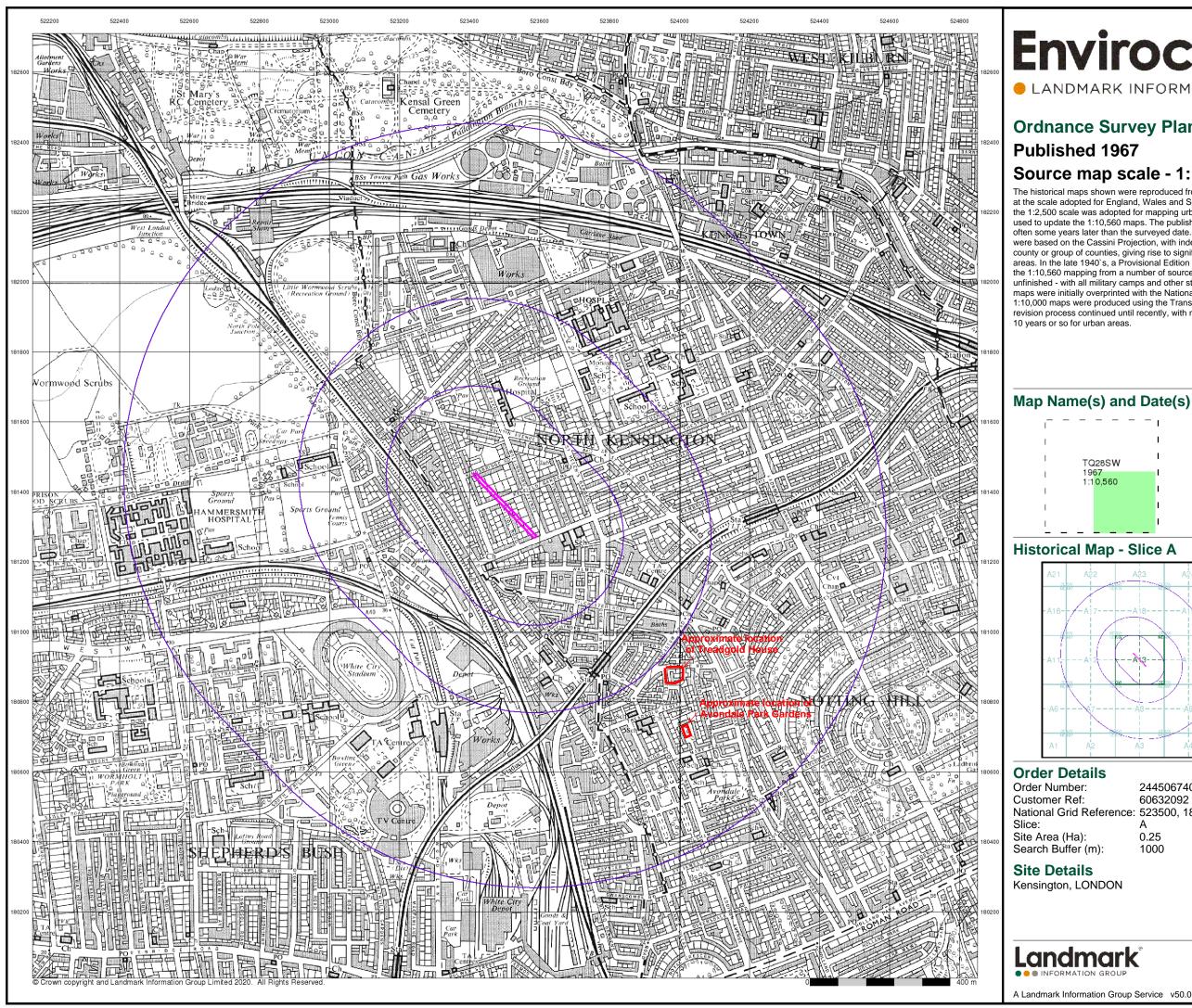
Historical Map - Slice A

Order Details

Order Number: 244506740_1_1 Customer Ref: 60632092 National Grid Reference: 523500, 181360

Site Area (Ha): Search Buffer (m):

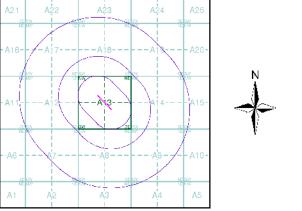

Site Details


Kensington, LONDON

Landmark

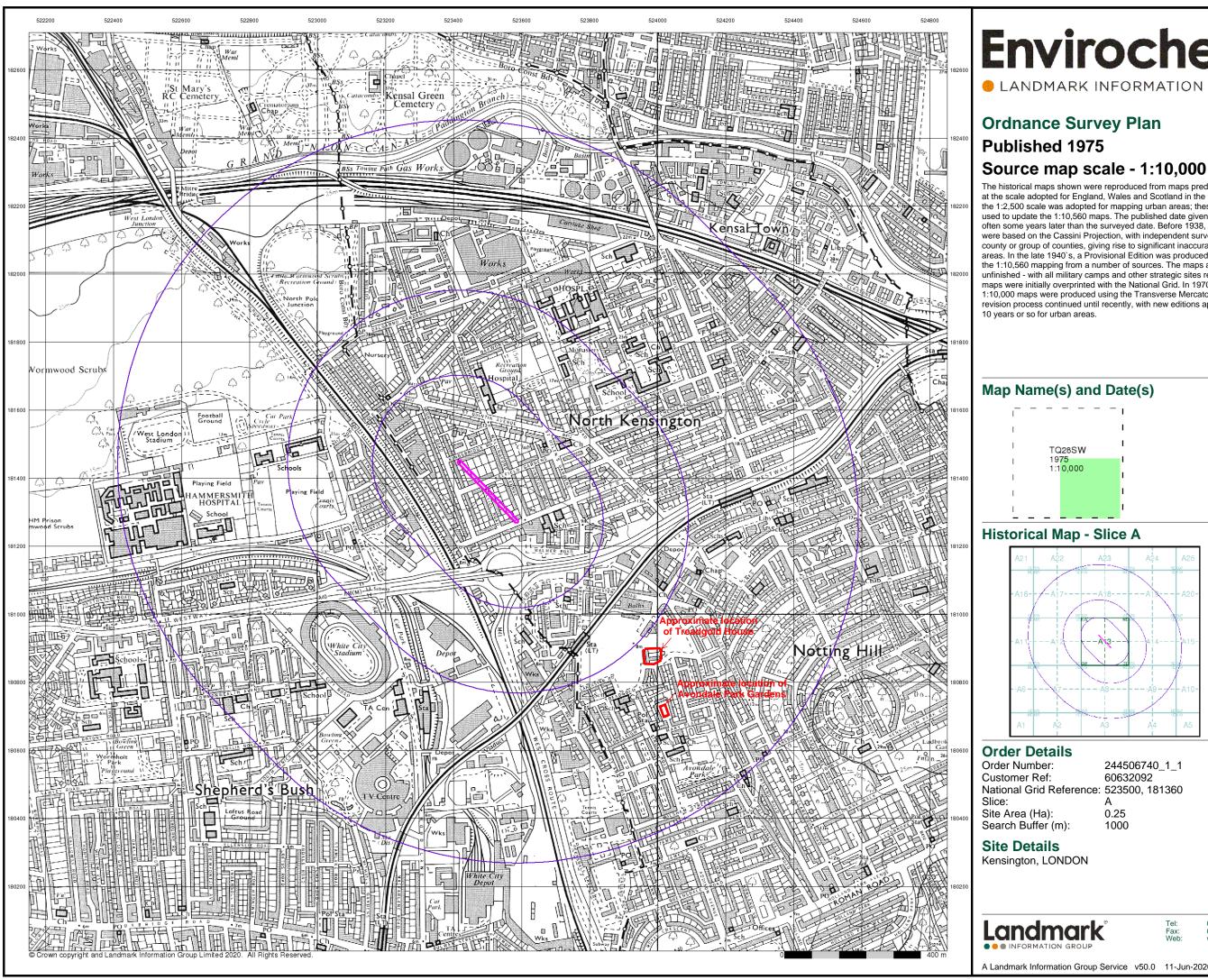
0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 11-Jun-2020 Page 7 of 16



