Eight Associates 178 Ebury Street London SW1W 8UP

+ (44) 020 7881 3090 Telephone + (44) 0845 458 1522 Fascimile

www.eightassociates.co.uk info@eightassociates.co.uk

Life Cycle Carbon associates Analysis of Extensions and Subterranean Development in RBK&C

Prepared by:

Jean-Pierre Wack Eight Associates The Old School House London SW1W 8UP

0207 881 3090

email: jp@eightassociates.co.uk

Date: 09.07.2010

Our Ref: E167-report-1007-09jp

Prepared for:

Brendon Roberts Deputy Team Leader – Planning Policy Planning and Borough Development Royal Borough of Kensington and Chelsea Room 331 Kensington Town Hall Hornton Street W8 7NX

Contents Life Cycle Carbon Analysis

Report

Appendices

1. Executive Summary 2. Introduction	
3. Methodology	
4. Life Cycle Analysis	
5. Conclusion	
Appendix 2	

Issue Status ^{eight} associates Life Cycle Carbon Analysis

Environmental Consultant	Jean-Pierre Wack	
Company Name:	Eight Associates	
Signature:	Eles-	
Assistant Environmental Consultant	Ross Standaloft	
Company Name:	Eight Associates	
Signature	R.Stmoh-	
Revision Number	Issue Date	Issued by
First Issue	9 th July 2010	RS

Disclaimer

This report is made on behalf of Eight Associates. By receiving the report and acting on it, the client - or any third party relying on it - accepts that no individual is personally liable in contract, tort or breach of statutory duty (including negligence).

1. Executive Summary as Life Cycle Carbon Analysis

	Eight Associates have been appointed to provide an evidence base for the Royal Borough of Kensington & Chelsea (RBKC) policy related to meeting environmental standards and carbon emission reductions for subterranean development in the Borough.				
Brief and Findings	1. To consider the impact in terms of embodied carbon emissions for two types of development – extensions and subterranean developments, to inform the Council on the required environmental standards.				
	This is detailed in section 4 and concludes that there is a significant impact in terms of embodied carbon emissions of subterranean development in comparison to that of extensions.				
	2. The methodology employed is a desktop life cycle analysis of 2 case studies to demonstrate the carbon intensity of extensions and subterranean development.				
	A particular focus is placed on a life cycle analysis (LCA), which encompasses several stages of the development process as well as the occupation, including the sourcing and production of the materials, the activity during construction works and the subsequent operations of the building.				
	3. Provide recommendations on the relative impact of extensions compared to subterranean development.				
	It is concluded that subterranean developments have a significantly higher carbon emissions impact over the life cycle when compared with developments classed as extensions. The embodied carbon in the robust materials used to construct underground is the key influence in terms of carbon.				
Summary of the Key Findings	 The carbon emissions of the subterranean development are greater than those of the extension over the buildings' life cycle. 				
	- The embodied carbon in a subterranean development is 828 kgCO ₂ per m ² floor area compared with 279 kgCO ₂ per m ² for extensions. This equates to 3 times the amount of embodied carbon per m ² floor area provided.				
	- The life cycle analysis shows that there is high level of embodied CO ₂ in the building materials relative to the operational CO ₂ emissions of subterranean developments, when looked at over a 30-year life.				
	- The structural elements steel piles used in subterranean development accounts nearly half of the embodied carbon in the developments materials.				

2. Introduction 2.1 Aim of the Report Life Cycle Carbon Analysis

Introduction	 RBKC is currently experiencing an unprecedented number of planning applications for Subterranean Development. In response to this, the feasibility of such development has come under increased scrutiny. The environmental credentials of such development are being reviewed. The current policy is detailed below. <i>"The Council will require an assessment to demonstrate that subterranean development achieve the following relevant BREEAM standards: i. Residential Development. EcoHomes Very Good (at Design and Post Construction) with 40% of credits achieved under the Energy, Water and Materials sections, or comparable when BREEAM for Refurbishments is published."</i> RBKC has provided a brief to determine the significance of embodied carbon in subterranean developments. This significance will be demonstrated and analysed through a comparison with a standard new build extension. 			
Aim	 This document aims to: To consider the impact in terms of life-cycle carbon emissions for two types 			
	 of development – extensions and subterranean developments Establish and analyse the impact of the two case studies to determine the relative impact of subterranean developments in comparison to standard extensions. 			
Caveats	The methodology used in this report has been clearly defined and the data used has been attributed to the source.			
	There are several ways to undertake Life Cycle Analysis, one being the methodology we have chosen. There is no national calculation methodology that could be adhered to.			
	This report compares two very different buildings in terms of materials used, construction method and size, however the functional purpose of the buildings is not taken into account.			
	Where we have made assumptions we have assumed the worst-case value. An example is the level of recycled content of materials.			

3. Methodology 3.1 Step by Step Description Life Cycle Carbon Analysis

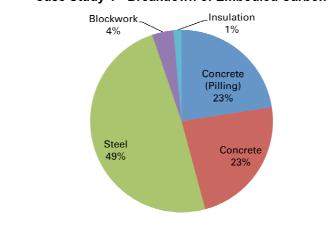
eight associates

Methodology	The below section provides a step-by-step description of the project methodology. The final column indicates the relevant section of the report covering each step.	Section
Brief	The brief is to analyse and then compare the carbon intensity of two types of development – extensions and subterranean development. A particular focus is to be placed on a whole life cycle analysis, which encompasses all stages of development from the sourcing of the materials, the activity during construction works and the operations of the building.	fii
1 – Case Studies	RBKC have provided two case studies, which serve as a typical subterranean development (Case Study 1) and a typical single storey extension (Case Study 2). The case studies have information relating to the development such as drawings and other consultant reports. The drawings are provided in the appendices.	Appendix 1
2 – Life-Cycle Modelling	Eight Associates modelled Case Study 1 and Case Study 2 taking into account the construction type, volume of materials, activity during construction works and the likely operational usage. A detailed breakdown of the data input for each case study is provided, as well as a further breakdown of the carbon factors relating to materials and fuel is provided in Appendix 1.	iv
3 – Analysis of Carbon Emissions	Eight Associates have broken down the whole life carbon emissions and provided the embodied carbon, carbon relating to construction works and the operational carbon using the same methodology for both case studies. The embodied carbon and site works calculations are based on the drawings and construction method statements together with recognised data from the Environment Agency and Bath University. The operational carbon is based on SAP modelling using the methodology set out in Part L1B and a life cycle of 30 years.	iv
4 – Comparative Analysis of Carbon Intensity	A comparison of life cycle emissions of Case Study 1 and Case Study 2 is made to indicate the respective carbon intensity of developments classed as extensions and those as subterranean development.	iv