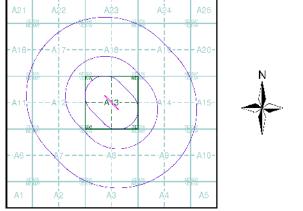
LANDMARK INFORMATION GROUP®

Ordnance Survey Plan Source map scale - 1:10,000


The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every

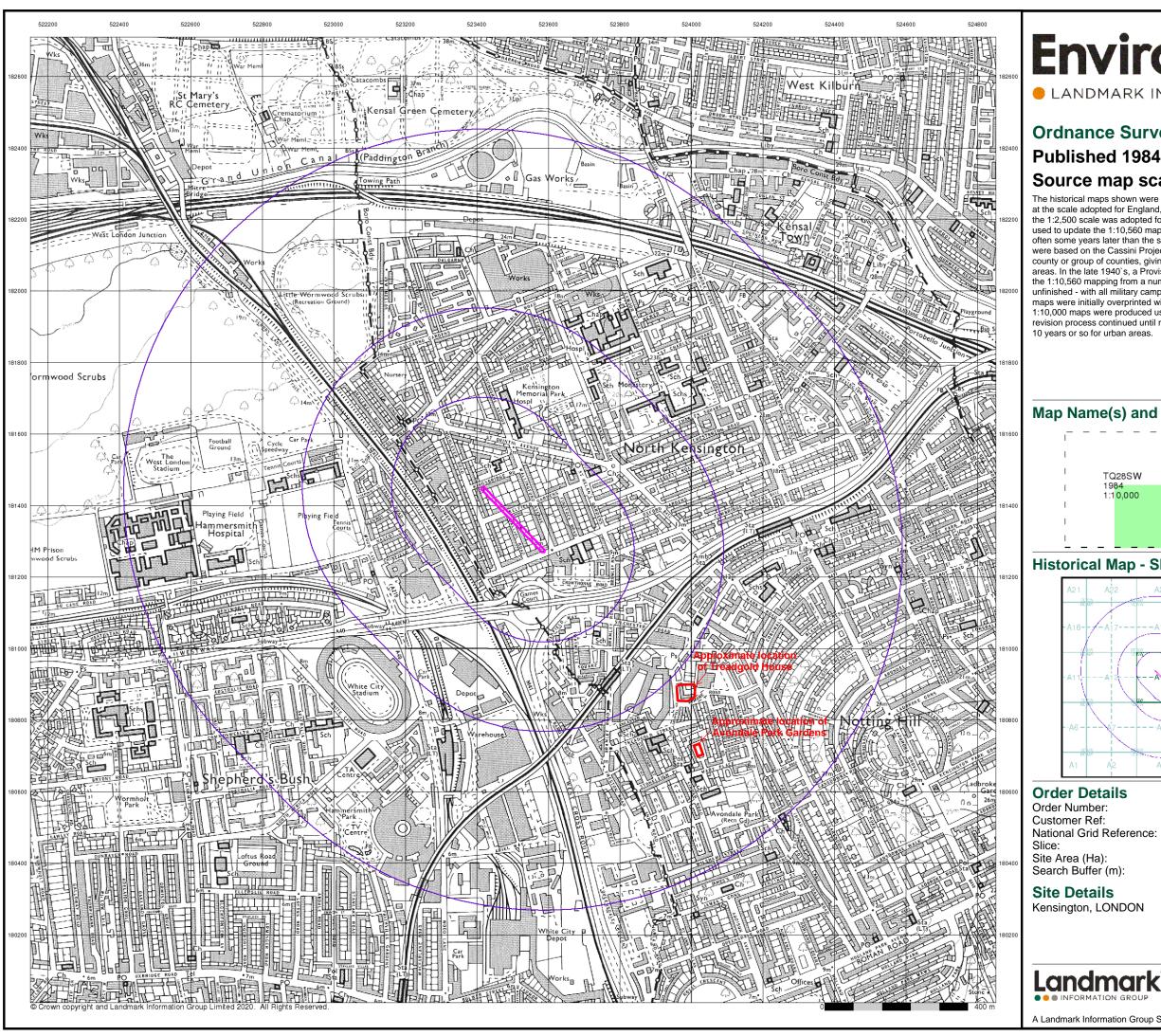
244506740_1_1 60632092 National Grid Reference: 523500, 181360

0844 844 9951 www.envirocheck.co.uk


A Landmark Information Group Service v50.0 11-Jun-2020 Page 9 of 16

LANDMARK INFORMATION GROUP®

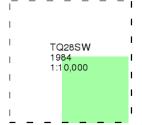
Ordnance Survey Plan


The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every

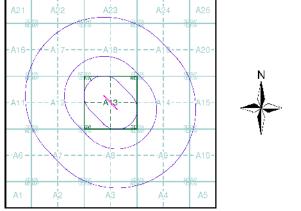
244506740_1_1 National Grid Reference: 523500, 181360

0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 11-Jun-2020 Page 10 of 16

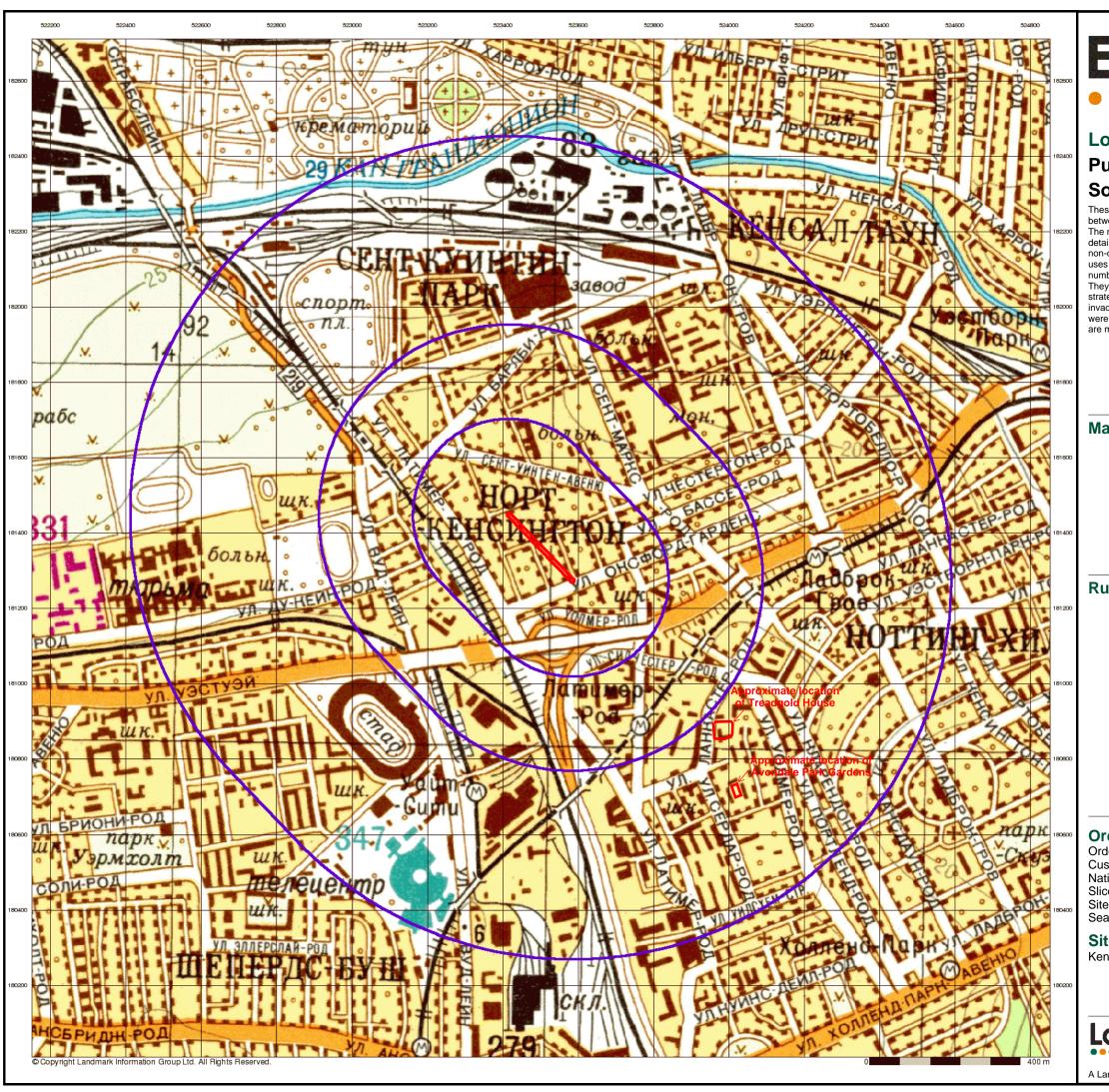


LANDMARK INFORMATION GROUP®


Ordnance Survey Plan Published 1984 Source map scale - 1:10,000

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every

Map Name(s) and Date(s)


Historical Map - Slice A

244506740_1_1 60632092 National Grid Reference: 523500, 181360

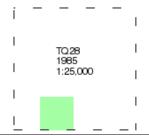
0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 11-Jun-2020 Page 11 of 16

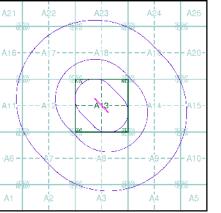
LANDMARK INFORMATION GROUP®

London

Published 1985


Source map scale - 1:25,000

These maps were produced by the Russian military during the Cold War between 1950 and 1997, and cover 103 towns and cities throughout the U.K. The maps are produced at 1:25,000, 1:10,000 and 1:5,000 scale, and show detailed land use, with colour-coded areas for development, green areas, and non-developed areas. Buildings are coloured black and important building uses (such as hospitals, post offices, factories etc.) are numbered, with a numbered key describing their use.


They were produced by the Russians for the benefit of navigation, as well as strategic military sites and transport hubs, for use if they were to have

invaded the U.K. The detailed information provided indicates that the areas were surveyed using land-based personnel, on the ground, in the cities that

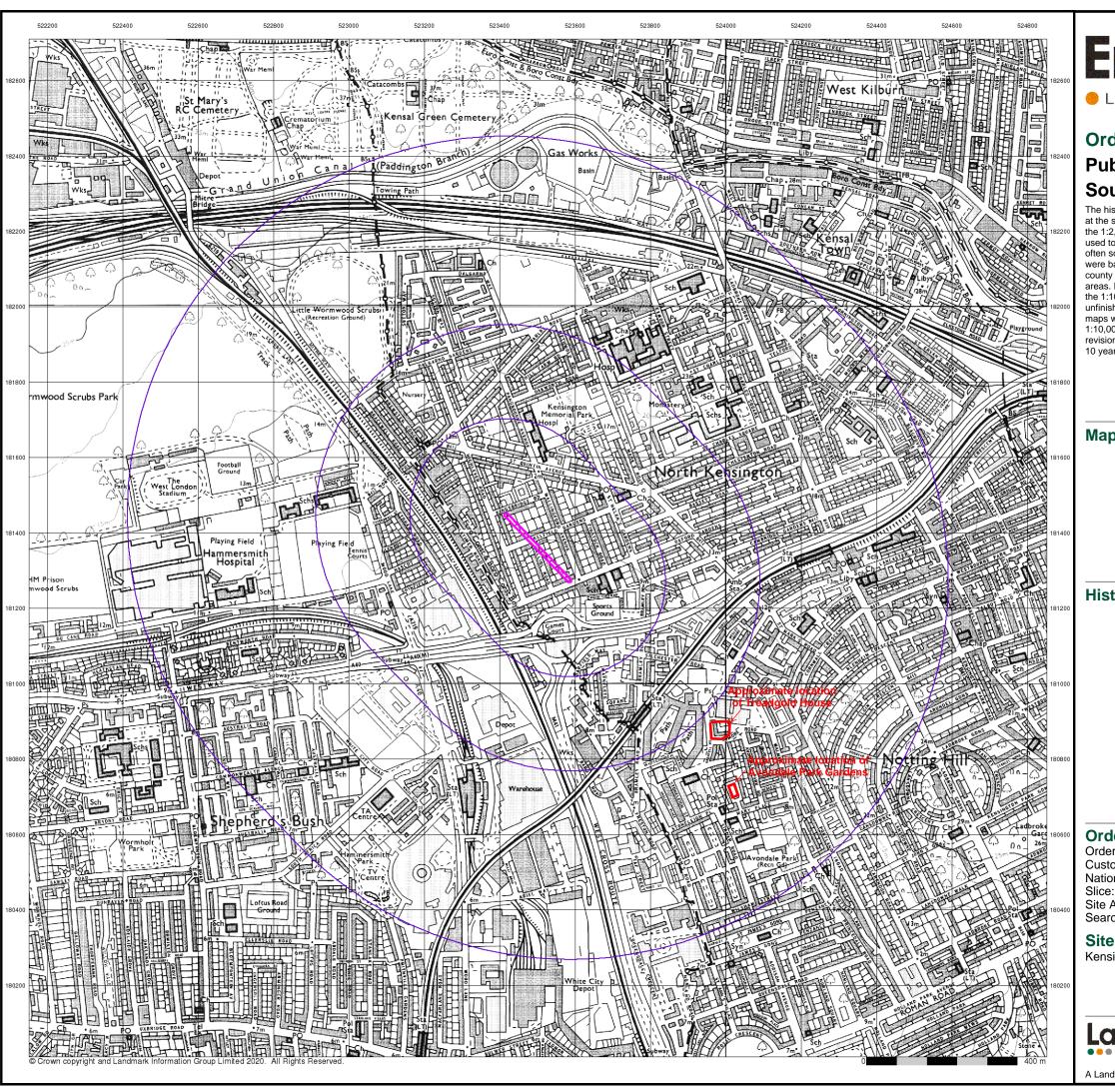
Map Name(s) and Date(s)