4. Life Cycle Analysis 4.1 Overview and modelling Life Cycle Carbon Analysis

building is a five-storey Georgian house that plans to incorporate a prisubterranean basement of around 75m ² internal floor area. The basement development will require the following works: • Excavation of around 1200m ³ soil; • Installation of steel piles and cementitous grout around the excavated void; • Insulated concrete slab flooring; • Insulated concrete block-work and concrete upper floor. Building summary – Case Study 2 Case study 2 is a small extension to 4 Delgarno Square. The existing storey three-bed terrace that plans to build a single storey 10.35m ² er of the building. The extension will require the flowing works: • Insulated ground Floor Concrete Slab; • Insulated Slate roof to match existing building. Modelling Building data input • Construction plans, drawings, elevations and measuremen • Construction Method Statements Benchmark data • Environmental agency – All material volume to weight factor • Bath University Inventory of Carbon and Energy (ICE) V1.6 • Greenspec and DEFRA – Where noted in Appendices Modell					
Building summary – Case Study 1 Case study 1 is the subterranean development at 44 Markham Squat building is a five-storey Georgian house that plans to incorporate a prisubterranean basement of around 75m² internal floor area. The basement development will require the following works: • Excavation of around 1200m³ soil; Installation of steel piles and cementitous grout around the excavated void; • Insulated concrete slab flooring; Building summary – Case Study 2 Case study 2 is a small extension to 4 Delgarno Square. The existing storey three-bed terrace that plans to build a single storey 10.35m² e of the building. The extension will require the flowing works: • Insulated ground Floor Concrete Slab; Insulated ground Floor Concrete Slab; • 13.6m of Brick/Insulation/Block wall making up three sides Insulated Slate roof to match existing building. • Construction plans, drawings, elevations and measurement Modelling • Environmental agency – All material volume to weight factor Batt University Inventory of Carbon and Energy (ICE) V1.6 • Greenspec and DEFRA – Where noted in Appendices Model	dle-to-grave analysis. ials. For the purpose ling operation, as the ng and a defined time				
building is a five-storey Georgian house that plans to incorporate a prisubterranean basement of around 75m ² internal floor area. The basement development will require the following works: • Excavation of around 1200m ³ soil; • Installation of steel piles and cementitous grout around the excavated void; • Insulated concrete slab flooring; • Insulated concrete block-work and concrete upper floor. Building summary – Case Study 2 Case study 2 is a small extension to 4 Delgarno Square. The existing storey three-bed terrace that plans to build a single storey 10.35m ² e of the building. The extension will require the flowing works: • Insulated ground Floor Concrete Slab; • Insulated Slate roof to match existing building. Modelling Building data input • Construction plans, drawings, elevations and measuremen • Construction Method Statements Benchmark data • Environmental agency – All material volume to weight factor • Bath University Inventory of Carbon and Energy (ICE) V1.6 • Greenspec and DEFRA – Where noted in Appendices Model	data in this report				
 Excavation of around 1200m³ soil; Installation of steel piles and cementitous grout around the excavated void; Insulated concrete slab flooring; Insulated concrete block-work and concrete upper floor. Building summary – Case Study 2 Case study 2 is a small extension to 4 Delgarno Square. The existing storey three-bed terrace that plans to build a single storey 10.35m ² e of the building. The extension will require the flowing works: Insulated ground Floor Concrete Slab; 13.6m of Brick/Insulation/Block wall making up three sides Insulated Slate roof to match existing building. Modelling Building data input Construction plans, drawings, elevations and measurement Construction Method Statements Benchmark data Environmental agency – All material volume to weight factor Bath University Inventory of Carbon and Energy (ICE) V1.6 Greenspec and DEFRA – Where noted in Appendices 	Case study 1 is the subterranean development at 44 Markham Square. The existing building is a five-storey Georgian house that plans to incorporate a proposed subterranean basement of around 75m ² internal floor area.				
excavated void; Insulated concrete slab flooring; Insulated concrete block-work and concrete upper floor. Building summary – Case Study 2 Case study 2 is a small extension to 4 Delgarno Square. The existing storey three-bed terrace that plans to build a single storey 10.35m ² e of the building. The extension will require the flowing works: Insulated ground Floor Concrete Slab; 13.6m of Brick/Insulation/Block wall making up three sides Insulated Slate roof to match existing building. Modelling Building data input Construction plans, drawings, elevations and measurement Construction Method Statements Benchmark data Environmental agency – All material volume to weight factor Bath University Inventory of Carbon and Energy (ICE) V1.6 Greenspec and DEFRA – Where noted in Appendices					
 Insulated concrete slab flooring; Insulated concrete slab flooring; Insulated concrete block-work and concrete upper floor. Building summary – Case Study 2 Case study 2 is a small extension to 4 Delgarno Square. The existing storey three-bed terrace that plans to build a single storey 10.35m ² e of the building. The extension will require the flowing works: Insulated ground Floor Concrete Slab; 13.6m of Brick/Insulation/Block wall making up three sides Insulated Slate roof to match existing building. Modelling Building data input Construction plans, drawings, elevations and measurement Construction Method Statements Benchmark data Environmental agency – All material volume to weight factor Bath University Inventory of Carbon and Energy (ICE) V1.6 Greenspec and DEFRA – Where noted in Appendices 	e perimeter of the				
Building summary – Case Study 2 Case study 2 is a small extension to 4 Delgarno Square. The existing storey three-bed terrace that plans to build a single storey 10.35m ² e of the building. The extension will require the flowing works: Insulated ground Floor Concrete Slab; 13.6m of Brick/Insulation/Block wall making up three sides Insulated Slate roof to match existing building. Modelling Building data input Construction plans, drawings, elevations and measuremen Construction Method Statements Benchmark data Environmental agency – All material volume to weight factor Bath University Inventory of Carbon and Energy (ICE) V1.6					
storey three-bed terrace that plans to build a single storey 10.35m ² e of the building. The extension will require the flowing works: Insulated ground Floor Concrete Slab; 13.6m of Brick/Insulation/Block wall making up three sides Insulated Slate roof to match existing building. Building data input Construction plans, drawings, elevations and measuremen Construction Method Statements Benchmark data Environmental agency – All material volume to weight factor Bath University Inventory of Carbon and Energy (ICE) V1.6 Greenspec and DEFRA – Where noted in Appendices					
 Insulated ground Floor Concrete Slab; 13.6m of Brick/Insulation/Block wall making up three sides Insulated Slate roof to match existing building. Building data input Construction plans, drawings, elevations and measuremen Construction Method Statements Benchmark data Environmental agency – All material volume to weight factor Bath University Inventory of Carbon and Energy (ICE) V1.6 Greenspec and DEFRA – Where noted in Appendices 					
 Insulated ground Floor Concrete Slab; 13.6m of Brick/Insulation/Block wall making up three sides Insulated Slate roof to match existing building. Building data input Construction plans, drawings, elevations and measuremen Construction Method Statements Benchmark data Environmental agency – All material volume to weight factor Bath University Inventory of Carbon and Energy (ICE) V1.6 Greenspec and DEFRA – Where noted in Appendices 					
 13.6m of Brick/Insulation/Block wall making up three sides Insulated Slate roof to match existing building. Modelling Building data input Construction plans, drawings, elevations and measuremen Construction Method Statements Benchmark data Environmental agency – All material volume to weight factor Bath University Inventory of Carbon and Energy (ICE) V1.6 Greenspec and DEFRA – Where noted in Appendices Model 					
 Construction plans, drawings, elevations and measurement Construction Method Statements Benchmark data Environmental agency – All material volume to weight factor Bath University Inventory of Carbon and Energy (ICE) V1.6 Greenspec and DEFRA – Where noted in Appendices Model 	s of the extension;				
 Environmental agency – All material volume to weight factor Bath University Inventory of Carbon and Energy (ICE) V1.6 Greenspec and DEFRA – Where noted in Appendices Model 	ents				
 Combined building data and benchmark data (See Appendi Information in appendix All model data and calculations 	dices)				

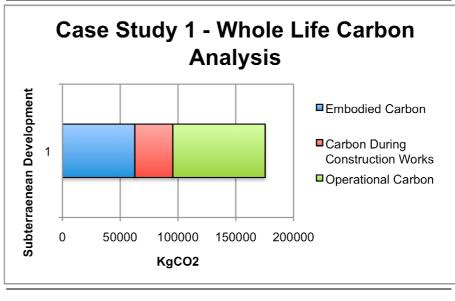
4. Lifecycle Analysis 4.2 Case Study 1 Embodied Carbon


Introduction	The following section analyses the vital characteristics of the modelling and gives a breakdown of the embodied carbon in each element, including the key calculations that give the total embodied carbon for Case study 1 – Subterranean development.		
Vital Characteristics	The chart and graph below shows that the steel contains almost half of the development's overall embodied carbon; despite being the second least used material in terms of weight. This is due to the high carbon factor of steel – 1.77kgCO ₂ /kg, which can be attributed to the energy intensive production of steel from molten iron. Rockwool insulation, like most insulation, has a high embodied carbon factor, although it weighs just 40kg/m3, hence its low carbon impact.		
	The high levels of concrete needed in subterranean development make the overall		

carbon impact of the development high.

Element	Description	Volume	Weight (KGs)	Carbon Factor (kgCO2/kg)	Embodied Carbon
Concrete (Pilling)	– Cementittous Grout - (RC25 data)	43.2m3	103,809 kg	0.14	14,118 kg
Concrete	Concrete floor and upper floor	37.8m3	90,720 kg	0.16	14,606 kg
Steel	– Ischebeck Titan 127/111 Steel Pilling	N/A	17,340 kg	1.77	30,692 kg
Blockwork	– Standard 10MPa Concrete Blocks	13.44m3	32,256 kg	0.07	2,387 kg
Insulation	– Rockwool Insulation	21.01m3	840 kg	1.05	882 kg

Total Embodied 62,685 kg



eight associates

4. Lifecycle Analysis4.2 Case Study 1Life Cycle CarbonAnalysis

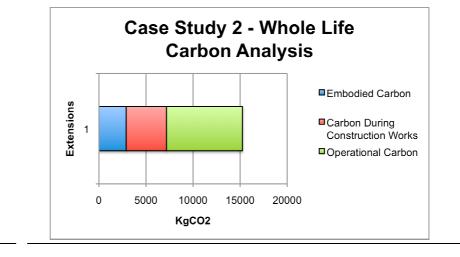
ughout the life cycle of the bon in the physical structure, al occupation and operation of showed the embodied carbor nt. ion works takes into account on and construction waste			
ion works takes into account			
Operations - The operational carbon has been calculated using SAP to determine the yearly Dwelling emission rate of the building if built to part L1B building regulations.			
The embodied carbon of the basement is almost as much as the operational emissions, which is very high. A rule of thumb is around 30% embodied carbon over an operational period of 30 years.			
Carbon emissions per m2 of floor area (Net Internal Floor Area)			
828 kgCO ₂ /m ²			
434 kgCO ₂ /m ²			
1065 kgCO ₂ /m ²			

Summary graph

4. Lifecycle Analysis diates 4.3 Case Study 2 Embodied Carbon

IntroductionThe following section analyses the vital characteristics of the modelling and gives a
breakdown of the embodied carbon in each element, including the key calculations that
give the total embodied carbon for Case study 2 – Extension.Vital CharacteristicsThe graph below shows that the majority of embodied carbon in the extension is from
the concrete ground floor and the brickwork.Despite the lower overall weight (KG) of bricks compared to concrete blocks the
embodied energy in bricks is more than twice as high. This is due to the high energy
associated with firing bricks.The roof has a very low embodied energy due to the low carbon factor of the slate.