Russian Map - Slice A

Order Details

Order Number: 244506740_1_1 Customer Ref: 60632092 National Grid Reference: 523500, 181360

Site Area (Ha): Search Buffer (m):

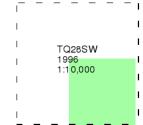

Site Details

Kensington, LONDON

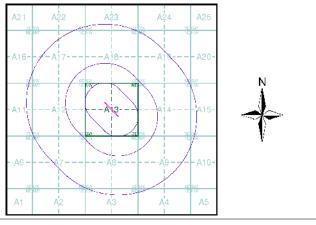
Landmark

0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 11-Jun-2020 Page 12 of 16



LANDMARK INFORMATION GROUP®


Ordnance Survey Plan Published 1996 Source map scale - 1:10,000

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

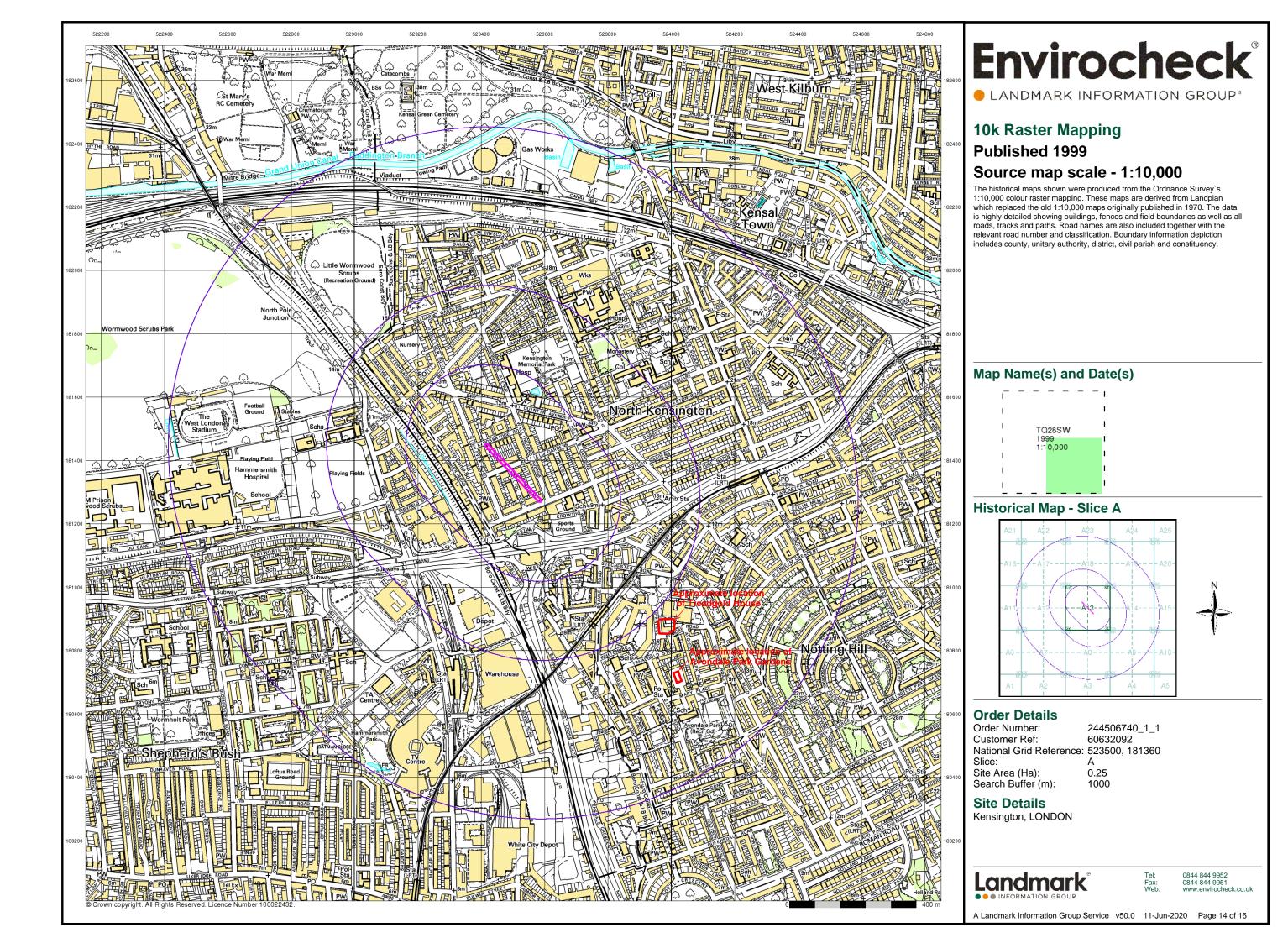
Map Name(s) and Date(s)