Element	Description	Volume	Weight (KGs)	Carbon Factor (kgCO2/kg)	Embodied Carbon
Blockwork	Standard 10MPa Concrete Blocks	2.72m3	6528 kg	0.07	483 kg
Insulation	Rockwool Insulation	4.79m3	192 kg	1.05	201 kg
Brickwork	Clay Brick	2.72m3	5168 kg	0.22	1137 kg
Concrete GF	Ground Floor Slab	2.59m3	6216 kg	0.16	1001 kg
Roof	Slate	0.52m3	1248 kg	0.06	70 kg
				Total Embodied	2,891.88 kg


Case Study 2 - Breakdown of Embodied Carbon

Carbon

eight associates

4. Lifecycle Analysis4.3 Case Study 2Life Cycle CarbonAnalysis

Introduction	The following section looks at the carbon emissions throughout the life cycle of the building. This is broken into three figures – Embodied carbon in the physical structure carbon associated with construction works and the actual occupation and operation of the building.				
Description of Stages	Embodied carbon – The previous page of this report (p10) showed the embodied carbon associated with the physical structure of the extension. Construction works – The carbon emissions of construction works takes into account the energy from site plant, material and staff transportation and construction waste disposal based on benchmark data.				
		onal carbon has been calculate rate of the building if built to p	ed using SAP to determine the part L1B building regulations.		
Summary table	Life Cycle Stage	Carbon emissions	Carbon emissions per m2 of floor area (Net Internal Floor Area)		
	Embodied Carbon	2,892 kgCO2	279 kgCO ₂ /m ²		
	Carbon During Construction Works	4,285 kgCO2	414 kgCO ₂ /m ²		
	Operational Carbon	8,073 kgCO2	780kgCO ₂ /m ²		
Summary graph					

ei8ht associates

4. Lifecycle Analysis4.4 ComparisonLife Cycle CarbonAnalysis

Introduction	The following section analyses the differing results of the two case studies.			
Comparative analysis	been divided by the floor are emissions per m ² of floor are The results of the modelling	the two case studies, the carb a of each development. This g a. below show that the embodie evelopment are three times th	gives comparable CO2 ed carbon in the materials	
	Comparison	Case Study 1	Case Study 2	
	Embodied Carbon	828 kgCO ₂ /m ²	279 kgCO ₂ /m ²	
Summary table	Carbon During Construction Works	434 kgCO ₂ /m ²	414 kgCO ₂ /m ²	
	Operational Carbon	1065 kgCO ₂ /m ²	780 kgCO ₂ /m ²	
Summary Graph	Case Study 2	parison of Wh Carbon	ole Life Embodied Carbon Carbon During Construction Works Operational Carbon	
	Case Study 1			

0

500

1000 1500 2000 2500

KgCO2/m2

12

5. Conclusion Life Cycle Carbon Analysis

eight associates

Key Findings	- The carbon emissions of the subterranean development are greater than those of the extension over the buildings' life cycle.
	- The embodied carbon in a subterranean development is 828 kgCO ₂ per m ² floor area compared with 279 kgCO ₂ per m ² for extensions. This equates to 3 times the amount of embodied carbon per m ² floor area provided.
	- The life cycle analysis shows that there is high level of embodied CO ₂ in the building materials relative to the operational CO ₂ emissions of subterranean developments, when looked at over a 30-year life.
	 The structural elements steel piles used in subterranean development accounts nearly half of the embodied carbon in the developments materials.

Appendix 1 Case Study 1 Data Input, Benchmark Data & Calculations Life Cycle Carbon Analysis

Length – 20.20m Width – 3.75m Height – 2.8m Floor and Ceiling area – 75.75m2 Perimeter – 48m

Embodied Calculations

Measurements

Steel Piling

Diameter – approx 48m Piles every 400mm = 48/0.4 = Approx 120 steel piles Piles 5000mm long and have 111mm diameter Total Steel piling 120 units x 5 metres Weight factor – 28.9kg/per metre Total Weight - 28.9 x 5m x 120 = 17,340kg CARBON FACTOR – General Steel – 1.77 kgCO₂/kg (uk typical)

17, 340kg x 1.77 = **35,295.57 kgCO**₂

Piling Concrete

Cementous Grout – 48m x 300m x 3000mm high = $43.2m^3$ Grout (RC25) Weight factor – 2403kg/m³ Total Weight - 2403 x 43.2 = 103,809.6kg CARBON FACTOR – RC25 – 0.136 kgCO₂/kg

103,809.6kg x 0.136 = **14,118kgCO**₂

Floors

Ground Slab – 75.75m2 x 250mm = $18.9m^3$ Upper Slab – 75.75m2 x 250mm = $18.9m^3$ Total Concrete – $37.8m^3$ Weight factor – $2400kg/m^3$ Total Weight - $37.8 \times 2400 = 90,720kg$ CARBON FACTOR – $0.161 kgCO_2/kg$ (RC35)

90,720 × 0.161 = 14,605kgCO₂

Walls

100mm Blockwork x 48m x 2.8m = 13.44m³ Weight factor – 2400kg/m³ CARBON FACTOR – 0.074kgCO₂/kg Total Weight - 13.44 x 2400 = 32,256kg

 $32,256 \times 0.074 = 2,386 \text{kgCO}_2$

Appendix 1 Case Study 1 Data Input, Benchmark Data & Calculations Life Cycle Carbon Analysis

Insulation

Wall - 100mm Insulation x 48m x 2.8m = 13.44m³ Ground - 75.75m2 x 100mm = 7.57m³ Volume - 21.01m³ Weight factor - 40kg/m³ (Greenspec.co.uk) Total Weight - 22.97 x 40 = 919kg CARBON FACTOR - 1.05 kgCO₂/kg (Rockwool)

 $919 \times 1.05 = 967 kgCO_2$

Construction Phase Calculations W

Works Time-frame

Underpinning, excavation, pilling, concrete casting – 6 months Fit out works - 9 months Total time on site – 15 months CARBON FACTOR 2000kg/month

15 x 2000 = **30,000kg**

Construction Materials

Assume Average 8 yard 6m³ skip 125.67m³ materials + one additional trip for steel piles Assume 50km by road for materials 3.5 Tonne Skip van emissions – 400gCO₂ per Km (DEFRA) 125.67/6 = 21 trips (42 there and back) @ 50Km = 2100Km

2100 x 0.4kg CO2 = 560kg/CO2

Staff Travel

Assume Average travel distance 15km by Van 4 staff in 2 vans Van emissions – 224.4gCO₂ per Km 22 days per month on site 15 months = 330 days on site 330x15 = 4950

 $4950 \times 0.2444 = 1210 \text{kgCO}_2$

Waste

1200m³ excavated earth 10% construction material is waste = 12.6m³ Assume 5Km by Road to Landfill Assume Average 8 yard 6m³ skip 3.5 Tonne Skip van emissions – 400gCO₂ per Km (DEFRA) 1212.6m³/6 = 202trips (404 there and back) @ 5Km by Road to Landfill = 2020Km

2020 x 0.4kg CO2 = 808kg/CO₂

Operational Calculations

Appendix 2 Case Study 2 Data Input, Benchmark Pata & Calculations

Total Extension Wall Length - 13.6m Height - 2m Floor and Roof area – 10.35m²

Embodied Calculations

Mesurements

Brick

100mm x 13.6m x 2m – 2.72m³ Weight factor - 1900kg/m³ Total Weight - 1900 x 2.72 = 5,168kg CARBON FACTOR - 0.22kgCO₂/kg

5,168kg x 0.22 = 1,137kgCO₂

Block

100mm x 13.6m x 2m - 2.72m³ Weight factor – 2400kg/m³ Total Weight - 2400 x 2.72 = 6,528kg CARBON FACTOR - 0.074kgCO₂/kg

6,528 × 0.074 = 483.07 kgCO₂/kg

Insulation

Floor - 10.35m2 x 100mm Insulation = $1.035m^3$ Roof - 10.35m2 x 100mm Insulation = 1.035m³ Walls - 13.6m x 100mm x 2m = 2.72m³ Total $m^3 = 4.79m^3$ Weight Factor = 40kg/m^3 Total Weight = 40 x 4.79 = 191.6kg CARBON FACTOR - 1.05 kgCO₂/kg

191.6 x 1.05 = 201.18 kgCO₂

Roof

 $10.35m2 \times 50mm$ Concrete Tiles = $0.52m^3$ Weight Factor = 2400kg/m³ Total Weight = $2400 \times 0.52 = 1248$ kg CARBON FACTOR - 0.13 kgCO₂/kg

1248 x 0.13 = 162.24kgCO₂

Construction Phase Calculations

Works Time-Frame Estimated time frame for build - 2 months CARBON FACTOR 2000kg/month