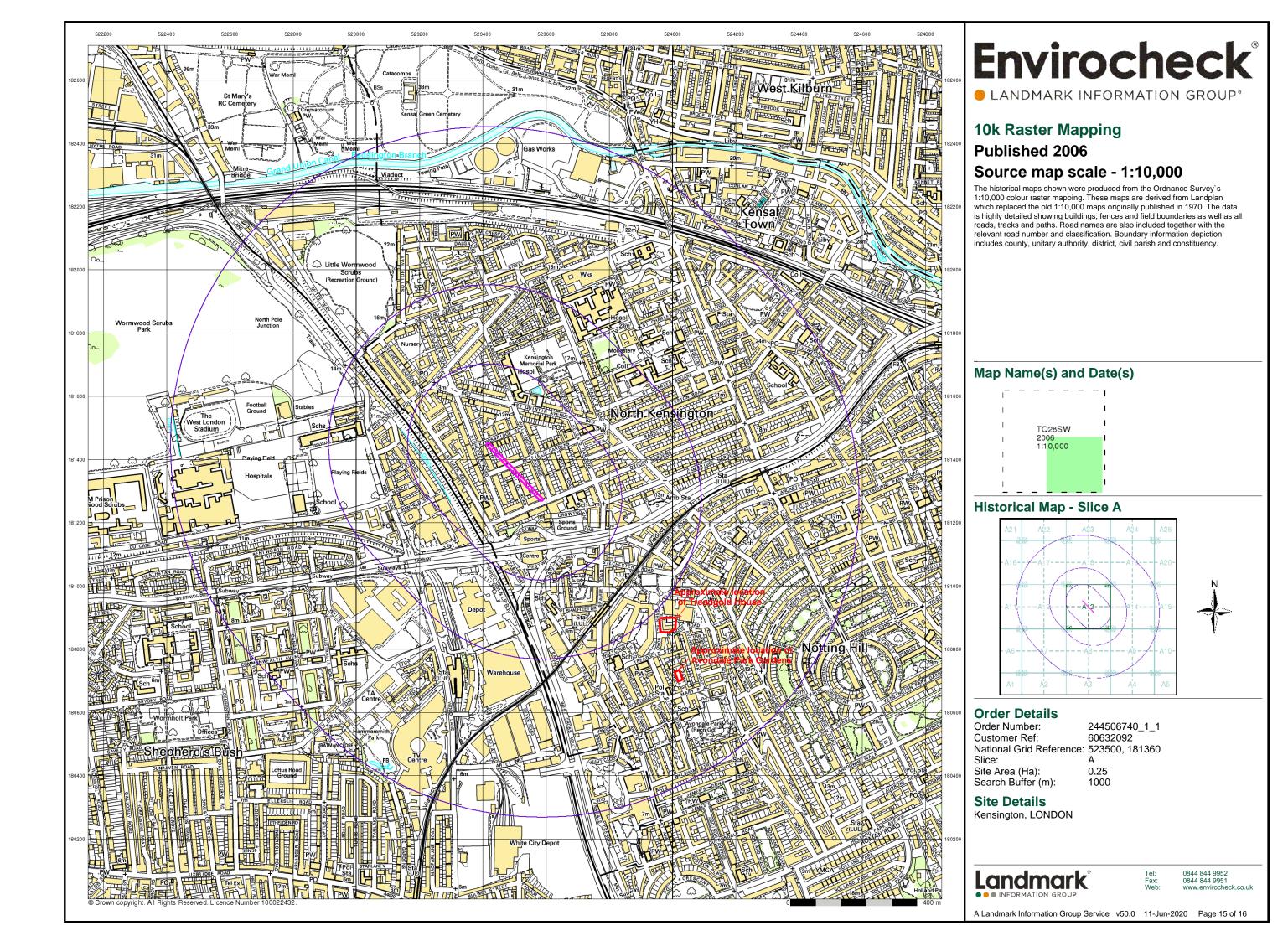
Historical Map - Slice A

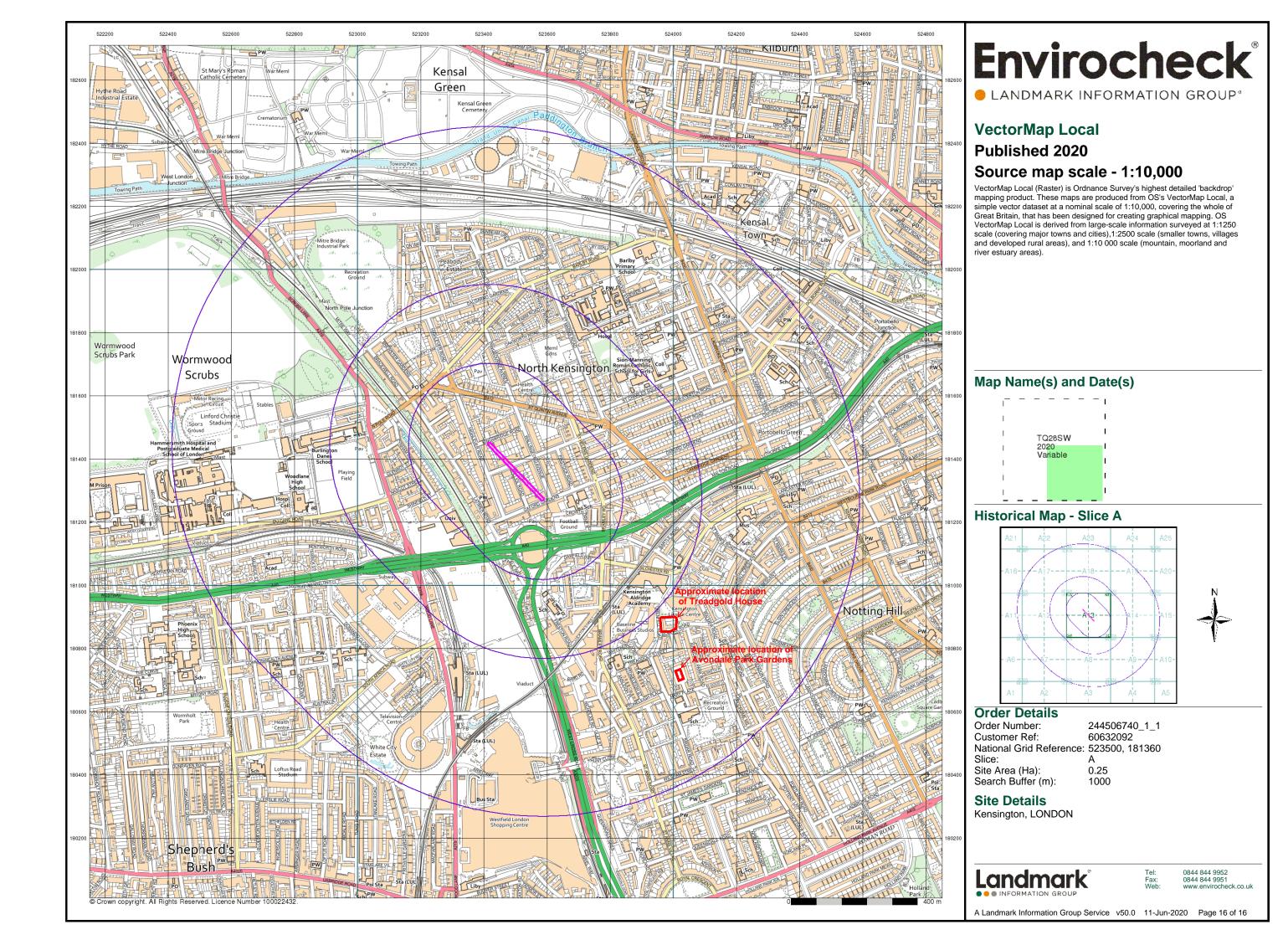
Order Details

Order Number: 244506740_1_1 Customer Ref: 60632092 National Grid Reference: 523500, 181360

Site Area (Ha): Search Buffer (m):