2000 × 2 = 6000kgCO₂

elght

Appendix 2 Case Study 2 Data Input, Benchmark Data & Calculations **Eycle Carbon**

Construction Materials transport

Assume Average 8 yard 6m³ skip 13.34m³ materials Assume 50km by road for materials 3.5 Tonne Skip van emissions – 400gCO2 per Km (DEFRA) 13.34/6 = 3 trips (6 there and back) @ 50Km = 300Km

300 x 0.4kg CO2 = 120kg/CO2

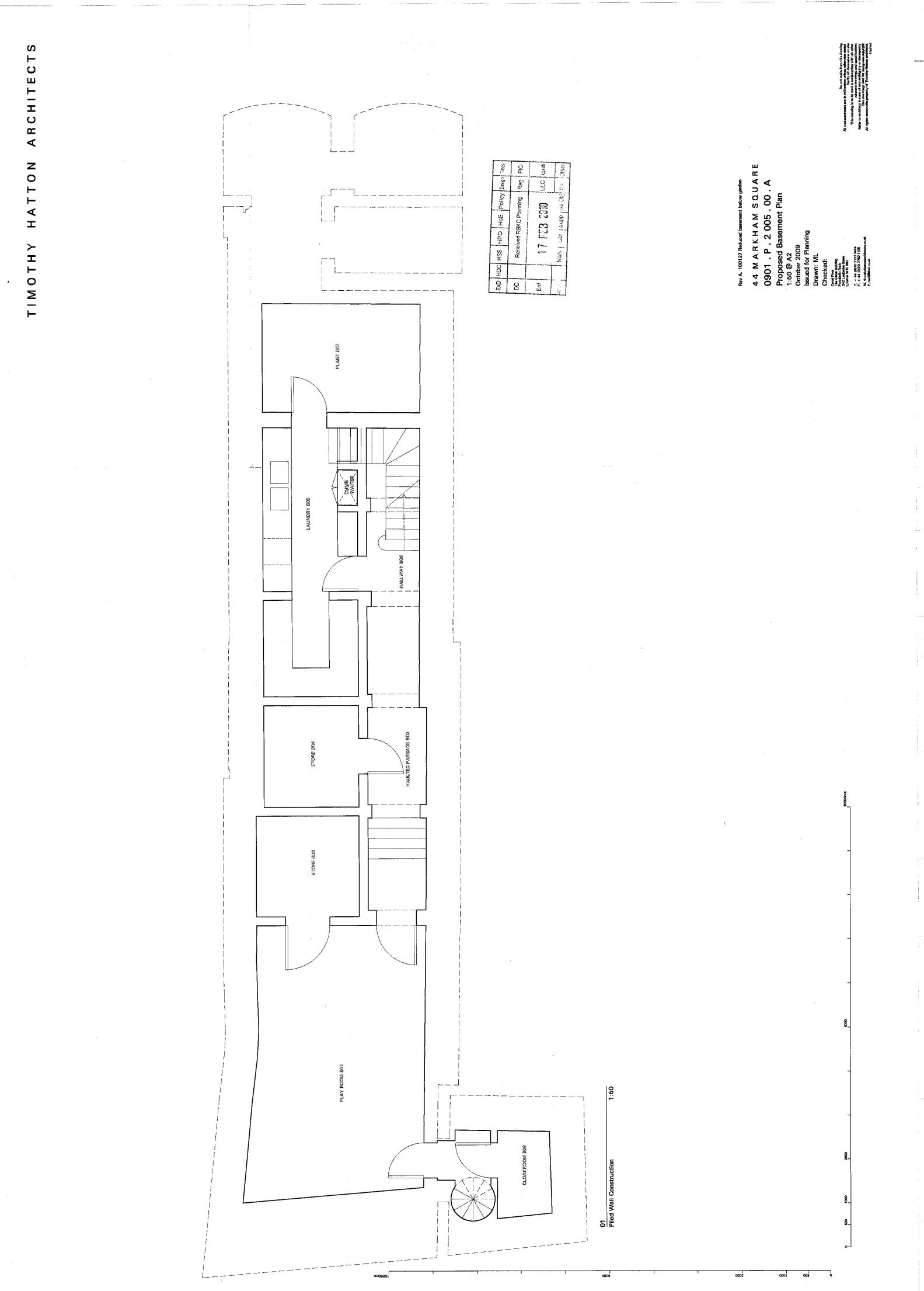
Works Time-Frame

Estimated time frame for build - 2 months CARBON FACTOR 2000kg/month

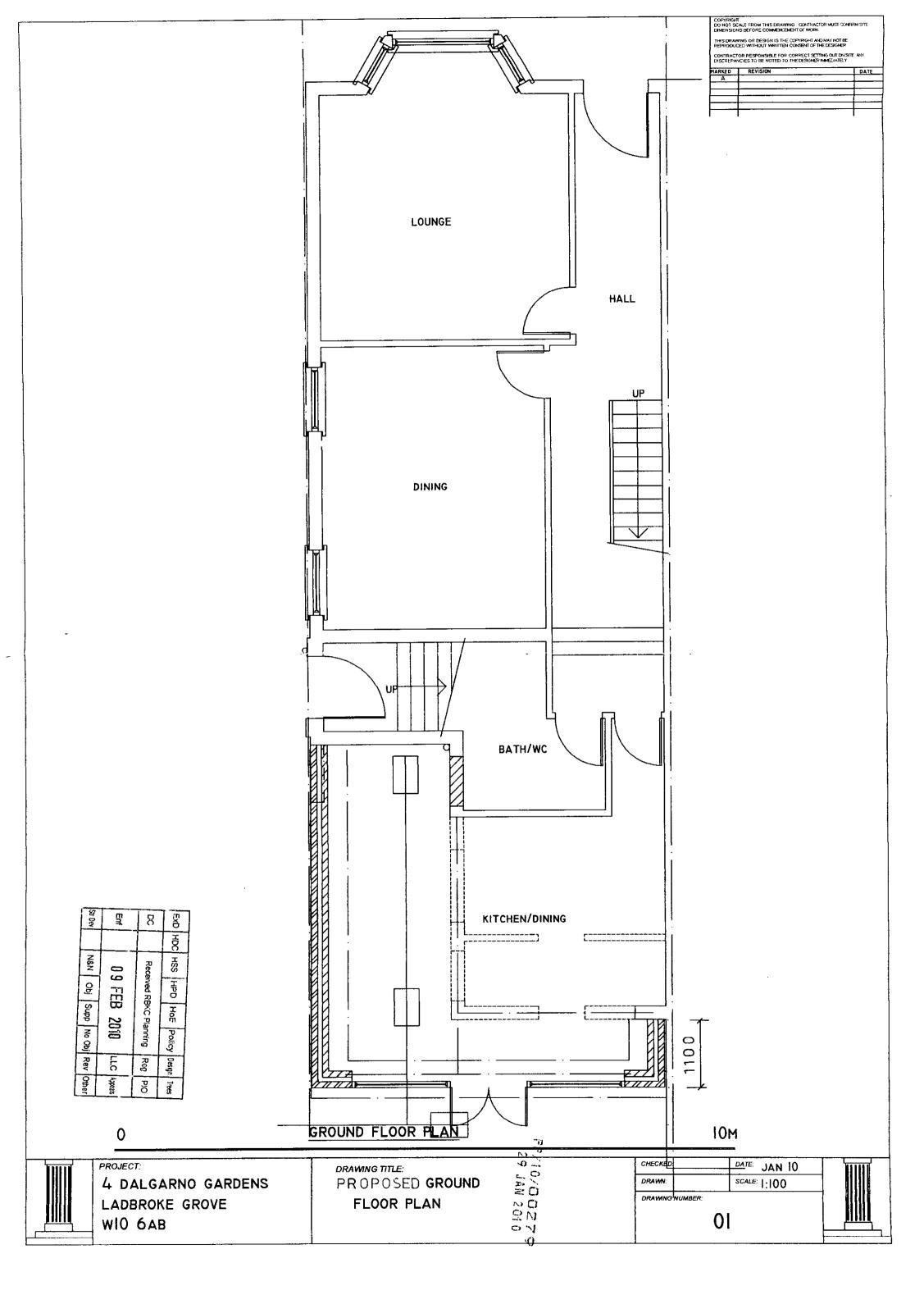
2000 × 2 = 6000kgCO₂

Construction Materials transport

Assume Average 8 yard 6m³ skip 13.34m³ materials Assume 50km by road for materials 3.5 Tonne Skip van emissions – 400gCO2 per Km (DEFRA) 13.34/6 = 3 trips (6 there and back) @ 50Km = 300Km


300 x 0.4kg CO2 = 120kg/CO2

Staff Travel


Assume Average travel distance 15km by Van 4 staff in 2 vans Van emissions - 224.4gCO₂ per Km 22 days per month on site 2 months = 44 days on site 44x15 = 660Km

660 x 0.2444 = 161.3kgCO₂

Construction Phase Calculations

.