Site Details


Kensington, LONDON


Landmark

0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 11-Jun-2020 Page 13 of 16

Part 2A Investigation

Appendix N Site Investigation Data from Avondale Park

		WS1 (0.25m)	WS1 (1.5m)	WS2 (2.0m)	WS2 (3.0m)	WS3 (0.5m)	WS3 (1.0m)	WS4 (0.5m)	WS4 (1.0m)	WS4 (1.5m)	WS4 (3.0m)	WS5 (1.0m)	WS5 (2.0m)	V1 (0.1-0.2m)	V2 (0.08-0.2m)	V3 (0.04-0.2m)	V4 (0.05-0.25m)	V5 (0.05-0.3m)	V6 (0.05-0.25m)	V7 (0.1-0.2m)	V8 (0.1-0.2m)	BH01 (1.0m)	BH01 (8.0m)	Вно2 (0.2m)	вног (0.6m)	BH02 Duplicate (0.6m)	BH02 (2.75m)	BH02 (4.00m)
	Date	Jan-13	Jan-13	Jan-13	Jan-13	Jan-13	Jan-13	Jan-13	Jan-13	Jan-13	Jan-13	Jan-13	Jan-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Apr-14	Apr-14	Mar-14	Mar-14	Mar-14	Mar-14	Mar-14
Depth	m	0.25	1.50	2.00	3.00	0.50	1.00	0.50	1.00	1.50	3.00	1.00	2.00	0.1-0.2	0.08-0.20	0.04-0.20	0.05-0.25	0.05-0.30	0.05-0.25	0.1-0.2	0.1-0.2	1.00	8.00	0.20	0.60	0.60	2.75	4.00
Lead	mg/kg	179	994	151	149	140	209	1976	-	788	306	4445	2671	40	35	35	120	100	340	97	81	610	280	250	120	160	440	980
Naphthalene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5	0.8	0.5	-	<0.5	<0.5	<0.5	1.6	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.47	<0.05	0.31	0.18	0.17	2.9	1.5
Acenaphthylene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.20	<0.20	<0.20	<0.20	<0.20	0.53	<0.20	<0.20	<0.20	<0.20	0.26	<0.20	<0.20	<0.20	<0.20
Acenaphthene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.10	<0.10	<0.10	0.32	<0.10	0.36	< 0.10	<0.10	<0.10	<0.10	0.6	<0.10	<0.10	2.7	1.1
Fluorene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.20	<0.20	<0.20	0.23	<0.20	0.47	<0.20	<0.20	<0.20	<0.20	0.53	<0.20	<0.20	2.2	1.3
Phenanthrene	mg/kg	1.7	1	<0.5	0.5	<0.5	0.9	1.8	-	<0.5	<0.5	0.7	<0.5	<0.20	<0.20	<0.20	5.4	<0.20	6.1	0.61	1.1	1	1.7	7.4	1.8	1.8	15	7
Anthracene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.7	-	<0.5	<0.5	<0.5	<0.5	<0.10	<0.10	<0.10	1.2	<0.10	1.5	0.17	0.2	0.22	1.4	2.2	0.44	0.41	2.3	1.4
Fluoranthene	mg/kg	2.3	1.3	<0.5	0.7	0.7	0.9	3.6	-	0.6	<0.5	1.1	<0.5	<0.20	<0.20	<0.20	5.8	1.1	16	2.2	2.7	2.3	3	18	5.5	4.6	21	11
Pyrene	mg/kg	1.7	0.9	<0.5	<0.5	<0.5	0.6	3.4	-	<0.5	<0.5	1	<0.5	<0.20	<0.20	<0.20	4.6	1	14	2	2.4	2.1	2.4	16	5.3	4.4	20	8.4
Benzo(a)anthracene	mg/kg	1	0.6	<0.5	<0.5	<0.5	<0.5	2.9	-	<0.5	<0.5	1	<0.5	<0.20	<0.20	<0.20	2.3	0.66	9.6	1.3	1.2	2	2.4	8.7	3.4	2.7	7.7	4.6
Chrysene	mg/kg	1	0.6	<0.5	<0.5	<0.5	<0.5	3.1	-	<0.5	<0.5	0.8	<0.5	<0.05	<0.05	<0.05	2.6	0.68	8.3	1.3	1.7	1.3	1.9	8.4	2.6	2.4	9.3	4.2
Benzo(b)fluoranthene	mg/kg	0.7	<0.5	<0.5	<0.5	<0.5	<0.5	2.5	-	<0.5	<0.5	1	<0.5	<0.10	<0.10	<0.10	2.4	0.83	10	1.7	1.8	2.5	2.8	12	4.5	4	11	6.1
Benzo(k)fluoranthene	mg/kg	1	0.6	<0.5	<0.5	<0.5	<0.5	3.1	-	<0.5	<0.5	1.2	<0.5	<0.20	<0.20	<0.20	1.5	0.41	6.6	1	1.2	0.91	1.7	4.8	1.6	1.1	3.3	2.1
Benzo(a)pyrene	mg/kg	0.7	<0.5	<0.5	<0.5	<0.5	<0.5	3.5	-	<0.5	<0.5	1	<0.5	<0.10	<0.10	<0.10	2.4	0.73	11	1.8	1.9	1.8	3	9.2	3.4	2.7	6.8	4.4
Indeno(123-cd)pyrene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.5	-	<0.5	<0.5	1	<0.5	<0.20	<0.20	<0.20	0.91	0.38	4.8	0.76	0.87	1	1.6	5	1.7	1.3	3.4	2.3
Dibenzo(a,)anthracene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.7	-	<0.5	<0.5	<0.5	<0.5	<0.20	<0.20	<0.20	<0.20	<0.20	0.86	<0.20	<0.20	<0.20	0.3	0.68	0.26	<0.20	0.58	0.32
Benzo(g,h,i)perylene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.4	-	<0.5	<0.5	0.8	<0.5	<0.05	<0.05	<0.05	1.2	0.44	5.5	0.89	1	1	1.7	4.7	1.7	1.5	3.5	2.3
PAH (sum)	mg/kg	10.2	4.9	<0.5	1.2	0.7	3.2	30.7	-	0.6	<0.5	9.4	1.6	<1.6	<1.6	<1.6	31	6.4	96	14	16	17	24	98	32	27	110	57
Coronene	mg/kg	-	-	-	,	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	,	-
Asbestos		ND	-	-	-	-	ND	-	ND	-	-	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Quantification	%	-	-	-	-	-	-	-	-	-	_	-	-	-	-			-	-		-	_	-		-		-	-

																	Avonda	ale Parl	<u>k</u>				
		BH02 (6.00m)	BH02 (7.00m)	BH02 (9.00m)	BH03 (1.0m)	BH03 (2.75m)	BH03 (4.0m)	BH04 (0.2m)	BH04 (0.6m)	BH04 (1.4m)	BH04 (4.0m)	BH05 (0.20m)	BH05 (0.60m)	BH05 (1.00m)	BH05 (2.75m)	BH05 (5.00m)	BH05 (7.00m)	BH06 (0.20m)	BH06 (0.60m)	BH06 (1.00m)	BH06 (1.80m)	BH06 (2.25m)	BH07 (0.20m)
	Date	Mar-14	Mar-14	Mar-14	~	<i></i>	~	Mar-14	Mar-14	Mar-14	Mar-14	Mar-14	Mar-14	Mar-14	Mar-14	Mar-14	Mar-14	Mar-14	Mar-14	Mar-14	Mar-14	Mar-14	Mar-14
Depth	m	6.00	7.00	9.00	1.00	2.75	4.00	0.20	0.60	1.40	4.00	0.20	0.60	1.00	2.75	5.00	7.00	0.20	0.60	1.00	1.80	2.25	0.20
Lead	mg/kg	440	960	30	370	480	850	230	240	230	38	240	510	720	1100	870	36	710	180	150	390	16	660
Naphthalene	mg/kg	0.27	0.39	<0.05	0.63	0.66	0.6	0.47	0.42	<0.05	<0.05	<0.05	2	1.7	0.47	0.94	<0.05	0.24	<0.05	<0.05	<0.05	<0.05	0.62
Acenaphthylene	mg/kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.22	0.49	<0.20	<0.20	<0.20	12	<0.20	<0.20	<0.20	<0.20	0.36	<0.20	<0.20	<0.20	<0.20	0.4
Acenaphthene	mg/kg	<0.10	0.21	<0.10	0.19	0.99	0.56	0.21	0.23	<0.10	<0.10	<0.10	2.9	<0.10	<0.10	0.81	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.62
Fluorene	mg/kg	<0.20	0.28	<0.20	<0.20	1.4	0.99	<0.20	0.43	<0.20	<0.20	<0.20	19	<0.20	0.32	0.67	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.6
Phenanthrene	mg/kg	0.63	3	1.2	2.2	8.2	7.2	3	6.9	1.9	<0.20	0.96	140	1.7	2.1	4.4	0.35	3.2	0.35	0.22	<0.20	<0.20	13
Anthracene	mg/kg	0.12	0.71	0.33	0.34	1.2	0.62	0.56	1.5	0.41	<0.10	0.26	43	0.47	0.56	0.49	<0.10	0.65	<0.10	<0.10	<0.10	<0.10	3.1
Fluoranthene	mg/kg	0.81	3.9	1.7	3.2	9.7	5.5	5.3	11	2.5	<0.20	2.4	120	3.3	5.7	5.6	0.43	8.5	0.67	0.37	<0.20	<0.20	24
Pyrene	mg/kg	0.75	3.1	1.4	2.6	7.3	3.9	4.3	8.6	2	<0.20	2.1	93	3.1	4.7	4.4	0.35	7.3	0.55	0.34	<0.20	<0.20	20
Benzo(a)anthracene	mg/kg	0.49	2	0.91	1.4	3.1	1.5	2.8	4.7	1.1	<0.20	1.3	48	1.8	2.5	1.7	0.21	4.3	0.35	<0.20	<0.20	<0.20	12
Chrysene	mg/kg	0.48	2	0.82	1.6	3	1.6	2.7	4.3	1.1	<0.05	1.1	52	2.2	2.9	2.2	0.13	4.6	0.39	<0.05	<0.05	<0.05	9.2
Benzo(b)fluoranthene	mg/kg	0.9	3	0.91	1.7	2.4	1.2	3.1	4.7	1.2	<0.10	1.3	46	2.1	2.7	1.8	0.21	5.5	0.28	<0.10	<0.10	<0.10	16
Benzo(k)fluoranthene	mg/kg	0.2	0.71	0.53	0.88	1.5	0.71	1.4	2.5	0.52	<0.20	0.79	28	1.8	1.4	1.2	<0.20	3.5	0.3	<0.20	<0.20	<0.20	5.1
Benzo(a)pyrene	mg/kg	0.55	2.1	0.88	1.3	2.1	1.1	2.8	4.2	1	<0.10	1.1	47	2.1	2	1.4	0.17	5.2	0.31	<0.10	<0.10	<0.10	12
Indeno(123-cd)pyrene	mg/kg	0.3	1.1	0.4	0.7	1	0.47	0.99	2	0.41	<0.20	0.48	18	1	0.89	0.68	<0.20	2.7	<0.20	<0.20	<0.20	<0.20	5.5
Dibenzo(a,)anthracene	mg/kg	<0.20	0.28	<0.20	<0.20	<0.20	<0.20	<0.20	0.22	<0.20	<0.20	<0.20	2.7	0.29	0.23	0.21	<0.20	0.65	<0.20	<0.20	<0.20	<0.20	1.3
Benzo(g,h,i)perylene	mg/kg	0.35	1.2	0.39	0.83	1.4	0.63	1.3	2.2	0.48	<0.05	0.59	19	1	0.99	0.77	<0.05	3	<0.05	<0.05	<0.05	<0.05	5.6
PAH (sum)	mg/kg	6	24	9.6	18	44	27	29	54	13	<1.6	12	690	22	28	27	2	50	3.2	<1.6	<1.6	<1.6	130
Coronene	mg/kg	-	-	-	-	-	-	-	,	-	-	-	-	-	-	-	-	1	-	-	-	-	-
Asbestos		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Quantification	%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

		BH07 (0.60m)	BH07 (1.0m)	BH07 (2.75m)	BH07 (5.00m)	BH08 (0.20m)	BH08 (0.60m)	BH08 (1.0m)	HA1 (0.10m)	HA1 (0.30m)	на2 (0.10m)	на2 (0.30m)	нАЗ (0.10m)	нАЗ (0.30m)	наз (0.50m)	HA4 (0.10m)	HA4 (0.50m)	HAS (0.10m)	нА5 (0.30m)	нАS (0.50m)	HA6 (0.10m)	нА6 (0.30m)	на6 (0.50m)	HA6 Duplicate (0.50m)	HA7 (0.10m)	HA7 (0.30m)	HA8 (0.10m)	HA8 (0.30m)
	Date	Mar-14	Mar-14	Mar-14	Mar-14	Mar-14	Mar-14	Mar-14	Mar-14	Mar-14	Mar-14	Mar-14	Mar-14	Mar-14	Mar-14	Mar-14	Mar-14	Apr-14 Apr-14	Mar-14	Mar-14								
Depth	m	0.60	1.00	2.75	5.00	0.20	0.60	1.00	0.10	0.30	0.10	0.30	0.10	0.30	0.50	0.10	0.50	0.10	0.30	0.50	0.10	0.30	0.50	0.50	0.10	0.30	0.10	0.30
Lead	mg/kg	650	180	620	180	620	650	920	310	390	130	210	240	230	230	550	210	190	150	350	41	400	520	350	450	170	110	120
Naphthalene	mg/kg	0.75	0.11	0.87	<0.05	0.52	0.34	0.15	0.58	0.21	1.1	<0.05	<0.05	<0.05	<0.05	0.24	<0.05	0.55	1.2	0.43	0.76	0.42	0.17	0.24	0.52	7.6	0.32	0.81
Acenaphthylene	mg/kg	0.31	<0.20	<0.20	<0.20	0.63	0.58	<0.20	0.29	<0.20	2.5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	1	1.1	0.73	0.44	0.29	<0.20	0.3	0.52	28	0.58	1.4
Acenaphthene	mg/kg	1.2	<0.10	<0.10	<0.10	4.1	2.3	0.13	<0.10	<0.10	11	<0.10	<0.10	0.29	<0.10	<0.10	<0.10	0.88	2	0.45	0.29	<0.10	<0.10	<0.10	0.72	35	0.4	1.3
Fluorene	mg/kg	1.4	<0.20	<0.20	<0.20	4.3	2.6	<0.20	0.25	<0.20	13	<0.20	<0.20	0.26	<0.20	<0.20	<0.20	1.1	2.8	0.63	0.72	<0.20	<0.20	<0.20	0.8	60	0.35	1.3
Phenanthrene	mg/kg	16	0.75	1	<0.20	35	32	2.3	3.1	0.82	140	1.1	1.4	4.2	3	1.8	0.44	12	23	7.5	3.2	2.1	1.2	3	7.9	600	6.2	18
Anthracene	mg/kg	4.2	0.35	0.16	<0.10	11	8.6	0.38	0.8	0.12	44	0.37	0.3	0.91	0.65	0.33	<0.10	3.2	5	2	0.33	0.42	0.24	0.66	1.8	150	1.7	5.8
Fluoranthene	mg/kg	25	2.6	1	<0.20	50	39	3.8	7.5	2.1	200	3.9	2.7	7.5	5.4	4.4	0.87	22	29	15	0.75	4.9	3.3	7.6	14	510	17	42
Pyrene	mg/kg	21	2.4	1	<0.20	40	30	3.3	6.3	1.9	160	3.5	2.3	6.7	4.5	3.8	0.71	20	22	13	0.54	4.2	3	6.3	11	370	16	37
Benzo(a)anthracene	mg/kg	11	1.5	0.73	<0.20	22	16	1.8	4.4	1.1	100	2.3	1.2	3.7	2.4	2.2	0.49	16	15	9.1	0.35	3.1	2.5	4.8	7.1	320	9.6	25
Chrysene	mg/kg	11	1.6	0.8	<0.05	20	14	2	3.4	1.3	91	2.3	1.4	3.6	2.4	2.3	0.48	11	11	6.8	0.27	2.4	1.9	3.7	6	210	10	27
Benzo(b)fluoranthene	mg/kg	19	2.1	0.94	<0.10	23	15	3.4	6.7	1.6	110	4	1.8	5	3	4.3	0.76	17	15	9.1	0.42	3.8	3.5	5.6	5.9	260	13	42
Benzo(k)fluoranthene	mg/kg	5.6	1.3	0.57	<0.20	11	8.8	0.99	2	0.9	50	1.1	0.95	2.1	1.4	1.1	0.31	9.1	8.8	6.1	0.2	1.9	1.5	2.8	5.4	160	7.5	15
Benzo(a)pyrene	mg/kg	14	1.9	1	<0.10	19	14	2.4	4.6	1.4	93	3	1.4	3.9	2.3	2.8	0.59	15	14	9.2	0.35	3.2	2.8	4.8	6.5	260	12	33
Indeno(123-cd)pyrene	mg/kg	6.8	0.97	0.41	<0.20	8.8	6.3	1.3	2.8	0.84	44	1.7	0.76	2	1.1	1.7	0.29	8.3	7.4	5.2	<0.20	2	1.8	2.7	3.7	130	6.5	18
Dibenzo(a,)anthracene	mg/kg	1.6	<0.20	<0.20	<0.20	2.2	1.6	0.28	0.4	<0.20	13	0.46	<0.20	0.44	0.3	0.28	<0.20	1.6	1.4	0.98	<0.20	0.38	0.32	0.53	0.61	30	1.8	5.1
Benzo(g,h,i)perylene	mg/kg	7.3	1	0.55	<0.05	8.9	6.6	1.3	2.8	0.91	45	1.7	0.87	2.1	1.3	1.7	0.28	7.9	7.3	5	<0.05	2	1.7	2.8	4.1	130	7.3	19
PAH (sum)	mg/kg	150	17	9.2	<1.6	260	200	24	46	13	1100	25	15	43	28	27	5.2	150	170	91	8.6	31	24	46	76	3300	110	290
Coronene	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Asbestos		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	Chrysotile	ND ND	ND							
Quantification	%	-	-	-	-	-	-	-	-	-	-	-	-	-	_	_	-	_	< 0.001	-	-	-	-	-	-	-	-	-

		HA9 (0.10m)	HA9 Duplicate (0.10m)	HA9 (0.50m)	HA10 (0.10m)	HA11 (0.30m)	HA12 (0.30m)	HA13 (0.10m)	HA13 (0.50m)	HA14 (0.10m)	HA14 (0.30m)	
	a la la la la la la la la la la la la la	Apr-14	Apr-14	Apr-14	Apr-14	Apr-14	Apr-14	Mar-14	Mar-14	Mar-14	Mar-14	
Depth	m	0.10	0.10	0.50	0.10	0.30	0.30	0.10	0.50	0.10	0.30	
Lead	mg/kg	140	140	270	150	360	420	350	330	360	230	
Naphthalene	mg/kg	0.33	1.1	27	0.59	0.26	0.43	0.13	0.21	<0.05	0.63	
Acenaphthylene	mg/kg	0.58	2	120	0.54	0.51	0.54	<0.20	0.21	<0.20	<0.20	
Acenaphthene	mg/kg	0.39	0.85	25	5.3	0.51	0.52	0.22	0.76	<0.10	0.77	
Fluorene	mg/kg	0.67	2.4	93	4.7	0.51	0.54	0.21	0.68	<0.20	0.58	
Phenanthrene	mg/kg	8.2	25	1300	34	7.9	8.5	4.5	14	1.5	5.7	
Anthracene	mg/kg	2	4.4	240	11	1.4	1.4	0.94	3.9	0.3	0.95	
Fluoranthene	mg/kg	14	28	1400	62	13	15	13	30	3.8	6	
Pyrene	mg/kg	11	21	990	46	10	12	12	26	3.4	5.2	
Benzo(a)anthracene	mg/kg	6.6	12	630	39	6.5	7.4	7.9	15	1.9	2.6	
Chrysene	mg/kg	5.3	9.2	490	41	5.2	5.9	6.6	14	2.1	2.8	
Benzo(b)fluoranthene	mg/kg	7	11	660	58	6.2	8.3	11	21	2.6	3.5	
Benzo(k)fluoranthene	mg/kg	3.3	7.5	390	21	4.7	3.3	5.2	8.9	1.6	1.4	
Benzo(a)pyrene	mg/kg	5.9	10	590	43	6.6	6.4	8.8	17	2.3	2.8	
Indeno(123-cd)pyrene	mg/kg	3.3	6.1	320	24	3.4	3.7	4.8	9.2	1.4	1.4	
Dibenzo(a,)anthracene	mg/kg	0.63	1	61	5.2	0.54	0.59	0.71	1.3	0.31	0.35	
Benzo(g,h,i)perylene	mg/kg	3.7	6.2	300	23	3.5	3.8	4.8	8.9	1.5	1.5	
PAH (sum)	mg/kg	73	150	7600	420	71	79	81	170	23	36	
Coronene	mg/kg	-	-		-	-	-	-	-	-	-	
Asbestos		Amosite, Chrysotile, Crocidolite	Amosite, Chrysotile	ND	ND	Chrysotile	ND	ND	ND	ND	ND	
Quantification	%	0.014	No Quant	-	-	<0.001	-	-	-	-	-	

aecom.com

